Universe Exploration: from the Big Bang to Life
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BABAR Studies Matter-Antimatter Asymmetry in Τ Lepton Decays
BABAR studies matter-antimatter asymmetry in τττ lepton decays Humans have wondered about the origin of matter since the dawn of history. Physicists address this age-old question by using particle accelerators to recreate the conditions that existed shortly after the Big Bang. At an accelerator, energy is converted into matter according to Einstein’s famous energy-mass relation, E = mc 2 , which offers an explanation for the origin of matter. However, matter is always created in conjunction with the same amount of antimatter. Therefore, the existence of matter – and no antimatter – in the universe indicates that there must be some difference, or asymmetry, between the properties of matter and antimatter. Since 1999, physicists from the BABAR experiment at SLAC National Accelerator Laboratory have been studying such asymmetries. Their results have solidified our understanding of the underlying micro-world theory known as the Standard Model. Despite its great success in correctly predicting the results of laboratory experiments, the Standard Model is not the ultimate theory. One indication for this is that the matter-antimatter asymmetry allowed by the Standard Model is about a billion times too small to account for the amount of matter seen in the universe. Therefore, a primary quest in particle physics is to search for hard evidence for “new physics”, evidence that will point the way to the more complete theory beyond the Standard Model. As part of this quest, BABAR physicists also search for cracks in the Standard Model. In particular, they study matter-antimatter asymmetries in processes where the Standard Model predicts that asymmetries should be very small or nonexistent. -
The Belle-II Experiment at Superkekb
Gary S. Varner, Hawai’i The Belle-II Experiment at SuperKEKB Gary S. Varner University of Hawai’i at Manoa Boston (Cambridge), July 26, 2011 Luminosity at the B Factories Gary S. Varner, Hawai’i Fantastic performance much beyond design values! Need O(100x) more data Next generation B-factories Gary S. Varner, Hawai’i SuperKEKB + SuperB 40 times higher luminosity KEKB PEP-II Asymmetric B factories Gary S. Varner, Hawai’i √s=10.58 GeV + - B e e z ~ c Υ(4s) B Υ(4s) B ~ 200m BaBar p(e-)=9 GeV p(e+)=3.1 GeV =0.56 Belle p(e-)=8 GeV p(e+)=3.5 GeV =0.42 Belle II p(e-)=7 GeV p(e+)=4 GeV =0.28 Full Reconstruction Method Gary S. Varner, Hawai’i • Fully reconstruct one of the B’s to – Tag B flavor/charge – Determine B momentum – Exclude decay products of one B from further analysis Decays of interest B BXu l , BK e e+(3.5GeV) (8GeV) BD, Υ(4S) B full reconstruction BD etc. (~0.5%) Offline B meson beam! Powerful tool for B decays with neutrinos “Super” B Factory motivation Gary S. Varner, Hawai’i For details on physics opportunities: See Kay Kinoshita talk 17:20 B factories is SM with CKM right? Thursday, July 28 – Section 5I Super B factories How is the SM wrong? Need much more data (two orders!) because the SM worked so well until now Super B factory e+e- machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more to LHCb and BESIII Recent update of the physics reach with 50 ab-1 (75 ab-1): Physics at Super B Factory (Belle II authors + guests) hep-ex > arXiv:1002 .5012 SuperB Progress Reports: Physics (SuperB authors + guests) hep-ex > arXiv:1008.1541 TSUKUBA Area (Belle) High Energy Ring (HER) for Electron HER LER How to do it? Interaction Region Low Energy Ring (LER) for Positron Gary S. -
Beyond Einstein: from the Big Bang to Black Holes
The Space Congress® Proceedings 2004 (41st) Space Congress Proceedings Apr 27th, 8:00 AM Panel Session II - Beyond Einstein: From the big bang to black holes Don Kniffen Beyond Einstein Program Scientist, NASA Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Kniffen, Don, "Panel Session II - Beyond Einstein: From the big bang to black holes" (2004). The Space Congress® Proceedings. 10. https://commons.erau.edu/space-congress-proceedings/proceedings-2004-41st/april-27/10 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. SEU Science ... accretion disks, Big Bang, black holes, cosmic magnetic fields, cosmic rays, dark energy, dark matter, extreme environments, gamma-ray bursts, jets, large-scale structure, microwave background, neutron stars, nucleosynthesis, relativity, supernovae, ... 10-25 cm (UHE Cosmic Rays) to 1015 cm (Gravitational wave Great Decade: CMB fluctuations (COBE, BOOMERanG, MAXIMA, MAP, . - Gamma-Ray Bursts (CGRO, HETE-2, Swift, Glast, .. .) Ubiquity of black holes (Chandra, ASCA, HST, ...) Top priority: Answer the most profound questior raised, but not answered, by Einstein. Einstein's Predictions Completing Einstein's Legacy theory fails to explain the Three startling predictions of Einstein's relativity: Einsteiff's legacy is incomplete, his underlying physics of the very phenomena his work predicted • The expansion of the Universe (from a big bang) BIG BANG • Black holes What powered the Big Bang? • Dark energy acting against the pull of gravity Observations confirm these predictions .. -
