November 2006 Volume 15, No

Total Page:16

File Type:pdf, Size:1020Kb

November 2006 Volume 15, No November 2006 Volume 15, No. 10 APS NEWS www.aps.org/apsnews Highlights The Physics of Global Terrorism A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY • WWW.APS.ORG/APSNEWS Page 8 APS Task Force Recommends Ways APS Interviews Apker Finalists to Better Serve Industrial Members The APS Apker Award is given The APS can and should do Nowadays, many industrial annually for outstanding research more to serve the needs of its physicists work in small compa- by an undergraduate. Finalists are chosen in two categories: from insti- industrial members, according to nies, rather than the giant basic tutions that award PhD degrees, a task force on industrial physics research labs of the past, such as and from institutions not awarding that submitted its report to the Bell Labs, GE, IBM, Dupont, and the PhD. The finalists meet with Executive Board in September. Xerox. Today’s industrial physi- the selection committee for a day The task force was formed to cists work on projects that are more of interviews, which this year took assess the situation of APS activ- applied, closer to project develop- place on September 11 at SLAC. ities for industrial physicists and ment. There are still physicists in The committee then recommends make recommendations of how large firms, but the nature of their recipients in each of the two cate- APS can better serve this segment work has changed, said task force gories to the APS Executive Board. of the membership. chair Charles Duke. “The global Shown here are six of the seven About 20% of regular APS economy has changed the game. finalists. They are (l to r): Hugh Photo Credit: Diana Rogers, SLAC members are industrial physicists. Industrial physics is a whole lot Churchill (Oberlin), Matthew Pellicione (RPI), Inna Vishik (Stanford), Benjamin Heidenreich (Amherst), Over the past 20 years, this propor- more important,” said Duke. Huanqian Loh (MIT), and Timothy Cronin (Swarthmore). The seventh finalist, Stephanie Moyerman of tion has been falling, even as the Increasingly, support of physics Harvey Mudd, was in Europe on a fellowship, and was prevented from returning to the US by the con- ditions of the grant. The committee conducted her interview via teleconference from London. The recip- percentage of physics PhDs research and development is moti- ients of the 2006 Apker Award will be reported in the next issue of APS News. employed by industry has been vated primarily by economic increasing. In the 1990s, 56% of impact. “In the era of the global physics PhDs worked in industry, economy, if physics as a profession April Plenary Speakers Set up from 36% in the 1950s. wants more investment, it has to As APS News goes to press, eight Gerald Gabrielse, Harvard, “String Theory, Branes, and, if you “At a time when the importance deliver economic prosperity, and of the nine plenary lectures at the “New Measurement of the Electron wish, the Anthropic Principle” of physics to the nation is increas- the people who do that are indus- APS April meeting in Jacksonville, Magnetic Moment and the Fine David Spergel, Princeton, ingly felt via its contributions to trial physicists. Industrial physics April 14-17, 2007, have been Structure Constant” “Cosmology After WMAP” economic growth and prosperity, is very important for the health of confirmed.The slate features many James E. Hansen, NASA, “The Steven Vigdor, Indiana,“New the role of the physicists who make physics in general, and physics distinguished speakers on a broad Threat to the Planet: Actions Needed Results from RHIC on the Spin these contributions in the APS has societies,” said Duke. range of topics. They are: to Avert Dangerous Climate Change” Structure of the Proton” declined to the point of being “It’s a very different world,” Steven Chu, LBL, “The Energy Jacqueline Hewitt, MIT, “The Meeting attendees will be able to almost invisible in the major APS said APS Executive Officer Judy Problem: What Can Physicists Do?” 21cm Background: A Probe of register online at http://www.aps.org activities,” the report says in its Franz. It is important for APS to Francis Everitt, Stanford, “First Reionization and the Dark Ages” /meet/APR07/ starting in early introduction. See TASK FORCE on page 5 Results from Gravity Probe B” Shamit Kachru, Stanford, November. Fellowship Nominations Go Electronic New Website Targets a Broader Audience Starting this year, any APS mem- 2008 deadlines, however, all the which every member is entitled. ber wishing to nominate a colleague paper should have been flushed out Those who have already set up their The address will be the same, but dents and educators, librarians, and for Fellowship will do so using the of the system. the look and feel will be very dif- the public (“physics enthusiasts”). userID