A Nilpotent Algebra Approach to Lagrangian Mechanics and Constrained Motion

Total Page:16

File Type:pdf, Size:1020Kb

A Nilpotent Algebra Approach to Lagrangian Mechanics and Constrained Motion Nonlinear Dyn DOI 10.1007/s11071-016-3290-3 ORIGINAL PAPER A nilpotent algebra approach to Lagrangian mechanics and constrained motion Aaron D. Schutte Received: 11 December 2015 / Accepted: 12 December 2016 © Springer Science+Business Media Dordrecht 2016 Abstract Lagrangian mechanics is extended to the Within the Lagrangian framework, one is compelled so-called nilpotent Taylor algebra T. It is shown that to construct the requisite equations of motion of a this extension yields a practical computational tech- mechanical system by first considering the kinemat- nique for the evaluation and analysis of the equations of ics of the system and then by evaluating the total sys- motion of general constrained dynamical systems. The tem kinetic energy T and potential energy U in order underlying T-algebra utilized herein permits the analy- to arrive at the Lagrangian L of the system. Invari- sis of constrained dynamical systems without the need ably, the process requires one to find the partial deriva- for analytical or symbolic differentiations. Instead, the tives of L with respect to (1) the generalized coordi- algebra produces the necessary exact derivatives inher- nates that describe the system state and (2) time. Fur- ently through binary operations, thus permitting the thermore, expressions for U may themselves require numerical analysis of constrained dynamical systems many differentiation evaluations with respect to the using only the defining scalar functions (the Lagrangian system configuration. This process can become non- L and the imposed constraints). The extension of the tractable if a large number of coordinates are involved. Lagrangian framework to the T-algebra is demon- In the presence of constraints, the situation is further strated analytically for a problem of constrained motion complicated since derivative information of the con- in a central field and numerically for the calculation of straints may be needed for both the development of Lyapunov exponents of N-pendulum systems. the constrained equations of motion and their numeri- cal integration. Implementation of analysis techniques Keywords Constrained motion · Automatic involving system linearization and sensitivity calcula- differentiation · Nilpotent algebra · Lagrangian tion of Lagrangian systems also relies on differenti- mechanics · Lyapunov exponents ation and can become quite challenging for complex systems. By extensions of the Lagrangian to the nilpo- tent Taylor algebra developed herein, it is the goal of 1 Introduction this paper to show that the derivation of equations of motion for general constrained dynamical systems and The traditional approach to Lagrangian mechanics their analyses can be transformed from an analytical involves the evaluation of real-valued scalar functions. to a purely numerical process given knowledge of only B the Lagrangian and the constraints on the motion. A. D. Schutte ( ) Schemes for numerical simulation of dynamical sys- The Aerospace Corporation, 2310 E. El Segundo Blvd, El Segundo, CA 90245-4691, USA tems typically rely on formulations wherein the sys- e-mail: [email protected] tem topology is determined before actual implementa- 123 A. D. Schutte tion. This is partly due to the fact that derivatives play structed. It is shown that the Taylor algebra T can be a central role in relating the kinematics of a system used to produce derivatives to arbitrary order of contin- to its dynamics. Practical numerical implementation uous real-valued multivariate functions. The Jacobian of the equations of motion of a constrained dynami- and Hessian numbers are constructed from truncated cal system essentially relies on three different forms T-algebras and used in the description of Lagrangian of differentiation, which include (1) analytical differ- mechanics. More importantly, it is demonstrated how entiation by hand, (2) symbolic differentiation, or (3) the algebras are used to numerically evaluate the ele- automatic differentiation. The first option is feasible if ments needed to formulate general constrained equa- all the necessary derivatives can be obtained by hand tions of motion for dynamical systems and to perform prior to implementation. However, the process must be linearization and sensitivity analyses. Finally, the exact repeated with changing system topology and is error nature of the derivatives produced by the algebras is prone for complex systems. Symbolic differentiation demonstrated analytically for a problem of constrained utilizes a computer algebra system to accomplish the motion in a central field and numerically for the calcu- same feat in a more automated fashion, and as a result lation of Lyapunov exponents for Lagrangian systems. is less error prone. Both of these forms of differenti- ation lead to algorithms that rely on concrete analyti- cal