Superb Report Intensity Frontier Workshop 1 Introduction
SuperB Report Intensity Frontier Workshop 1 Introduction The Standard Model (SM) has been very successful in explaining a wide range of electroweak and strong processes with high precision. In the flavor sector, observation of CP violation in B decays at BABAR and Belle, and the extraordinary consistency between the CKM matrix elements, established the SM as the primary source of CP violation in nature (leading to the 2008 Nobel Prize in physics). However, the remarkable success of the SM in describing all known flavor-physics measurements presents a puzzle to the search for New Physics (NP) at the LHC. New particles below the TeV scale should contribute to low-energy processes through virtual loop diagrams and cause observable effects in the flavor sector. The lack of any such effects suggests that either the NP mass scale is much higher than the TeV scale, or that NP flavor-violating operators are suppressed. In either scenario, flavor physics at the intensity frontier is poised to remain a central element of particle physics research in the coming decades. The INFN-sponsored SuperB project [1–3] in Italy is an asymmetric-energy electron- positron collider in the 10 GeV energy region with an initial design average luminosity of 1036 cm−2s−1, which will deliver up to 75 ab−1 in five years of operation (see Fig. 1 for details) to a new SuperB detector derived from the existing BABAR. A new innovative concept in accelerator design, employing very low-emittance beams and a “crab waist” final focus, makes possible this large increase (100-fold) in instantaneous luminosity over present B Factory colliders with no corresponding increase in power consumption, and similar backgrounds for the detector. -
NASA's Beyond Einstein Program: an Architecture for Implementation
NASA’s Beyond Einstein Program: An Architecture for Implementation 1 Committee Charge 1. Assess the five proposed Beyond Einstein missions (Constellation- X, Laser Interferometer Space Antenna, Joint Dark Energy Mission, Inflation Probe, and Black Hole Finder probe) and recommend which of these five should be developed and launched first, using a funding wedge that is expected to begin in FY 2009. The criteria for these assessments include: – Potential scientific impact within the context of other existing and planned space-based and ground-based missions; and – Realism of preliminary technology and management plans, and cost estimates. 2. Assess the Beyond Einstein missions sufficiently so that they can act as input for any future decisions by NASA or the next Astronomy and Astrophysics Decadal Survey on the ordering of the remaining missions. This second task element will assist NASA in its investment strategy for future technology development within the Beyond Einstein Program prior to the results of the Decadal Survey. 2 Committee Members • Eric Adelberger, U Washington • Andrew Lankford, UC Irvine • William Adkins, Adkins • Dennis McCarthy, Swales Strategies, LLC (retired) • Thomas Appelquist, Yale • Stephan Meyer, U. Chicago • Joel Primack, UC Santa Cruz • James Barrowman, NASA (retired) • Lisa Randall, Harvard • Joseph Rothenberg, Universal • David Bearden, Aerospace Space Network, co-chair Corp. • Craig Sarazin, U Virginia • Mark Devlin, U Pennsylvania • James Ulvestad, NRAO • Joseph Fuller, Futron Corp. • Clifford Will, Washington • Karl Gebhardt, U Texas University • William Gibson, SWRI • Michael Witherell, UC Santa Barbara • Fiona Harrison, Caltech • Edward Wright, UCLA • Charles Kennel, UCSD, co- chair 3 Beyond Einstein Science • Scientific challenges at the intersection of physics and astrophysics. -
Discovery at the Large Hadron Collider
Discovery at the Large Hadron Collider Michel Lefebvre University of Victoria ATLAS Canada Collaboration CAP Congress 27 May 2013 Abstract Discovery at the Large Hadron Collider The recent discovery of a new particle is a historic event in our exploration of the fundamental constituents of matter and the interactions between them. To date, the Standard Model of particle physics is extremely successful and accounts for all measured subatomic phenomena. However the postulated Higgs mechanism, from which fundamental particles acquire mass, remains to be verified experimentally. Research at the energy frontier is being carried out at the Large Hadron Collider (LHC), operating at CERN near Geneva since 2010. From 2010 to 2012, the LHC provided proton-proton collisions at a centre of mass energy of 7 to 8 TeV, allowing the exploration of distance scales smaller than a tenth of an attometer. The products of these collisions were successfully recorded by the ATLAS detector, which will be introduced in this lecture, with emphasis on Canadian contributions. The ATLAS physics programme features Standard Model measurements and a rich array of searches for new physics phenomena. The discovery of a new Higgs-like particle and other important results will be presented. The future increase in energy and intensity at the LHC, and the associated ATLAS plans, will also be discussed. These are exciting times indeed for particle physics! Michel Lefebvre, UVic and ATLAS Canada CAP Congress, 27 May 2013 2 Scattering experiment We see through the scatter of -