and password but may have web. The previous system of down- As the system has worked up to ferent. This month APS unveils its The new website will emphasize forgotten them, can call or email loading, filling out and mailing in a now, sponsors had to mail in their new and improved website at the programs and resources APS Shelly Johnston at 301-209-3268, paper form has been discontinued. nominations, which were then logged www.aps.org. offers for these groups, while still [email protected] . Sponsors with- While most of the current con- catering to the needs of the primary The web-based form allows the into the system manually. Multiple out passwords can obtain them from tent will still be available on the new audience, APS members. The new sponsor to enter all the candidate's copies of each nomination had to be a link located on the Fellowship log- information, to upload support let- made, and then packages of nomi- site, it is intended to be better organ- site will also highlight other APS in page. ters, and to designate a co-sponsor nations had to be sent to the relevant ized, more attractive, easier to nav- websites, including the APS jour- “We have tried to eliminate all the (Fellowship nominations require two units’ Fellowship committees. With igate, and more useful to a wider nals, PhysicsCentral, and Physical bugs,” says Alan Chodos, APS audience. Review Focus. “This will raise APS members as sponsors). about 400 nominations received each Because Fellowship nominations year, a large expenditure of time and Associate Executive Officer, “but This is the first major redesign awareness of the whole family of undoubtedly some will remain. We since the APS site was launched in APS websites,” said webmaster are active for two years, the 2007 money has been involved. hope our members will be under- 1995. In 2005, the APS Executive Sara Conners. process will be a hybrid one, in which The web-based nomination sys- standing as we work to fix any resid- Board decided to update the site, in Content is organized to make the nominations submitted before tem is available at URL http://fellow- ual problems.” Sponsors who have order to better highlight APS pro- things easier to find. The site has the 2006 deadlines will still be in ship.aps.org. Since only APS mem- grams and services, especially those been designed with “user-centered paper, while the nominations that bers can sponsor Fellowship nomi- trouble in submitting their nomina- for groups other than APS mem- principles,” said Conners. arrive after the 2006 deadline will do nations, access to the form requires tions should contact Shelly Johnston bers, including policy makers, stu- WEBSITE continued on page 7 so electronically. By the time of the an APS userID and password, to as above. Mather, Smoot Share 2006 Nobel Prize in Physics APS fellow John C. Mather on the Cosmic Background universe, it was (NASA Goddard Space Flight Explorer (COBE) project. This unclear why the Center) shared the 2006 Nobel orbiting spacecraft was the first to universe con- Prize in physics with detect faint temperature tained stars and George Smoot variations in the cosmic galaxies rather (Lawrence Berkeley microwave back- than an evenly John C. Mather National ground (CMB) radi- distributed dust Laboratory) for ation–the faint cloud. Theorists “their discovery of microwave signals had predicted that the blackbody from space that are a sensitive meas- form and remnants of the Big urement of anisotropy of the Bang. The CMB was microwaves from Photo credit: Sara Conners cosmic microwave first observed experi- the sky would George Smoot APS web content coordinator Kelly Osborn contemplates all the hard work background radiation.” mentally in the 1960s by reveal minute by many people that made possible the transition from the old APS web site Mather and Smoot will split a 10M Arno Penzias and Robert Wilson at temperature fluctuations, which rep- (left screen) to the new (right screen). After the launch of the new site, she Swedish Kroner (~$1.4M) prize. Bell Labs, for which they later resent variations in the density of will work with APS IT staff to keep it running, to update the content, and to The Nobel Prize Committee received the Nobel Prize. matter in the early universe. It was implement improvements as needed. cited the physicists for their work Prior to the COBE map of the MATHER, SMOOT continued on page 5 2 November • 2006 APS NEWS Members in the Media This Month in Physics History “The only way for someone to “Everyone knows what an icicle is kill string theory will be to come up and what it looks like, so this research November, 1783: Intrepid physicist first to fly with a better one.” is very accessible. I think it is amaz- Sean Carroll, Caltech, USA ing that science and math can explain n November 21, 1783, physicist Jean Francois cinated Parisians.
