Sol-Gel Synthesis of Phosphate-Based Glasses for Biomedical Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Miniaturized Spectrophotometric in Situ Ph Sensor for Seawater
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2017 A miniaturized spectrophotometric in situ pH sensor for seawater Reuben C. Darlington The University Of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Chemical Engineering Commons, Environmental Chemistry Commons, Geochemistry Commons, and the Mechanical Engineering Commons Let us know how access to this document benefits ou.y Recommended Citation Darlington, Reuben C., "A miniaturized spectrophotometric in situ pH sensor for seawater" (2017). Graduate Student Theses, Dissertations, & Professional Papers. 11028. https://scholarworks.umt.edu/etd/11028 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. A MINIATURIZED SPECTROPHOTOMETRIC IN SITU pH SENSOR FOR SEAWATER By REUBEN CURTIS DARLINGTON B.A. Physics, The University of Montana, Missoula, MT, 2002 Thesis presented in partial fulfillment of the requirements for the degree of Master of Interdisciplinary Studies The University of Montana Missoula, MT Official Graduation Date Spring 2017 Approved by: Scott Whittenburg, Dean of The Graduate School Graduate School Michael D. DeGrandpre, Chair Chemistry J.B.A. Sandy Ross Chemistry Bradley E. Layton Applied Computing and Engineering Technology James C. Beck Sunburst Sensors, LLC Darlington, Reuben, M.I.S, Spring 2017 A Miniaturized Spectrophotometric in situ pH Sensor for Seawater Chairperson: Michael D. DeGrandpre Since the Industrial Revolution, the world's oceans have absorbed increasing amounts of CO2 and the resultant changes to the marine carbonate chemical system have reduced the pH by > 0.1 units (∼ 30%) in surface waters. -
The Use Op the Glass Electrode As a Reference Electrode
THE USE OP THE GLASS ELECTRODE AS A REFERENCE ELECTRODE PAUL Si BROOKS ' Thesis submitted to the Faculty of the Graduate School of the University of Maryland in partial fulfillment of the requirements for the degree of Doctor of Philosophy 1940 UMI Number: DP70081 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI DP70081 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 Ac knowle dgement The writer takes this opportunity to express his appreciation to Dr. M. M* Haring for his suggestion of the problem and his continual aid during its completion. TABLE OP CONTENTS Page I. INTRODUCTION.......................... 1 II. THEORETICAL DISCUSSION . ......................................................................... 2 Theory of the Glass E lectro d e ..................................... 2 Standard Electrode Potential .............. 5 Application of the Glass Electrode ...................................... 10 III. EXPERIMENTAL.................................................................................................................... -
Draft Scope of the Risk Evaluation for Triphenyl Phosphate CASRN 115-86-6
EPA Document# EPA-740-D-20-010 April 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Draft Scope of the Risk Evaluation for Triphenyl Phosphate CASRN 115-86-6 April 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................5 ABBREVIATIONS AND ACRONYMS ..................................................................................................6 EXECUTIVE SUMMARY .......................................................................................................................8 1 INTRODUCTION ............................................................................................................................11 2 SCOPE OF THE EVALUATION ...................................................................................................11 2.1 Reasonably Available Information ..............................................................................................11 Search of Gray Literature ...................................................................................................... 12 Search of Literature from Publicly Available Databases (Peer-Reviewed Literature) .......... 13 Search of TSCA Submissions ................................................................................................ 19 2.2 Conditions of Use ........................................................................................................................19 Categories -
SDS for Taylor Mason's Hygrometer
