Search for Earth-Like Planets Roadmap Has No Architectural Dependencies on Other Strategic Roadmaps That Would Impede Its Implementation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Issue 106, May 2006
37 th Lunar and Planetary Science Conference THE CONFERENCE IN REVIEW Attendance at the 37th Lunar and Planetary Science Conference (LPSC) set yet another record for this conference, with 1546 participants from 24 countries attending the meeting held at the South Shore Harbour Resort and Conference Center in League City, Texas, on March 13–17, 2006 (see inset for attendance statistics). Rearrangement of the confi guration of the meeting rooms, along with additional overfl ow seating, allowed conference organizers and staff to accommodate the marked increase in attendance, thereby being able to maintain the current meeting venue and hence the low registration fee, which enables the high number of student attendees. LPSC continues to be recognized among the international science community as the most important planetary conference in the world, and this year’s meeting substantiated the merit of that reputation. More than 1400 abstracts were submitted in consideration for presentation at the conference, and hundreds of planetary scientists and students attended both oral and poster sessions focusing on such diverse topics as the Moon, Mars, Mercury, and Venus; outer planets and satellites; meteorites; comets, asteroids, and other small bodies; Limpacts; interplanetary dust particles and presolar grains; origins of planetary systems; planetary formation and early evolution; and astrobiology. Sunday night’s registration and reception were again held at the Center for Advanced Space Studies, which houses the Lunar and Planetary Institute. Featured on Sunday night was an open house for the display of education and public outreach activities and programs. Highlights of the conference program, established by the program committee under the guidance of co-chairs Dr. -
Astrophysics
National Aeronautics and Space Administration Astrophysics Astronomy and Astrophysics Paul Hertz Advisory Committee Director, Astrophysics Division Washington, DC Science Mission Directorate January 26, 2017 @PHertzNASA www.nasa.gov Why Astrophysics? Astrophysics is humankind’s scientific endeavor to understand the universe and our place in it. 1. How did our universe 2. How did galaxies, stars, 3. Are We Alone? begin and evolve? and planets come to be? These national strategic drivers are enduring 1972 1982 1991 2001 2010 2 Astrophysics Driving Documents 2016 update includes: • Response to Midterm Assessment • Planning for 2020 Decadal Survey http://science.nasa.gov/astrophysics/documents 3 Astrophysics - Big Picture • The FY16 appropriation/FY17 continuing resolution and FY17 President’s budget request provide funding for NASA astrophysics to continue its planned programs, missions, projects, research, and technology. – The total funding (Astrophysics including Webb) remains at ~$1.35B. – Fully funds Webb for an October 2018 launch, WFIRST formulation (new start), Explorers mission development, increased funding for R&A, new suborbital capabilities. – No negative impact from FY17 continuing resolution (through April 28, 2017). – Awaiting FY18 budget guidance from new Administration. • The operating missions continue to generate important and compelling science results, and new missions are under development for the future. – Senior Review in Spring 2016 recommended continued operation of all missions. – SOFIA is adding new instruments: HAWC+ instrument being commissioned; HIRMES instrument in development; next gen instrument call in 2017. – NASA missions under development making progress toward launches: ISS-NICER (2017), ISS-CREAM (2017), TESS (2018), Webb (2018), IXPE (2020), WFIRST (mid-2020s). – Partnerships with ESA and JAXA on their future missions create additional science opportunities: Euclid (ESA), X-ray Astronomy Recovery Mission (JAXA), Athena (ESA), L3/LISA (ESA). -
Beyond Einstein: from the Big Bang to Black Holes