expressions. In contrast, automatic differentiation 2 Nilpotent J, H, and T algebras obtains derivatives of functions numerically. Common automatic differentiation methods apply a judicious Consider a commutative ring R. By definition, the use of the chain rule to evaluate the derivative of a binary operations of addition (+) and multiplication (·) given function by source code transformation or oper- on R satisfy the usual commutative, associative, and ator overloading [1,2]. This assumes that the function distributive axioms. The element 0 ∈ R is the additive of interest is suitably differentiable and can be imple- identity and 1 ∈ R is the multiplicative identity. While mented in a particular programming language. These all elements in R have an additive inverse, we do not methods fall into the classification of forward or reverse assume multiplicative inverses. Thus, R is not a field. mode techniques, where forward and reverse are used Elements in R that have a multiplicative inverse are to indicate the direction traversed by the chain rule. called units. It is also essential to note that an element k Software implementation of these techniques is widely ∈ R is nilpotent to order k if = 0 for minimal + available [3]. Another popular form of numerical dif- k ∈ N . ferentiation includes the complex-step derivative [4– Definition 1 Let R[x1,...,xn] be a polynomial ring 6], which has been used to numerically compute first- over the real numbers in the n algebraically indepen- and second-order derivatives. However, this approach dent indeterminates x1,...,xn. R[x1,...,xn] is called is based on the finite difference approximation and the set of polynomials over the ring R, and it is com- is subject to truncation errors, making it a generally mutative since R is commutative. unfeasible option for the numerical development and analysis of equations of motion for constrained sys- Definition 2 An ideal I is a nonempty subset of the tems. commutative ring R such that the following closure Yet another approach to automatic differentiation properties are satisfied involves the use of the so-called dual number alge- 1. ∀a, b ∈ I: a ± b ∈ I. bra. The dual numbers, which can be traced back to 2. ∀a ∈ I and ∀b ∈ R: ab ∈ I. the work of Clifford [7], have been shown to produce exact first derivatives of real-valued functions by sim- An ideal allows the construction of a quotient ring R/I ply extending the function to the dual number alge- (also written as R mod I). This is essentially a new bra. In mechanics, dual numbers have been primarily ring with the elements of the ideal I removed from used in kinematics analysis; e.g., see [8]. A dual num- the ring R. The quotient of a polynomial ring in mul- ber extension to second-order derivatives has recently tiple indeterminates is given by R[x1,...,xn]/I.This been developed [9], which was successfully applied to is an important type of ring since many rings are con- a Navier–Stokes solver. In what follows, a superset of veniently expressed as a quotient of polynomial rings. the dual numbers called the Taylor numbers is con- Here, it is assumed the ideal I = (α1,...,αm) is a 123 A nilpotent algebra approach to Lagrangian mechanics and constrained motion set of generators such that αi ∈ R[x1,...,xn].This Clearly, Eq. (7) represents a first degree Taylor polyno- allows the construction of the Taylor algebra mial. Higher degree terms vanish since higher powers of are zero. Thus, f˜(z) returns the evaluated function T(1,...,n) R[x1,...,xn] f (a0) and information about the first derivative f (a0). /{x x ···x } , , ∈N+ , (1) i j m i j m The exact derivative f (a0) is obtained by evaluating f˜(a + ). This is one of the most useful properties of where the ideal I ={xi x j ···xm}i, j,m∈N+ is both max- 0 imal and nilpotent to order m for 1 ≤ i, j,...,m ≤ n. the Jacobian algebra. An ideal is nilpotent when Ik ={0} for any k ∈ N+. Extending the Jacobian algebra to higher derivatives T Note that the T-algebra actually depends on the trun- yields another subset of a truncated –algebra, which 3 = cation order m. Obscurely, the most germane and inter- has a third-order nilpotent element such that 0. H esting property of this algebra lies in its ability to pro- In a single indeterminate , the Hessian algebra, ,is duce exact derivatives to arbitrary order of continuous given in the single indeterminate form as real-valued multivariate functions. This can be accom- H() R[x]/{x3}. (8) plished by simply extending the function of interest to The Hessian number is given by the T–algebra of appropriate truncation order. = + + 2, The dual numbers are a well-known subset of a z a0 a1 a2 (9) truncated T–algebra. Abstractly, the dual numbers are where a0, a1, a2 ∈ R. Addition and multiplication of derived from the Jacobian algebra, J, in a single inde- the Hessian number follow the definitions terminate so that (a0, a1, a2) + (b0, b1, b2) J() [ ]/{ 2}; R x x (2) = (a0 + b0, a1 + b1, a2 + b2) (10) i.e., J() is isomorphic to the quotient ring R[x]/{x2}.