SAFETY DATA SHEET Preparation Date: 3/11/2015 Revision Date: 3/11/2015 Revision Number: G1 Product identifier Product code: T2256 Product Name: TRIETHYL PHOSPHATE Other means of identification Synonyms: Ethyl phosphate TEP Triethoxyphosphine oxide Phosphoric acid, triethyl ester CAS #: 78-40-0 RTECS # TC7900000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: Used as a catalyst in the production of acetic anhydride by the ketene process, as a desensitizing agent for peroxides, and as a solvent and plasticizer for cellulose acetate. Solvent; plasticizer for resins, plastics, gums; catalyst; lacquer remover. As a plasticizer, solvent, fire-retarding agent, anti-foaming agent As an ethylating agent, and as a raw material to prepare insecticides such as tetraethyl pyrophosphate. As ethylating agent; formation of polyesters which are used as insecticides.. Uses advised against No information available Supplier: Spectrum Chemicals and Laboratory Products, Inc. 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute toxicity - Oral Category 4 Serious eye damage/eye irritation Category 2A Label elements Product code: T2256 Product name: TRIETHYL 1 / 12 PHOSPHATE Warning Hazard statements Harmful if swallowed Causes serious eye irritation Hazards not otherwise classified (HNOC) Not Applicable Other hazards Not available Precautionary Statements - Prevention Wash face, hands and any exposed skin thoroughly after handling Do not eat, drink or smoke when using this product Wear eye/face protection IF IN EYES: Rinse cautiously with water for several minutes. -
Aerospace Research Center
Aerospace Research Center BEAM ALIGNMENT TECHNIQUES BASED ON THE CURRENT ENHANCEMENT EFFECT IN PHOTOCONDUCTORS FI NAL TECHNICAL REPORT 3 1 August 1968. This document was prepared under the sponsorship of the 3 ! National Aeronautics & Space Administration. Neither .A the United States Government nor any person acting on behalf of the United States Government assumes any liability resulting from the use of information contained in this document, or warrants that such use wi I I be free from privately-owned rights. > Prepared under Contract NAS 12-8 by w GENERAL PRECISION SYSTEMS INC. Aerospace Research Center Little Falls, New Jersey for National Aeronautics and Space Administration Electronics Research Center Cambridge, Massachusetts Y Mr. Janis Bebris Technical Minitor EO/Space Optics Laboratory E Iectronics Research Center 575 Technology Square Cambridge, Massachusetts 02 139 .-. Requests for copies of this report should be referred to: NASA Scientific and Technical Information Facility, P.O. Box 33, College Park, Maryland 20740 AEROSPACE RESEARCH CENTER 0 GENERAL PRECISION SYSTEMS INC. RC -68 -8 BEAM ALIGNMENT TECHNIQUES BASED ON THE CURRENT ENHANCEMENT EFFECT IN PHOTOCONDUCTORS Work Performed By: Written By: Cecil B. Ellis Frank V. Allan Raymond P, Borkowski William M, Block Alfred Brauer Robert Carval ho Cecil B. Ellis Robert Flower Jesse C. Kaufman .. Aryeh H. Samuel li Joseph C, Scanlon Dr. Daniel Grirfstein Principal Staff Scientist Manager, Materials Department 31 August 1968 FINAL TECHNICAL REPORT Prepared under Contract NAS 12-8 by GENERAL PRECISION SYSTEMS INC. Aerospace Research Center Little Falls, New Jersey for the Electronics Research Center National Aeronautics and Space Administration V i AEROSPACE RESEARCH CENTER GENERAL PRECISION SYSTEMS INC. -
The 50 Series Ph Meter
The 50 Series pH Meter Takeshi Kobayashi [The Development Team (Main body)] Upper left: Yuichi Ito Back row from the left: Seiichiro Yoshioka, Takeshi Shimizu, Hiroyuki Kitamura, Takeshi Mori, Yosuke Hisamori Front row from the left: Yoshiyuki Okada, Mitsuru Honjo, Yoshihiro Tarui, Katsuaki Ogura, Yoshihiko Ida [The Development Team (Electrode)] Back row from the left: Yuji Nishio, Yasukazu Iwamoto, Nobuki Yoshioka, Shinji Takeichi, Takeshi Kobayashi, Kenichi Tanaka Front row from the left: Hiromi Ohkawa, Tsuyoshi Nakanishi, Satoshi Nomura, Hiroki Tanabe, Koji Ueda In developing the 50 Series, we focused on the following two points: ease of use of the basic pH meter main unit and enhancement of the electrode performance as the most vital features for pH measurement. By adding a navigation function with character display, which is not used by conventional analyzers, as well as adopting the world’s first color display, our new bench top pH meter has proved user friendly even for customers with no pH measurement knowledge. We took the World’s top performing ToupH glass electrode series and succeeded in increasing the electrode life by improving the performance of the reference electrode and strengthening the durability of glass material. Also, the pH measurement field has been extended to new and unconventional measurement areas by commercialization of the glass- free ISFET electrode. This article describes features of this product in detail. 88 English Edition No.9 Technical Reports Introduction pH Meter Main Unit This product is commercially manufactured as the 50 series This development has seen a total of 14 models of the D-50 and is a model change from the conventional D-20 series series for on-site measurement and also the F-50 series for and F-20 series and commemorates HORIBA’s 50th laboratory use, simultaneously produced in approximately anniversary. -