The Space Congress® Proceedings 2004 (41st) Space Congress Proceedings Apr 27th, 8:00 AM Panel Session II - Beyond Einstein: From the big bang to black holes Don Kniffen Beyond Einstein Program Scientist, NASA Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Kniffen, Don, "Panel Session II - Beyond Einstein: From the big bang to black holes" (2004). The Space Congress® Proceedings. 10. https://commons.erau.edu/space-congress-proceedings/proceedings-2004-41st/april-27/10 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. SEU Science ... accretion disks, Big Bang, black holes, cosmic magnetic fields, cosmic rays, dark energy, dark matter, extreme environments, gamma-ray bursts, jets, large-scale structure, microwave background, neutron stars, nucleosynthesis, relativity, supernovae, ... 10-25 cm (UHE Cosmic Rays) to 1015 cm (Gravitational wave Great Decade: CMB fluctuations (COBE, BOOMERanG, MAXIMA, MAP, . - Gamma-Ray Bursts (CGRO, HETE-2, Swift, Glast, .. .) Ubiquity of black holes (Chandra, ASCA, HST, ...) Top priority: Answer the most profound questior raised, but not answered, by Einstein. Einstein's Predictions Completing Einstein's Legacy theory fails to explain the Three startling predictions of Einstein's relativity: Einsteiff's legacy is incomplete, his underlying physics of the very phenomena his work predicted • The expansion of the Universe (from a big bang) BIG BANG • Black holes What powered the Big Bang? • Dark energy acting against the pull of gravity Observations confirm these predictions .. -
NASA's Beyond Einstein Program: an Architecture for Implementation
NASA’s Beyond Einstein Program: An Architecture for Implementation 1 Committee Charge 1. Assess the five proposed Beyond Einstein missions (Constellation- X, Laser Interferometer Space Antenna, Joint Dark Energy Mission, Inflation Probe, and Black Hole Finder probe) and recommend which of these five should be developed and launched first, using a funding wedge that is expected to begin in FY 2009. The criteria for these assessments include: – Potential scientific impact within the context of other existing and planned space-based and ground-based missions; and – Realism of preliminary technology and management plans, and cost estimates. 2. Assess the Beyond Einstein missions sufficiently so that they can act as input for any future decisions by NASA or the next Astronomy and Astrophysics Decadal Survey on the ordering of the remaining missions. This second task element will assist NASA in its investment strategy for future technology development within the Beyond Einstein Program prior to the results of the Decadal Survey. 2 Committee Members • Eric Adelberger, U Washington • Andrew Lankford, UC Irvine • William Adkins, Adkins • Dennis McCarthy, Swales Strategies, LLC (retired) • Thomas Appelquist, Yale • Stephan Meyer, U. Chicago • Joel Primack, UC Santa Cruz • James Barrowman, NASA (retired) • Lisa Randall, Harvard • Joseph Rothenberg, Universal • David Bearden, Aerospace Space Network, co-chair Corp. • Craig Sarazin, U Virginia • Mark Devlin, U Pennsylvania • James Ulvestad, NRAO • Joseph Fuller, Futron Corp. • Clifford Will, Washington • Karl Gebhardt, U Texas University • William Gibson, SWRI • Michael Witherell, UC Santa Barbara • Fiona Harrison, Caltech • Edward Wright, UCLA • Charles Kennel, UCSD, co- chair 3 Beyond Einstein Science • Scientific challenges at the intersection of physics and astrophysics. -
6.3 LISA CNS MH.Indd
NEWS FEATURE NATURE|Vol 452|6 March 2008 HEARING THE HEAVENS The cosmos is thought to be awash with gravitational waves to which humanity is, as yet, deaf. Trudy E. Bell reports on LISA, an experiment on an unprecedented scale designed to put that right. 