Recommended publications
  • Nilpotent Elements Control the Structure of a Module
    Nilpotent elements control the structure of a module David Ssevviiri Department of Mathematics Makerere University, P.O BOX 7062, Kampala Uganda E-mail: [email protected], [email protected] Abstract A relationship between nilpotency and primeness in a module is investigated. Reduced modules are expressed as sums of prime modules. It is shown that presence of nilpotent module elements inhibits a module from possessing good structural properties. A general form is given of an example used in literature to distinguish: 1) completely prime modules from prime modules, 2) classical prime modules from classical completely prime modules, and 3) a module which satisfies the complete radical formula from one which is neither 2-primal nor satisfies the radical formula. Keywords: Semisimple module; Reduced module; Nil module; K¨othe conjecture; Com- pletely prime module; Prime module; and Reduced ring. MSC 2010 Mathematics Subject Classification: 16D70, 16D60, 16S90 1 Introduction Primeness and nilpotency are closely related and well studied notions for rings. We give instances that highlight this relationship. In a commutative ring, the set of all nilpotent elements coincides with the intersection of all its prime ideals - henceforth called the prime radical. A popular class of rings, called 2-primal rings (first defined in [8] and later studied in [23, 26, 27, 28] among others), is defined by requiring that in a not necessarily commutative ring, the set of all nilpotent elements coincides with the prime radical. In an arbitrary ring, Levitzki showed that the set of all strongly nilpotent elements coincides arXiv:1812.04320v1 [math.RA] 11 Dec 2018 with the intersection of all prime ideals, [29, Theorem 2.6].
    [Show full text]
  • Classifying the Representation Type of Infinitesimal Blocks of Category
    Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J. Platt (Under the Direction of Brian D. Boe) Abstract Let g be a simple Lie algebra over the field C of complex numbers, with root system Φ relative to a fixed maximal toral subalgebra h. Let S be a subset of the simple roots ∆ of Φ, which determines a standard parabolic subalgebra of g. Fix an integral weight ∗ µ µ ∈ h , with singular set J ⊆ ∆. We determine when an infinitesimal block O(g,S,J) := OS of parabolic category OS is nonzero using the theory of nilpotent orbits. We extend work of Futorny-Nakano-Pollack, Br¨ustle-K¨onig-Mazorchuk, and Boe-Nakano toward classifying the representation type of the nonzero infinitesimal blocks of category OS by considering arbitrary sets S and J, and observe a strong connection between the theory of nilpotent orbits and the representation type of the infinitesimal blocks. We classify certain infinitesimal blocks of category OS including all the semisimple infinitesimal blocks in type An, and all of the infinitesimal blocks for F4 and G2. Index words: Category O; Representation type; Verma modules Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J. Platt B.A., Utah State University, 1999 M.S., Utah State University, 2001 M.A, The University of Georgia, 2006 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Athens, Georgia 2008 c 2008 Kenyon J. Platt All Rights Reserved Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J.
    [Show full text]
  • Hyperbolicity of Hermitian Forms Over Biquaternion Algebras
    HYPERBOLICITY OF HERMITIAN FORMS OVER BIQUATERNION ALGEBRAS NIKITA A. KARPENKO Abstract. We show that a non-hyperbolic hermitian form over a biquaternion algebra over a field of characteristic 6= 2 remains non-hyperbolic over a generic splitting field of the algebra. Contents 1. Introduction 1 2. Notation 2 3. Krull-Schmidt principle 3 4. Splitting off a motivic summand 5 5. Rost correspondences 7 6. Motivic decompositions of some isotropic varieties 12 7. Proof of Main Theorem 14 References 16 1. Introduction Throughout this note (besides of x3 and x4) F is a field of characteristic 6= 2. The basic reference for the staff related to involutions on central simple algebras is [12].p The degree deg A of a (finite dimensional) central simple F -algebra A is the integer dimF A; the index ind A of A is the degree of a central division algebra Brauer-equivalent to A. Conjecture 1.1. Let A be a central simple F -algebra endowed with an orthogonal invo- lution σ. If σ becomes hyperbolic over the function field of the Severi-Brauer variety of A, then σ is hyperbolic (over F ). In a stronger version of Conjecture 1.1, each of two words \hyperbolic" is replaced by \isotropic", cf. [10, Conjecture 5.2]. Here is the complete list of indices ind A and coindices coind A = deg A= ind A of A for which Conjecture 1.1 is known (over an arbitrary field of characteristic 6= 2), given in the chronological order: • ind A = 1 | trivial; Date: January 2008. Key words and phrases.