1.2 Electrochemical Gelation
Cross, Emily Ruth (2020) Analysing and controlling the self-assembly of Gelation. PhD thesis. http://theses.gla.ac.uk/81594/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Analysing and Controlling the Self-assembly of Gelation Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Emily Ruth Cross May 2020 To my parents, for raising me to believe that: ‘Whatever the mind can conceive and believe, the mind can achieve regardless of how many times you may have failed in the past or how lofty your aims and hopes may be.’ -Napoleon Hill i Abstract We describe new methods to analyse and control the self-assembly of gelation leading to exciting new soft materials. These materials have been shown to be of use to a wide range of applications including antimicrobial coatings, OPV devices, thermochromic materials and biomedical materials. Many of the described methods are novel or go beyond the state of the art. One of the analytical methods probes the surface chemistry of self-assembled hydrogel fibres to determine their pKa. -
Materials Chemistry B Accepted Manuscript
Journal of Materials Chemistry B Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/materialsB Page 1 of 30 Journal of Materials Chemistry B Is non-buffered DMEM solution suitable medium for in vitro bioactivity tests? Dana Rohanová a,* , Aldo Roberto Boccaccini b , Diana Horkavcová a, Pavlína Bozděchová a, Petr Bezdička c , Markéta Častorálová d a Department of Glass and Ceramics, Faculty of Chemical Technology, Institute of Manuscript Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic b Department of Materials Science and Engineering, Institute -
The Electrochemical Fabrication of Hydrogels: a Short Review
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten Review Paper The electrochemical fabrication of hydrogels: a short review Emily R. Cross1 Received: 22 October 2019 / Accepted: 5 February 2020 © The Author(s) 2020 OPEN Abstract Electrochemical hydrogel fabrication is the process of preparing hydrogels directly on to an electrode surface. There are a variety of methods to fabricate hydrogels, which are specifc to the type of gelator and the desired properties of the hydrogel. A range of analytical methods that can track this gelation and characterise the fnal properties are discussed in this short review. Keywords Hydrogel · Fabrication · Biofabrication · Electrogelation 1 Introduction an electrode surface, producing benzoquinone and pro- tons. The protons set up a pH gradient which is low on the Electrochemical hydrogel fabrication is a common term electrode surface and high in the bulk solution [2, 11]. The used to describe the process of preparing hydrogels on resulting low pH triggers gel formation which continues to to an electrode surface. However, other phrases such as grow as the hydroquinone is continuously oxidised. electrodeposition, bio-assembly, bio-printing, e-gels and Common electrochemical set ups include a work- electrogelation are also used to describe this process. ing electrode such as a glassy carbon, platinum, or FTO Hydrogels can be prepared by changing the solubility of (fuorine doped tin oxide)/ITO (indium doped tin oxide) the gelating component on the electrode surface [1–3]. coated glass, within a three-electrode system. Electrode There are a variety of reduction and oxidation (redox) surfaces can be patterned in order for a hydrogel of a spe- methods used to induce this change in solubility. -
Of the Soda-Silica Glasses by Gerald F
----------------------------~~~----------------------------------------------------------------- U . S. Department of Commerce Research Paper RPl923 National Bureau of Standards Volume 41, October 1948 Part of the Journal of Research of the National Bureau of Standards Electrode Function (pH Response) of the Soda-Silica Glasses By Gerald F. Rynders, Oscar H. Grauer, and Donald Hubbard A series of Na20-8i02 glasses was studied for durability, hygroscopicity, glass electrode function, and apparent response to [Na+]. These glasses show three distinct regions of durability characteristics at pH 4.6: Below 81 percent of 8i02, where the glass is carried into solutioo; between 81 and 89.5 percent of 8i02, where differential solution of the consti tuents of the glass leaves a swollen silica-rich layer; and a region in which greatly reduced attack was indicated. Glass electrodes of low silica con tent having poor chemical dura bility and high hygroscopicity exhibited large voltage departures approaching the values of a "punctured" mercury-filled electrode and a calomel half cell. The apparent response to [Na+] ranged from 9 to 339 millivolts per pNa for the glasses of 82.6 and 56.6 percent. of i02, respectively. 