18 NATURE|Vol 452|6 March 2008 NEWS FEATURE magine a new constellation — a narrow triangle about this way, as LISA is intended to do, is a three-step process. as deep as the scoop of the Big Dipper. But this constella- First you set up a situation in which masses can fall freely tion, unlike the familiar natural ones, moves through the along their geodesics without being disturbed by magnetic Isky, always appearing in the evening sky after sunset. The fields or other spurious forces. Then you must measure new constellation slowly rotates, each component circling with extraordinary precision how the distance between around the centre once every year. And as it does so, it also their geodesics changes when passing gravitational waves expands and contracts. distort the local curvature of space. The last step is analysing Unaided earthly eyes will never actually see the Laser these changes to determine the exact shape, frequency and Interferometer Space Antenna (LISA), as this artificial con- intensity of the distortions to the curvature of space, so as to stellation is to be named. Its three component spacecraft learn about the nature of distant events producing them. will be too small, and the light with which they shine will be To provide Vitale’s geodesic-joining rays of light, LISA invisible infrared. -
NASA-JPL-AUDIO-CORE Moderator: Heather Doyle August 29, 2017
NASA-JPL-AUDIO-CORE Moderator: Heather Doyle August 29, 2017 Heather Doyle: Welcome everybody, my name is Heather Doyle from The Solar System Ambassadors and we have an exciting topic today, very timely topic as always. The Cassini end of mission update by Dr. Trina Ray. She’s been with the mission for 21 years and she’s got 50 some - no 62 slides to show us so there’s going to be a lot of great information. So I’m not going to take up too much time introducing, I’m just going to turn it on over to Trina. Thank you so much for being here and take it away. Trina Ray: So thanks so much for inviting me. When I was sitting in an executive Cassini meeting, and they said something about The Solar System Ambassadors had not gotten a talk recently about the grand finale, I said well that’s a problem I can solve. So an invite went out and I’m glad you all could make it today. So I’ll let you know, I’m running a PowerPoint slide in - sort of in show mode so if you downloaded the gigantic file all the animations and everything should play. So I’ll tell you when I’m going forward, and I’ll try to mention what slides I’m on as I go. So I'm forwarding on now to slide number two. I did want to at least, spend at least a few minutes just reminding everybody about the spacecraft. The Cassini orbiter is quite a large spacecraft in our family of spacecraft. -
Committee to Assess Beyond Einstein Missions
CommitteeCommittee toto AssessAssess BeyondBeyond EinsteinEinstein Missions:Missions: StudyStudy WorkWork PlanPlan andand ScheduleSchedule Pamela Whitney, Space Studies Board Brian Dewhurst, Board on Physics and Astronomy OriginOrigin ofof thethe BeyondBeyond EinsteinEinstein ProgramProgram § 2000 release of “Astronomy and Astrophysics in the New Millennium” § 2002 release of “Connecting Quarks with the Cosmos” § 2003 NASA SEU Roadmap entitled “Beyond Einstein” § 2004 OSTP releases “Physics of the Universe” BeyondBeyond EinsteinEinstein MissionsMissions § Einstein Great § Einstein Probes Observatories § Joint Dark Energy § Constellation-X Mission (JDEM) (Con-X) § Inflation Probe § Laser Interferometer § Black Hole Finder Space Antenna (LISA) Probe NASA Astronomy Program Levels (FY 2001-2011) 1800 Con-X and LISA JWST 1600 SIM 1400 HST 1200 Herschel/Planck SWIFT 1000 SPITZER 800 GLAST WISE $ (in Millions) 600 Keck Interferometer 400 TPF 200 KEPLER SOFIA 0 Research Total FY 2001FY 2002FY 2003FY 2004* FY 2007^FY 2008^FY 2009^FY 2010^FY 2011^ FY 2005**FY 2006*** Fiscal Year StudyStudy OriginsOrigins § Committee Report, Senate Energy and Water Appropriations Bill, 2007 § The Committee is concerned that the joint mission between the Department of Energy and NASA is untenable because of NASA’s reorganization and change in focus toward manned space flight. The Committee directs the Department to immediately begin planning for a single-agency space-based dark energy mission….. § Committee Report, House Energy and Water Development Appropriations Bill, 2007 § …NASA has failed to budget and program for launch services for JDEM. Unfortunately, in spite of best intentions, the multi-agency aspect of this initiative poses insurmountable problems that imperil its future. Therefore, the Committee directs the Department to begin planning for a single-agency dark energy mission with a launch in fiscal year 2013. -
Nasa Advisory Council Astrophysics Subcommittee