    [Show full text]
  • Commutative Algebra
    Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
    [Show full text]
  • Nilpotent Ideals in Polynomial and Power Series Rings 1609
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 5, May 2010, Pages 1607–1619 S 0002-9939(10)10252-4 Article electronically published on January 13, 2010 NILPOTENT IDEALS IN POLYNOMIAL AND POWER SERIES RINGS VICTOR CAMILLO, CHAN YONG HONG, NAM KYUN KIM, YANG LEE, AND PACE P. NIELSEN (Communicated by Birge Huisgen-Zimmermann) Abstract. Given a ring R and polynomials f(x),g(x) ∈ R[x] satisfying f(x)Rg(x) = 0, we prove that the ideal generated by products of the coef- ficients of f(x)andg(x) is nilpotent. This result is generalized, and many well known facts, along with new ones, concerning nilpotent polynomials and power series are obtained. We also classify which of the standard nilpotence properties on ideals pass to polynomial rings or from ideals in polynomial rings to ideals of coefficients in base rings. In particular, we prove that if I ≤ R[x]is aleftT -nilpotent ideal, then the ideal formed by the coefficients of polynomials in I is also left T -nilpotent. 1. Introduction Throughout this paper, all rings are associative rings with 1. It is well known that a polynomial f(x) over a commutative ring is nilpotent if and only if each coefficient of f(x) is nilpotent. But this result is not true in general for noncommutative rings. For example, let R = Mn(k), the n × n full matrix ring over some ring k =0. 2 Consider the polynomial f(x)=e12 +(e11 − e22)x − e21x ,wheretheeij’s are 2 the matrix units. In this case f(x) = 0, but e11 − e22 is not nilpotent.
    [Show full text]
  • Problem 1. an Element a of a Ring R Is Called Nilpotent If a M = 0 for Some M > 0. A) Prove That in a Commutative Ring R
    Problem 1. An element a of a ring R is called nilpotent if am = 0 for some m> 0. a) Prove that in a commutative ring R the set N of all nilpotent elements of R is an ideal. This ideal is called the nilradical of R. Prove that 0 is the only nilpotent element of R/N. b) Let R be a commutative ring and let a1, ..., an R be nilpotent. Set I for the ∈ ideal < a1, ..., an > generated by a1, ..., an. Prove that there is a positive integer N N such that x1x2...xN = 0 for any x1, ..., xN in I (i.e. that I = 0). c) Prove that the set of all nilpotent elements in the ring M2(R) is not an ideal. d) Prove that if p is a prime and m > 0 then every element of Z/pmZ is either nilpotent or invertible. e) Find the nilradical of Z/36Z (by correspondence theorem, it is equal to nZ/36Z for some n). Solution:a) Suppose that a, b N and r R. Thus an = 0 and bm = 0 for ∈ ∈ some positive integers m, n. By the Newton’s binomial formula we have m+n m + n (a b)m+n = ai( b)m+n−i. (1) − i − i=0 X Note that, for every i 1, 2, ..., m+n , either i n or m+n i m and therefore ∈{ } ≥ − ≥ either ai =0or( b)m+n−i = 0. It follows that every summand in the sum (1) is 0, − so (a b)m+n = 0. Thus a b N.