1. Introduction of the high quality u ed in the production of optical glass. T he batches were prepared to For a glass to function satisfactorily as a glass provide a series varying in sLeps of about 4 percent dectrode, it must have uniform durability over an in the range from 55 to 91 percent of silica. extended pH range as well as adeq ltaLe hygroscopi Glasses of higher silica content were not obtained, city. It has bren shown that where the glass is because the field of practical glassmaking is attacked excessively [1, 2, 3]/ or where the glass limi ted by the tendency of glasses to devi trify, has inadequate hygroscopicity [4, 5], depaltures their high liquidus temperatures, or their high from the N ernst eq uation occur. -
Release to Impart Bioactivity in Hybrid Glass Scaffolds for Bone Tissue
pharmaceutics Article Sustained Calcium(II)-Release to Impart Bioactivity in Hybrid Glass Scaffolds for Bone Tissue Engineering Dzmitry Kuzmenka 1, Claudia Sewohl 1, Andreas König 2 , Tobias Flath 3, Sebastian Hahnel 2, Fritz Peter Schulze 3, Michael C. Hacker 1,4 and Michaela Schulz-Siegmund 1,* 1 Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany; [email protected] (D.K.); [email protected] (C.S.); [email protected] (M.C.H.) 2 Department of Prosthetic Dentistry and Dental Materials Science, Leipzig University, 04103 Leipzig, Germany; [email protected] (A.K.); [email protected] (S.H.) 3 Department of Mechanical and Energy Engineering, University of Applied Sciences Leipzig, 04277 Leipzig, Germany; tobias.fl[email protected] (T.F.); [email protected] (F.P.S.) 4 Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany * Correspondence: [email protected] Received: 24 November 2020; Accepted: 5 December 2020; Published: 8 December 2020 Abstract: In this study, we integrated different calcium sources into sol-gel hybrid glass scaffolds with the aim of producing implants with long-lasting calcium release while maintaining mechanical strength of the implant. Calcium(II)-release was used to introduce bioactivity to the material and eventually support implant integration into a bone tissue defect. Tetraethyl orthosilicate (TEOS) derived silica sols were cross-linked with an ethoxysilylated 4-armed macromer, pentaerythritol ethoxylate and processed into macroporous scaffolds with defined pore structure by indirect rapid prototyping. Triethyl phosphate (TEP) was shown to function as silica sol solvent. -
UNITED STATES PATENT OFFICE 2,572,806 MANUEFACTURE of TETRAETHY, PYROPHOSPAATE John Sterling Harris, Richmond Heights, Mo., Assignor to Monsanto Chemical Company, St
Patented Oct. 23, 1951 2,572,806 UNITED STATES PATENT OFFICE 2,572,806 MANUEFACTURE OF TETRAETHY, PYROPHOSPAATE John Sterling Harris, Richmond Heights, Mo., assignor to Monsanto Chemical Company, St. Louis, Mo., a corporation of Delaware No Drawing. Application May 1, 1948, Serial No. 24,683 2 Claims, (C. 260-461) 2 This invention relates to compositions con enty known to the art. A still further object of taining increased amounts of tetraethyl pyro this invention is to provide biological toxicant phosphate, and more. particularly to a process compositions containing increased amounts of for the manufacture of tetraethyl pyrophosphate. tetraethyl pyrophosphate which poSSeSS over Compositions containing tetraethyl pyrophos 5. S00% greater biological activity for the combat phate are widely used as agricultural economic ing and control of pests such as aphids and mites poisons, particularly against many insects such than do the compositions containing tetraethyl as aphids and against many acarina such as the pyrophosphate which are presently known to red Spider mites, however, such compositions may the art. be used generally against the lower forms of life O In the practice of this invention, the mixtures which, in the past, have been combatted by the of reaction products from the processes of this use of nicotine or nicotine salts. Furthermore, invention contain substantially 40%, that is tetraethyl pyrophosphate has been found useful 38-45%, of tetraethyl pyrophosphate as con in the preparation of insectivoricide and rodenti trasted with the processes of the prior art which cide compositions. 5 yielded mixtures of the reaction productS con While the art has disclosed several methods for taining only 10-15% of the tetraethyl pyrophoS the preparation of tetraethyl pyrophosphate, phate.