NAC Astrophysics Subcommittee Meeting July 2-3, 2008 NASA ADVISORY COUNCIL ASTROPHYSICS SUBCOMMITTEE July 2-3, 2008 NASA Headquarters Washington D.C. MEETING REPORT _____________________________________________________________ Craig Hogan, Chair _____________________________________________________________ for Hashima Hasan, Executive Secretary 1 NAC Astrophysics Subcommittee Meeting July 2-3, 2008 Table of Contents Introduction and Announcements …………………………………………..3 Astrophysics Division Update…………………………………………………..3 Decadal Survey Update………………………………………………………..….7 Senior Review………………………………………………………………………….7 GLAST Update………………………………………………………………………….8 HST SM4 Update………………………………………………………………………8 GPRA discussion…………………………………………………………………….10 Discussion, general…………………………………………………………………11 Exoplanet Task Force presentation…………………………………………12 AAAC Exoplanet TF discussion………………………………………………..13 Discussion, general…………………………………………………………………14 Wrap-up, Recommendations, Actions…………………………………..14 Appendix A- Attendees Appendix B- Agenda Appendix C- Membership list 2 NAC Astrophysics Subcommittee Meeting July 2-3, 2008 Introduction and Announcements Chairman of the Astrophysics Subcommittee (APS) Craig Hogan opened the meeting, and Andrew Lange joined by phone. Dr. Hogan briefly reviewed meeting processes, and reminded APS of its role as advising the NASA Advisory Council (NAC), restricting the committee to advising on Astrophysics (AP) science at NASA. Committee members introduced themselves. Ethics Briefing David Barrett gave an ethics briefing, explaining -
Beyond Einstein: Exploring the Extreme Universe
https://ntrs.nasa.gov/search.jsp?R=20050241967 2019-08-29T21:06:39+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server Beyond Einstein: Exploring the Extreme Universe Louis M. Barbie; NASNGoddard Space Flight Center, Greenbelt, MD,20771 This paper will give an overview of the NASA Universe Division Beyond Einstein program. The Beyond Einstein program consists of a series of exploratory missions to investigate some of the most important and pressing problems in modern-day astrophysics - including searches for Dark Energy and studies of the earliest times in the universe, during the inflationary period after the Big Bang. A variety of new technologies are being developed both in the science instrumentation these missions will carry and in the spacecraft that will carry those instruments. I. Introduction t has been nearly 100 years since Einstein’s theory of relativity was published. The world has changed Idramatically since then, in a large part due to the bold, revolutionary ideas put forward by Einstein. As we begin another century of exploration - including the vision of putting men on Mars - we anticipate equally bold revolutions in our understanding of the universe. This talk will attempt to summarize the NASA Universe Division exploration program, Beyond Einstein. Beyond Einstein will employ the newest technology in a variety of areas, to bring us to the most extreme places in the universe - the very early universe after the Big Bang, edges of black holes, the warped accretion disks surrounding them, and the almost unimaginable collisions between them. -
Explore! Jupiter's Family Secrets
National Aeronautics and Space Administration Explore! Jupiter’s Family Secrets Children Ages 8–13 Juno Informal Education Activity Guide Jet Propulsion Laboratory Educational Product California Institute of Technology Educators Children Ages 8–13 EG-2012-04-021-JPL National Aeronautics and Space Administration Explore! Jupiter’s Family Secrets OVERVIEW OF ACTIVITIES For Children Ages 8 to 13 The following five activities align with national standards for grades K–4 and 5–8. Jump Start: Jupiter! Activity Jump Start: Jupiter! is a 60-minute kick-off for children ages 8 to 13 that sets the stage for further explorations and activities in Explore! Jupiter’s Family Secrets. As a group, children discuss what 1 they know about the solar system and Jupiter. They work in teams to read about the Sun, eight planets, asteroid belt, and the dwarf planet Pluto. They use their knowledge to create a poster about each object, which can be displayed in the library and used to create