Introduction to Flavour Physics
Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lec- tures are aimed to be an entry point to the subject of flavour physics. A lot of problems are provided in the hope of making the manuscript a self-study guide. 1 Welcome statement My plan for these lectures is to introduce you to the very basics of flavour physics. After the lectures I hope you will have enough knowledge and, more importantly, enough curiosity, and you will go on and learn more about the subject. These are lecture notes and are not meant to be a review. In the lectures, I try to talk about the basic ideas, hoping to give a clear picture of the physics. Thus many details are omitted, implicit assumptions are made, and no references are given. Yet details are important: after you go over the current lecture notes once or twice, I hope you will feel the need for more. Then it will be the time to turn to the many reviews [1–10] and books [11, 12] on the subject. I try to include many homework problems for the reader to solve, much more than what I gave in the actual lectures. If you would like to learn the material, I think that the problems provided are the way to start. They force you to fully understand the issues and apply your knowledge to new situations. The problems are given at the end of each section. -
Picosecond Multi-Hole Transfer and Microsecond Charge- Separated States at the Perovskite Nanocrystal/Tetracene Interface
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019 Electronic Supplementary Information for: Picosecond Multi-Hole Transfer and Microsecond Charge- Separated States at the Perovskite Nanocrystal/Tetracene Interface Xiao Luo, a,† Guijie Liang, ab,† Junhui Wang,a Xue Liu,a and Kaifeng Wua* a State Key Laboratory of Molecular Reaction Dynamics, Dynamics Research Center for Energy and Environmental Materials, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China b Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China * Corresponding Author: [email protected] † Xiao Luo and Guijie Liang contributed equally to this work. Content list: Figures S1-S9 Sample preparations TA experiment set-ups Estimation of the number of attached TCA molecules per NC Estimation of FRET rate Estimation of average exciton number at each excitation density Estimation of exciton dissociation number S1 a 100 b long edge c short edge 70 7.90.1 nm 9.60.1 nm 60 80 50 s s 60 t t n 40 n u u o o C 30 C 40 20 20 10 0 0 4 6 8 10 12 14 16 18 2 4 6 8 10 12 Size (nm) Size (nm) Figure S1. (a) A representative transmission electron microscopy (TEM) image of CsPbBrxCl3-x perovskite NCs used in this study. Inset: high-resolution TEM. (b,c) Length distribution histograms of the NCs along the long (b) and short (c) edges. -
6.3 LISA CNS MH.Indd
NEWS FEATURE NATURE|Vol 452|6 March 2008 HEARING THE HEAVENS The cosmos is thought to be awash with gravitational waves to which humanity is, as yet, deaf. Trudy E. Bell reports on LISA, an experiment on an unprecedented scale designed to put that right. 18 NATURE|Vol 452|6 March 2008 NEWS FEATURE magine a new constellation — a narrow triangle about this way, as LISA is intended to do, is a three-step process. as deep as the scoop of the Big Dipper. But this constella- First you set up a situation in which masses can fall freely tion, unlike the familiar natural ones, moves through the along their geodesics without being disturbed by magnetic Isky, always appearing in the evening sky after sunset. The fields or other spurious forces. Then you must measure new constellation slowly rotates, each component circling with extraordinary precision how the distance between around the centre once every year. And as it does so, it also their geodesics changes when passing gravitational waves expands and contracts. distort the local curvature of space. The last step is analysing Unaided earthly eyes will never actually see the Laser these changes to determine the exact shape, frequency and Interferometer Space Antenna (LISA), as this artificial con- intensity of the distortions to the curvature of space, so as to stellation is to be named. Its three component spacecraft learn about the nature of distant events producing them. will be too small, and the light with which they shine will be To provide Vitale’s geodesic-joining rays of light, LISA invisible infrared. -
Italy Cancels €1Bn Superb Collider - Physicsworld.Com 30/11/12 20.01