    [Show full text]
  • Semisimple Cyclic Elements in Semisimple Lie Algebras
    Semisimple cyclic elements in semisimple Lie algebras A. G. Elashvili1 , M. Jibladze1 , and V. G. Kac2 1 Razmadze Mathematical Institute, TSU, Tbilisi 0186, Georgia 2 Department of Mathematics, MIT, Cambridge MA 02139, USA Abstract This paper is a continuation of the theory of cyclic elements in semisimple Lie algebras, developed by Elashvili, Kac and Vinberg. Its main result is the classification of semisimple cyclic elements in semisimple Lie algebras. The importance of this classification stems from the fact that each such element gives rise to an integrable hierarchy of Hamiltonian PDE of Drinfeld-Sokolov type. 1 Introduction Let g be a semisimple finite-dimensional Lie algebra over an algebraically closed field F of characteristic 0 and let e be a non-zero nilpotent element of g. By the Morozov- Jacobson theorem, the element e can be included in an sl(2)-triple s = fe; h; fg (unique, up to conjugacy [Ko]), so that [e; f] = h,[h; e] = 2e,[h; f] = −2f. Then the eigenspace decomposition of g with respect to ad h is a Z-grading of g: d M (1.1) g = gj; where g±d 6= 0. j=−d The positive integer d is called the depth of the nilpotent element e. An element of g of the form e + F , where F is a non-zero element of g−d, is called a cyclic element, associated to e. In [Ko] Kostant proved that any cyclic element, associated to a principal (= regular) nilpotent element e, is regular semisimple, and in [Sp] Springer proved that any cyclic element, associated to a subregular nilpotent element of a simple exceptional Lie algebra, is regular semisimple as well, and, moreover, found two more distinguished nilpotent elements in E8 with the same property.
    [Show full text]
  • Are Octonions Necessary to the Standard Model?
    Vigier IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012044 doi:10.1088/1742-6596/1251/1/012044 Are octonions necessary to the Standard Model? Peter Rowlands, Sydney Rowlands Physics Department, University of Liverpool, Oliver Lodge Laboratory, Oxford St, Liverpool. L69 7ZE, UK [email protected] Abstract. There have been a number of claims, going back to the 1970s, that the Standard Model of particle physics, based on fermions and antifermions, might be derived from an octonion algebra. The emergence of SU(3), SU(2) and U(1) groups in octonion-based structures is suggestive of the symmetries of the Standard Model, but octonions themselves are an unsatisfactory model for physical application because they are antiassociative and consequently not a group. Instead, the ‘octonion’ models have to be based on adjoint algebras, such as left- or right-multiplied octonions, which can be seen to have group-like properties. The most promising of these candidates is the complexified left-multiplied octonion algebra, because it reduces, in effect, to Cl(6), which has been identified by one of us (PR) in a number of previous publications as the basic structure for the entire foundation of physics, as well as the algebra required for the Standard Model and the Dirac equation. Though this algebra has long been shown by PR as equivalent to using a complexified left-multiplied or ‘broken’ octonion, it doesn’t need to be derived in this way, as its real origins are in the respective real, complex, quaternion and complexified quaternion algebras of the fundamental parameters of mass, time, charge and space.
    [Show full text]
  • Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35
    Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35 1. Let R be a commutative ring with 1 6= 0. (a) Prove that the nilradical of R is equal to the intersection of the prime ideals of R. Hint: it’s easy to show using the definition of prime that the nilradical is contained in every prime ideal. Conversely, suppose that f is not nilpotent and consider the set S of ideals I of R with the property that “n > 0 =⇒ f n 6∈ I.” Show that S has maximal elements and that any such maximal element must be a prime ideal. Solution: Suppose that f ∈ R is not nilpotent and let S be the set S of ideals I of R with the property that “n > 0 =⇒ f n 6∈ I.” Ordering S by inclusion, note that every chain is bounded above: if I1 ⊆ I2 ⊆ · · · is a chain, then I = ∪Ii is an upper bound which clearly lies in S. By Zorn’s lemma, S has a maximal element, say M, which we claim is prime. Indeed, suppose that uv ∈ M but that u 6∈ M and v 6∈ M. Then the ideals M + (u) and M + (v) strictly contain M so do not belong to S by maximality of M. Thus, there exist m and n such that f n ∈ M + (u) and f m ∈ M + (v). It follows that f m+n ∈ M + (uv) = M and hence that M is not in S, a contradiction. Thus, either u or v lies in M and M is prime.
