Metagenomic Sequencing Identifies Highly Diverse Assemblages of Dinoflagellate Cysts in Sediments from Ships’ Ballast Tanks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed. -
The Purification of Cochlodinium. Sp and a Comparative Research on Its Mass Cultivation
The purification of Cochlodinium. Sp and a comparative research on its mass cultivation Item Type Report Authors Ghorbani Vagheie, Reza; Faghih, Gh.; Ghorbani, R.; Asadi, A.; paygozar, A.; Mohsenizadeh, F.; Dalirpour, Gh.; Haghshenase, A.; Fllahi, M.; Tavakoli, H.; Hafezieh, M. Publisher Iranian Fisheries Science Research Institute Download date 30/09/2021 12:50:31 Link to Item http://hdl.handle.net/1834/13305 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت ، آﻣﻮزش ﺗو ﺮوﻳﺞﻛ ﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر – ﭘﮋوﻫﺸﻜﺪه ﻣﻴﮕﻮي ﻛﺸﻮر ﻋﻨﻮان : ﺧﺎﻟﺺ ﺳﺎزي ﻛﻮﻛﻠﻮدﻳﻨﻴﻮم و ﺑﺮرﺳﻲ ﻣﻘﺎﻳﺴﻪ اي روﺷﻬﺎي ﻛﺸﺖ اﻧﺒﻮه آن ﻣﺠﺮي : : رﺿﺎ ﻗﺮﺑﺎن واﻗﻌﻲ ﺷﻤﺎره ﺛﺒﺖ 41582 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﭻ ﻛﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر - ﭘﮋوﻫﺸﻜﺪه ﻣﻴﮕﻮي ﻛﺸﻮر ﻋﻨﻮان ﭘﺮوژه : ﺧﺎﻟﺺ ﺳﺎزي ﻛﻮﻛﻠﻮدﻳﻨﻴﻮم و ﺑﺮرﺳﻲ ﻣﻘﺎﻳﺴﻪ اي روﺷﻬﺎي ﻛﺸﺖ اﻧﺒﻮه آن ﺷﻤﺎره ﻣﺼﻮب : -89092 12- 80-2 ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﮕﺎر ﻧﺪه / ﻧﮕﺎرﻧﺪﮔﺎن : رﺿﺎ ﻗﺮﺑﺎﻧﻲ واﻗﻌﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي ﻣﺴﺌﻮل ( اﺧﺘﺼﺎص ﺑﻪ ﭘﺮوژه ﻫﺎ و ﻃﺮﺣﻬﺎي ﻣﻠﻲ و ﻣﺸﺘﺮك دارد ) : - - ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي / ﻣﺠﺮﻳﺎن : رﺿﺎ ﻗﺮﺑﺎﻧﻲ واﻗﻌﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻫﻤﻜﺎران : ﻏﻼﻣﺤﺴﻴﻦ ﻓﻘﻴﻪ، رﺳﻮل ﻗﺮﺑﺎﻧﻲ، ﻋﻠﻴﺮﺿﺎ اﺳﺪي، اﻛﺒﺮ ﭘﺎي ﮔﺬار، ﻓﺎﻃﻤﻪ ﻣﺤﺴﻨﻲ زاده، ﻏﻼﻣﺤﺴﻴﻦ دﻟﻴﺮ ﭘﻮر، آرش ﺣﻖ ﺷﻨﺎس ، ﻣﺮﻳﻢ ﻓﻼﺣﻲ ، ﺣﺴﻦ ﺗﻮﻛﻠﻲ، ﻣﺤﻤﻮد ﺣﺎﻓﻈﻴﻪ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺸﺎوران -: -: ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﺎﻇﺮ : ﻓﺮﺷﺘﻪ ﺳﺮاﺟﻲ ﻣﺤﻞ اﺟﺮا : اﺳﺘﺎن ﺑﻮﺷﻬﺮ ﺗﺎرﻳﺦ ﺷﺮوع : /1/7 89 89 ﻣﺪت اﺟﺮا : 1 ﺳﺎل و 3 ﻣﺎه ﻧﺎﺷﺮ : ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر ﺷﻤﺎرﮔﺎن ( ﺗﻴﺘﺮاژ ) : 20 ﻧﺴﺨﻪ ﺗﺎرﻳﺦ اﻧﺘﺸﺎر : ﺳﺎل 1392 ﺣﻖ ﭼﺎپ ﺑﺮاي ﻣﺆﻟﻒ ﻣﺤﻔﻮظ اﺳﺖ . ﻧﻘﻞ ﻣﻄﺎﻟﺐ ، ﺗﺼﺎوﻳﺮ ، ﺟﺪاول ، ﻣﻨﺤﻨﻲ ﻫﺎ و ﻧﻤﻮدارﻫﺎ ﺑﺎ ذﻛﺮ ﻣﺄﺧﺬ ﺑﻼﻣﺎﻧﻊ اﺳﺖ . -
Trait Changes Induced by Species Interactions in Two Phenotypically Distinct Strains of a Marine Dinoflagellate
The ISME Journal (2016) 10, 2658–2668 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Trait changes induced by species interactions in two phenotypically distinct strains of a marine dinoflagellate Sylke Wohlrab, Urban Tillmann, Allan Cembella and Uwe John Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Ecological Chemistry, Bremerhaven, Germany Populations of the toxigenic marine dinoflagellate Alexandrium are composed of multiple genotypes that display phenotypic variation for traits known to influence top-down processes, such as the ability to lyse co-occurring competitors and prospective grazers. We performed a detailed molecular analysis of species interactions to determine how different genotypes perceive and respond to other species. In a controlled laboratory culture study, we exposed two A. fundyense strains that differ in their capacity to produce lytic compounds to the dinoflagellate grazer Polykrikos kofoidii, and analyzed transcriptomic changes during this interaction. Approximately 5% of all analyzed genes were differentially expressed between the two Alexandrium strains under control conditions (without grazer presence) with fold-change differences that were proportionally higher than those observed in grazer treatments. Species interactions led to the genotype-specific expression of genes involved in endocytotic processes, cell cycle control and outer membrane properties, and signal transduction and gene expression -
Parasitism of Photosynthetic Dinoflagellates in a Shallow Subestuary of Chesapeake Bay, USA