Italy cancels €1bn SuperB collider - physicsworld.com 30/11/12 20.01 This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy. Italy cancels €1bn SuperB collider Nov 28, 2012 11 comments Path not taken: the planned route of SuperB Physics World can confirm rumours that the Italian government is to withdraw €250m from the €1bn SuperB particle accelerator, which was set to be built at the University of Tor Vergata on the outskirts of Rome. The decision, which effectively cancels the project, was made yesterday when Fernando Ferroni, president of the National Institute for Nuclear Physics (INFN), met Italian science minister Francesco Profumo to discuss funding for the project. "Given the difficult economic conditions of the country, the government is willing to confirm the contribution of €250m but not [for] the project," says a government statement, which was released today and seen by Physics World. As outlined in the statement, the INFN, which was set to build SuperB, will keep the €250m but will now spend the money on other projects. The INFN has already appointed two committees to look at what options it has, which includes converting SuperB into a scaled down "tau-charm factory" (called SuperC) or using the money elsewhere. The committees will report by 20 December, with a decision set for early January. Rumours of the funding cancellation first emerged on the blog A Quantum Diaries Survivor, which is written by the CERN-based researcher Tommaso Dorigo. Mystery of antimatter SuperB was designed to produce beams of electrons and positrons inside a linear accelerator to an energy of 6.7 GeV before injecting them into two rings each more than 1 km in circumference, where they would have then been collided to allow the decay of particles such as B mesons. -
The EN Department
On behalf of Katy Foraz, Head of the EN Department, Welcome to all of you! The Engineering Department in a Nutshell Katy Foraz Where are we? CERN: founded in 1954: 12 European States “Science for Peace” Today: 23 Member States Employees: ~2 700 staff, 800 fellows Associates: ~12 400 users, 1 300 others Budget (2019) ~ 1 200 MCHF Member States: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovak Republic, Spain, Sweden, Switzerland and United Kingdom Associate Members in the Pre-Stage to Membership: Cyprus, Slovenia Associate Member States: Croatia, India, Lithuania, Pakistan, Turkey, Ukraine Applications for Membership or Associate Membership: Brazil, Estonia Observers to Council: Japan, Russia, United States of America; European Union, JINR and UNESCO Welcome to the EN Department 4 Science is getting more and more global Welcome to the EN Department 5 What are we doing? The Missions of CERN . Push forward the frontiers of knowledge e.g. the secrets of the Big Bang … what was the matter like within the first moments of the Universe’s existence? . Develop new technologies for accelerators and detectors Information technology - the Web and the GRID Medicine - diagnosis and therapy . Train the scientists and the engineers of tomorrow . Unite people from different countries and cultures Welcome to the EN Department 7 The next scientific challenge is to understand the very first moments of our Universe after the Big Bang LHC 10-10s Welcome to the EN Department 8 How are we doing what we are doing? The instruments used 1. -
Committee to Assess Beyond Einstein Missions
CommitteeCommittee toto AssessAssess BeyondBeyond EinsteinEinstein Missions:Missions: StudyStudy WorkWork PlanPlan andand ScheduleSchedule Pamela Whitney, Space Studies Board Brian Dewhurst, Board on Physics and Astronomy OriginOrigin ofof thethe BeyondBeyond EinsteinEinstein ProgramProgram § 2000 release of “Astronomy and Astrophysics in the New Millennium” § 2002 release of “Connecting Quarks with the Cosmos” § 2003 NASA SEU Roadmap entitled “Beyond Einstein” § 2004 OSTP releases “Physics of the Universe” BeyondBeyond EinsteinEinstein MissionsMissions § Einstein Great § Einstein Probes Observatories § Joint Dark Energy § Constellation-X Mission (JDEM) (Con-X) § Inflation Probe § Laser Interferometer § Black Hole Finder Space Antenna (LISA) Probe NASA Astronomy Program Levels (FY 2001-2011) 1800 Con-X and LISA JWST 1600 SIM 1400 HST 1200 Herschel/Planck SWIFT 1000 SPITZER 800 GLAST WISE $ (in Millions) 600 Keck Interferometer 400 TPF 200 KEPLER SOFIA 0 Research Total FY 2001FY 2002FY 2003FY 2004* FY 2007^FY 2008^FY 2009^FY 2010^FY 2011^ FY 2005**FY 2006*** Fiscal Year StudyStudy OriginsOrigins § Committee Report, Senate Energy and Water Appropriations Bill, 2007 § The Committee is concerned that the joint mission between the Department of Energy and NASA is untenable because of NASA’s reorganization and change in focus toward manned space flight. The Committee directs the Department to immediately begin planning for a single-agency space-based dark energy mission….. § Committee Report, House Energy and Water Development Appropriations Bill, 2007 § …NASA has failed to budget and program for launch services for JDEM. Unfortunately, in spite of best intentions, the multi-agency aspect of this initiative poses insurmountable problems that imperil its future. Therefore, the Committee directs the Department to begin planning for a single-agency dark energy mission with a launch in fiscal year 2013.