    [Show full text]
  • Homework 4 Solutions
    Homework 4 Solutions p Problem 5.1.4. LetpR = fm + n 2 j m; n 2 Zg. 2 2 (a) Show that m +pn 2 is a unit in R if and only if m − 2n = ±1. (b) Show that 1 + 2 has infinite order in R×. (c) Show that 1 and −1 are the only units that have finite order in R×. p Proof. (a) Define a map N : R ! Z where N(r) = m2 − 2n2 where r = m + n 2. One can verify that N is multiplicative, i.e. N(rs) = N(r)N(s) for r; s 2 R. Thus if r 2 R× then rs = q for some s 2 R. This implies 2 2 that N(r)N(s) = N(rs) = N(1) = 1 andp hence N(rp);N(s) 2 Zpimplies that m − 2n = N(r) = ±p1. 2 2 2 2 × For the converse observep that (m + n 2)(m +pn 2)(m − n 2) = (m − 2np) = 1, i.e. m + n 2 2 R . (b) Note that 1 + 2 > 1 and therefore (1 + 2)k > 1k = 1. Therefore 1 + 2 has infinite order. (c) Since R is a subring of R and the only elements in R with finite order in R× are ±1 it follows that the only elements in R× with finite order are ±1. Problem 5.1.5. Let R be a subset of an integral domain D. Prove that if R 6= f0g is a ring under the operations of D, then R is a subring of D. Proof.
    [Show full text]
  • Standard Model Plus Gravity from Octonion Creators and Annihilators
    quant-ph/9503009 THEP-95-2 March 1995 Standard Model plus Gravity from Octonion Creators and Annihilators Frank D. (Tony) Smith, Jr. e-mail: [email protected] and [email protected] P. O. Box for snail-mail: P. O. Box 430, Cartersville, Georgia 30120 USA WWW URL http://www.gatech.edu/tsmith/home.html School of Physics Georgia Institute of Technology Atlanta, Georgia 30332 Abstract Octonion creation and annihilation operators are used to construct the Standard Model plus Gravity. The resulting phenomenological model is the D4 − D5 − E6 model described in hep-ph/9501252. c 1995 Frank D. (Tony) Smith, Jr., Atlanta, Georgia USA arXiv:quant-ph/9503009v1 12 Mar 1995 Contents 1 Introduction. 2 2 Octonion Creators and Annihilators. 3 3 Complexified Octonions. 10 4 Dimensional Reduction. 11 5 Spacetime and Internal Symmetries. 14 5.1 Spacetime,Gravity,andPhase. 14 5.2 InternalSpaceandSymmetries. 15 1 1 Introduction. The purpose of this paper is to outline a way to build a model of the Standard Model plus Gravity from the Heisenberg algebra of fermion creators and annihilators. We want to require that the superposition space of charged fermion cre- ation operators be represented by multiplication on a continuous unit sphere in a division algebra. That limits us to: the complex numbers C, with parallelizable S1, the quaternions Q, with parallelizable S3, and the octonions O, with parallelizable S7. We choose the octonions because they are big enough to make a realistic physics model. Octonions are described in Geoffrey Dixon’s book [3] and subsequent pa- pers [4, 5, 6, 7], and in Ian Porteous’s book [11].
    [Show full text]
  • Jacobson Radical and Nilpotent Elements
    East Asian Math. J. Vol. 34 (2018), No. 1, pp. 039{046 http://dx.doi.org/10.7858/eamj.2018.005 JACOBSON RADICAL AND NILPOTENT ELEMENTS Chan Huh∗ y, Jeoung Soo Cheon, and Sun Hye Nam Abstract. In this article we consider rings whose Jacobson radical con- tains all the nilpotent elements, and call such a ring an NJ-ring. The class of NJ-rings contains NI-rings and one-sided quasi-duo rings. We also prove that the Koethe conjecture holds if and only if the polynomial ring R[x] is NJ for every NI-ring R. 1. Introduction Throughout R denotes an associative ring with identity unless otherwise stated. An element a 2 R is nilpotent if an = 0 for some integer n ≥ 1, and an (one-sided) ideal is nil if all the elements are nilpotent. R is reduced if it has no nonzero nilpotent elements. For a ring R, Nil(R), N(R), and J(R) denote the set of all the nilpotent elements, the nil radical, and the Jacobson radical of R, respectively. Note that N(R) ⊆ Nil(R) and N(R) ⊆ J(R). Due to Marks [14], R is called an NI-ring if Nil(R) ⊆ N(R) (or equilvalently N(R) = Nil(R)). Thus R is NI if and only if Nil(R) forms an ideal if and only if the factor ring R=N(R) is reduced. Hong et al [8, corollary 13] proved that R is NI if and only if every minimal strongly prime ideal of R is completely prime.
    [Show full text]