- AQUATIC MICROBIAL ECOLOGY Vol. 11: 1-9, 1996 Published August 29 Aquat Microb Ecol Parasitism of photosynthetic dinoflagellates in a shallow subestuary of Chesapeake Bay, USA D. W. Coats*,E. J. Adam, C. L. Gallegos, S. Hedrick Smithsonian Environmental Research Center, PO Box 28, Edgewater, Maryland 21037, USA ABSTRACT- Rhode Rlver (USA)populatlons of the red-tlde d~noflagellatesGyrnnodinium sanguineum Hlrasaka, 1922, Cyi-odinium uncatenum Hulburt, 1957, and Scnppsiella trochoidea (Steln) Loeblich 111, 1976, were commonly infected by thelr parasltlc relative Amoebophrya cei-atil Cachon, 1964, dunng the summer of 1992. Mean ~nfectionlevels were relatively low, wlth data for vertically Integrated sam- ples averaging 1.0, 1.9, and 6 5% for G. sangujneum, G. uncatenum, and S, trocho~dea,respectively However, epldemlc outbreaks of A. ceratii (20 to 80% hosts parasitized) occurred in G. uncatenum and S. trochoidea on several occasions, wlth peak levels of parasitism associated wlth decreases ~n host abundance. Estimates for paraslte Induced mortality indlcate that A, ceratil 1s capable of removlng a significant fraction of dinoflagellate blomass, with epldemics In the upper estuary cropplng up to 54% of the dominant bloom-forming species, G uncatenum, dally. However, epldemics were usually geo- graphically restncted and of short duration, with dally losses for the 3 host species due to parasitism averaging 1 to 3 % over the summer. Thus, A ceratli appears capable of exerting a controlling Influence on bloonl-form~ngdinoflagellates of the Rhode River only when conditions are suitable for production of epidemlc infections. Interestingly, epidemics falled to occur in multlple d~noflagellatetaxa sunulta- neously, even when alternate host specles were present at hlgh densities. -
Planktonic Ciliate Distribution Relative to a Deep Chlorophyll Maximum: Catalan Sea, N.W
Deco-Sea fkearch I. Vol. 42. No. 11112. DD. 1965-1987. 1995 Copyright 0 1996 !&via Scmce Ltd 0967-0637(95)00092-5 Printed in Great Britain. All rights reserved C967%37/95 $9.5fl+lJ.o(1 Planktonic ciliate distribution relative to a deep chlorophyll maximum: Catalan Sea, N.W. Mediterranean, June 1993 JOHN R. DOLAN* and CELIA MARRASBt (Received 21 October 1994: in revised form 15 May 1995; accepted 3 July 1995) Abstract-Vertical distributions and relative contributions of distinct trophic guilds of ciliates were investigated in an oligotrophic system with a deep chlorophyll maximum (DCM) in early summer. Ciliates were classified as heterotrophic: micro and nano ciliates, tintinnids and predacious forms or photosynthetic: large mixotrophic oligotrichs (Laboea sfrobilia. Tontoniu spp.), and the auto- trophic Mesodinium rubrum. Variability between vertical profiles (O-200 m) was relatively low with station to station differences (C.V.s of -30%) generally larger than temporal (1-4 day) differences (C.V.s of -lS%), for integrated concentrations. Total ciliate biomass, based on volume estimates integrated from O-SO m, averaged - 125 mg C mm’, compared to -35 mg m-’ for chlorophyll a (chl a), yielding a ciliate to chl ratio of 3.6, well within the range of 1 to 6 reported for the euphotic zones of most oceanic systems. Heterotrophic ciliate concentrations were correlated with chl ti concentration (r = 0.83 and 0.82, biomass and cells I-‘, respectively) and averaged -230 cells Il’ in near surface samples (chl a = 0.1 fig I-‘) to -850cells I-’ at 50 m depth, coinciding with the DCM (chl a = I-2pg I-‘). -
The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years. -
Grazing Impacts of the Heterotrophic Dinoflagellate Polykrikos Kofoidii on a Bloom of Gymnodinium Catenatum
AQUATIC MICROBIAL ECOLOGY Published April 30 Aquat Microb Ecol NOTE Grazing impacts of the heterotrophic dinoflagellate Polykrikos kofoidii on a bloom of Gymnodinium catenatum Yukihiko Matsuyama'f*,Masahide Miyamoto2, Yuichi ~otani' 'National Research Institute of Fisheries and Environment of Inland Sea, Maruishi, Ohno, Saeki, Hiroshima 739-0452, Japan 2KumamotoAriake Fisheries Direction Office, Iwasaki, Tamana, Kumamoto 865-0016, Japan ABSTRACT: In 1998, a red tide of the paralytic shellfish an assessment of the natural population of G. catena- poisoning (PSP)-producing dinoflagellate Gymnodinium cate- turn coupled with a laboratory incubation experiment naturn Graham occurred in Yatsushiro Sea, western Japan. to