the Jump to Jupiter outdoor course. The children revisit what they have learned and prepare to explore further. Jump to Jupiter Activity Children ages 8 to 13 help create and then navigate an outdoor course of the traditional “plan- ets” (including dwarf planet Pluto), which are represented by small common objects. By counting 2 the jumps needed to reach each object, children experience firsthand the vast scale of our solar system. The children’s posters from Jump Start: Jupiter! may be used to construct the course. Planet Party Activity In this 30-minute activity, children ages 7 and up and their families go outside on a clear evening and view the sky to see the planets for themselves. -
Annu Al Report
Space Science Institute . 4750 Walnut Street . Suite 205 . Boulder, Colorado 80301 . 720.974.5888 . www.spacescience.org . www.facebook.com/spacescienceinstitute Annual Report 2017 OUR MISSION The Space Science Institute is shaping our future by enabling scientists to advance our understanding of Earth and the Universe; increasing science and technology literacy for people of all ages and backgrounds; and inspiring youth to pursue science-technology education and career opportunities. TABLE OF CONTENTS OVERVIEW 5 RESEARCH & DISCOVERY 15 Research Branch Cassini Imaging Operations EDUCATION & INSPIRATION 47 National Center for Interactive Learning Science for the Public FINANCIAL REPORT 64 MESSAGE FROM THE CHAIRMAN OF THE BOARD OF DIRECTORS During my tenure on the Board of Directors, I have had the pleasure of watching the Space Science Institute truly raise the bar for science and for communities. While the external funding environment for nonprofits, science, and education remains a challenging one, SSI’s resilience and determination have propelled it to take on and successfully execute high quality and high impact projects that will be long remembered. In addition to supporting landmark 2017 events such as the total solar eclipse and Cassini’s Grand Finale, SSI made great progress on future directions laid out in its 2017-2019 Strategic and Operations Plans. SSI hosted its first major workshop on space plasma physics, added the Center for Polarimetric Remote Sensing to its list of prestigious research centers, and built to a record number of approximately 70 scientists conducting diverse and compelling research. 2017 also brought 561,662 visitors to our traveling exhibits, 7500 and counting members of our STAR Net library community, and over 3 million visitors to our informal STEM education websites. -
Saturn: Jewel of the Solar System
Saturn: Jewel of the Solar System. We go into space to discover answers to questions as old as humanity itself, and to ask of Kronos, the god of agriculture. Kronos (sometimes spelled Cronos or Cronus) was the Titan new ones. ruler and the father of Jupiter. The ancient Romans changed the name from Kronos to Satur- nus, which is the root of Saturn’s modern name. In Roman mythology, Saturnus was the god In June 2004, NASA’s Cassini–Huygens spacecraft performed a spectacular crossing through of sowing. In his honor, Saturnalia was celebrated during December — a seven-day event the ring plane, going into orbit around Saturn to return new information and incredible im- that became ancient Rome’s most popular festival. ages. The spacecraft’s onboard instruments will collect unique data that may answer many questions about the composition of the rings and help scientists gain a better understanding Saturn was one of seven celestial bodies that moved with respect to the rest of the stars. of the planet Saturn, its magnetosphere, its principal moon Titan, and its other moons — the These seven “wandering stars” are actually the Sun, the Moon, Mercury, Venus, Mars, small “icy satellites.” Jupiter, and Saturn. Six of these seven “wandering stars” provide the nomenclature for the names of the days of the week, with the exception of Wednesday and Thursday, which are Saturn’s beautiful rings set it apart from the other planets. Saturn has the most extensive named after ancient deities in Germanic mythology. and complex ring system in our solar system, extending hundreds of thousands of miles from the planet.