evaluate the bloom fate. We present data showing The dramatic decline of dominant G. catenatum cells oc- curred during the field and laboratory assessments, accompa- considerable predation by the pseudocolonial hetero- nied with growth of the heterotrophic dinoflagellate Poly- trophic dinoflagellate Polykrikos kofoidii Chatton on knkos kofoidii Chatton. Microscopic observations on both the dominant G. catenatum population, and discuss field and laboratory cultured bloom water revealed that the ecological importance of the genus Polykrikos and >50% of P. kofoidii predated on the natural population of G. catenaturn, and 1 to 8 G. catenatum cells were found in its grazing impact on harmful algal blooms. food vacuoles of P. kofoidii pseudocolonies. Our results sug- Materials and methods. Filed population surveys: gest that predation by P. kofoidii contributes to the cessation The Gymnodinium catenatum bloom occurred from 19 of a G. catenatum bloom. January to 5 February in Miyano-Gawachi Bay, west- ern Yatsushiro Sea, Kyushu Island (Fig. 1). Five cruises KEY WORDS: PSP - Gymnodimurn catenatum . -
Monitoring and Understanding Toxic Cyanobacteria and Cochlodinium Polykrikoides Blooms in Suffolk County
MONITORING AND UNDERSTANDING TOXIC CYANOBACTERIA AND COCHLODINIUM POLYKRIKOIDES BLOOMS IN SUFFOLK COUNTY A FINAL REPORT BY CHRISTOPHER J. GOBLER, STONY BROOK UNIVERSITY SUBMITTED SEPTEMBER 2013 REVISED MAY 2014 1 TABLE OF CONTENTS: Executive Summary……………………………………………………………pages 3- 6 Task 1. – Literature and Regulatory Review…………………………………pages 7 - 14 Task 2. –Summer monitoring of freshwater bathing beach lakes in Suffolk County. Suffolk County Bathing Beaches………………………………….…………pages 15 - 16 Task 3. Seasonal monitoring the most toxic lakes in Suffolk County…..……pages 17 - 25 Task 4. Cyanotoxin findings and final report………………………...…………..pages 26 Task 5 & 6. Assess the ability of Cochlodinium polykrikoides to form cysts; Quantify the production and densities of Cochlodinium polykrikoides cysts before, during and after blooms………………………………………………………………..………pages 27 - 57 Task 7. Assess the temperature tolerance of Cochlodinium polykrikoides….pages 58 - 61 Task 8. Assess the mechanism of toxicity of Cochlodinium polykrikoides....pages 62 - 93 Task 9. Explore the vulnerability of Suffolk County fish populations to Cochlodinium polykrikoides………………………………………………………...………pages 94 - 113 Task 10. Prepare a final report regarding Cochlodinium polykrikoides results….pages 114 2 EXECUTIVE SUMMARY This project, Monitoring and Understanding Toxic Cyanobacteria and Cochlodinium polykrikoides Blooms in Suffolk County, was funded by Suffolk County Capital Project 8224, Harmful Algal Blooms, and was initiated to address ongoing blooms of toxic cyanobacteria and Cochlodinium polykrikoides in Suffolk County waters. Cyanobacteria Cyanobacteria, also known as blue-green algae, are microscopic organisms found in both marine and fresh water environments. Under favorable conditions of sunlight, temperature, and nutrient concentrations, cyanobacteria can form massive blooms that discolor the water and often result in a scums and floating mats on the water’s surface. -
A Parasite of Marine Rotifers: a New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae)
Hindawi Publishing Corporation Journal of Marine Biology Volume 2015, Article ID 614609, 5 pages http://dx.doi.org/10.1155/2015/614609 Research Article A Parasite of Marine Rotifers: A New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae) Fernando Gómez1 and Alf Skovgaard2 1 Laboratory of Plankton Systems, Oceanographic Institute, University of Sao˜ Paulo, Prac¸a do Oceanografico´ 191, Cidade Universitaria,´ 05508-900 Butanta,˜ SP, Brazil 2Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 7, 1870 Frederiksberg C, Denmark Correspondence should be addressed to Fernando Gomez;´ [email protected] Received 11 July 2015; Accepted 27 August 2015 Academic Editor: Gerardo R. Vasta Copyright © 2015 F. Gomez´ and A. Skovgaard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dinoflagellate infections have been reported for different protistan and animal hosts. We report, for the first time, the association between a dinoflagellate parasite and a rotifer host, tentatively Synchaeta sp. (Rotifera), collected from the port of Valencia, NW Mediterranean Sea. The rotifer contained a sporangium with 100–200 thecate dinospores that develop synchronically through palintomic sporogenesis. This undescribed dinoflagellate forms a new and divergent fast-evolved lineage that branches amongthe dinokaryotic dinoflagellates. 1. Introduction form independent lineages with no evident relation to other dinoflagellates [12]. In this study, we describe a new lineage of The alveolates (or Alveolata) are a major lineage of protists an undescribed parasitic dinoflagellate that largely diverged divided into three main phyla: ciliates, apicomplexans, and from other known dinoflagellates. -
The Revised Classification of Eukaryotes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. -
Highlights • the Type Species of Cochlodinium, C. Strangulatum, Is
1 Highlights • The type species of Cochlodinium, C. strangulatum, is widespread, but was mistaken for large cells of Gyrodinium. • First molecular data of a Cochlodinium heterotrophic species, the generic type Cochlodinium strangulatum. • The morphology and molecular phylogeny of Cochlodinium polykrikoides is distantly related to the generic type. • New genus, Margalefidinium gen. nov., and combinations for Cochlodinium polykrikoides and allied species. 2 Molecular characterization and morphology of Cochlodinium strangulatum, the type species of Cochlodinium, and Margalefidinium gen. nov. for C. polykrikoides and allied species (Gymnodiniales, Dinophyceae) Fernando Gómeza,*, Mindy L. Richlenb, Donald M. Andersonb a Carmen Campos Panisse 3, E-11500 Puerto de Santa María, Spain b Woods Hole Oceanographic Institution, Woods Hole MA 02543-1049, USA * Corresponding author: E-mail address: [email protected] (F. Gómez) 3 ABSTRACT Photosynthetic species of the dinoflagellate genus Cochlodinium such as C. polykrikoides, one of the most harmful bloom-forming dinoflagellates, have been extensively investigated. Little is known about the heterotrophic forms of Cochlodinium, such as its type species, Cochlodinium strangulatum. This is an uncommon, large (~200 µm long), solitary, and phagotrophic species, with numerous refractile bodies, a central nucleus enclosed in a distinct perinuclear capsule, and a cell surface with fine longitudinal striae and a circular apical groove. The morphology of C. polykrikoides and allied species is different from the generic type. It is a bloom-forming species with single, two or four-celled chains, small cell size (25–40 µm long) with elongated chloroplasts arranged longitudinally and in parallel, anterior nucleus, eye-spot in the anterior dorsal side, and a cell surface smooth with U-shaped apical groove. -
Complex Communities of Small Protists and Unexpected Occurrence Of
Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, Paola Bertolino, Purificación López-García To cite this version: Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, et al.. Complex communities of small protists and unexpected occurrence of typical marine lineages in shal- low freshwater systems. Environmental Microbiology, Society for Applied Microbiology and Wiley- Blackwell, 2015, 17 (10), pp.3610-3627. 10.1111/1462-2920.12591. hal-03022575 HAL Id: hal-03022575 https://hal.archives-ouvertes.fr/hal-03022575 Submitted on 24 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Europe PMC Funders Group Author Manuscript Environ Microbiol. Author manuscript; available in PMC 2015 October 26. Published in final edited form as: Environ Microbiol. 2015 October ; 17(10): 3610–3627. doi:10.1111/1462-2920.12591. Europe PMC Funders Author Manuscripts Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, Paola Bertolino, and Purificación López-García* Unité d’Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405 Orsay, France Summary Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well-known.