Recommended publications
  • Fotonica Ed Elettronica Quantistica
    Fotonica ed elettronica quantistica http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Fotonica ed elettronica quantistica Quantum optics - Quantization of electromagnetic field - Statistics of light, photon counting and noise; - HBT and correlation; g1 e g2 coherence; antibunching; single photons - Squeezing - Quantum cryptography - Quantum computer, entanglement and teleportation Light-matter Interaction - Two-level atom - Laser physics - Spectroscopy - Electronics and photonics at the nanometer scale - Cold atoms - Photodetectors - Solar cells http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Energy Temperature LHC at CERN, Higgs, SUSY, ??? TeV 15 q q particle accelerators 10 K q GeV proton rest mass - quarks 1012K MeV electron rest mass / gamma rays 109K keV Nuclear Fusion, x rays, Sun center 106K Atoms ionize - visible light eV Sun surface fundamental components components fundamental room temperature 103K meV Liquid He, superconductors, space 1K dilution refrigerators, quantum Hall µeV laser-cooled atoms 10-3K neV Bose-Einstein condensates 10-6K peV low T record 480 picokelvin 10-9K -12 complexity, organization organization complexity, 10 K Nobel Prizes in Physics 2010 - Andre Geims, Konstantin Novoselov 2009 - Charles K. Kao, Willard S. Boyle, George E. Smith 2007 - Albert Fert, Peter Gruenberg 2005 - Roy J. Glauber, John L. Hall, Theodor W. Hänsch 2001 - Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 1997 - Steven Chu, Claude Cohen-Tannoudji, William D. Phillips 1989 - Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul 1981 - Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn 1966 - Alfred Kastler 1964 - Charles H. Townes, Nicolay G. Basov, Aleksandr M. Prokhorov 1944 - Isidor Isaac Rabi 1930 - Venkata Raman 1921 - Albert Einstein 1907 - Albert A.
    [Show full text]
  • Jul/Aug 2013
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • Having a Good Time: a Triumph of Science & Technology
    UDC’s Office of Research & Graduate Studies, SEAS, LSAMP, & STEM Center Invite You to a Seminar on Having a Good Time: A Triumph of Science & Technology Presented by Dr. William D. Phillips, NIST Nobel Laureate in Physics, 1997 © Robert Rathe © Robert Rathe Date: Tuesday, March 13, 2012 Time: 12:30 PM Location: Building 41-A03 Abstract: People have long been interested in timekeeping. In the 18th century, this interest became particularly keen because of technological demands: the need for accurate navigation on the high seas. While many people believed that the answer to sufficiently good timekeeping at sea would be found in astronomical measurements, it was earthbound engineering that literally won the prize. The construction of accurate seagoing clocks revolutionized navigation in the 18th and 19th centuries. The advent of even more accurate clocks—atomic clocks—in the 20th century gave birth to a new revolution in navigation—the Global Positioning System. This ever-more advanced system for satellite navigation owes its success both to excellent engineering and to seemingly arcane science. Dr. William D. Phillips is a Senior Fellow at the National Institute of Standards and Technology (NIST), where he leads the Laser Cooling and Trapping Group. He shared the 1997 Nobel Prize in physics with Dr. Steven Chu, now Secretary of Energy, and with Dr. Claude Cohen-Tannoudji, an Algerian-born French physicist, “for development of methods to cool and trap atoms with laser light.” With a physics bachelor’s degree from Juniata College in Pennsylvania and a Ph.D. from MIT, Phillips started his career at NIST only a few years after it left UDC’s Van Ness campus for its location in Gaithersburg.
    [Show full text]
  • Luis Alvarez: the Ideas Man
    CERN Courier March 2012 Commemoration Luis Alvarez: the ideas man The years from the early 1950s to the late 1980s came alive again during a symposium to commemorate the birth of one of the great scientists and inventors of the 20th century. Luis Alvarez – one of the greatest experimental physicists of the 20th century – combined the interests of a scientist, an inventor, a detective and an explorer. He left his mark on areas that ranged from radar through to cosmic rays, nuclear physics, particle accel- erators, detectors and large-scale data analysis, as well as particles and astrophysics. On 19 November, some 200 people gathered at Berkeley to commemorate the 100th anniversary of his birth. Alumni of the Alvarez group – among them physicists, engineers, programmers and bubble-chamber film scanners – were joined by his collaborators, family, present-day students and admirers, as well as scientists whose professional lineage traces back to him. Hosted by the Lawrence Berkeley National Laboratory (LBNL) and the University of California at Berkeley, the symposium reviewed his long career and lasting legacy. A recurring theme of the symposium was, as one speaker put it, a “Shakespeare-type dilemma”: how could one person have accom- plished all of that in one lifetime? Beyond his own initiatives, Alvarez created a culture around him that inspired others to, as George Smoot put it, “think big,” as well as to “think broadly and then deep” and to take risks. Combined with Alvarez’s strong scientific standards and great care in execut- ing them, these principles led directly to the awarding of two Nobel Luis Alvarez celebrating the announcement of his 1968 Nobel prizes in physics to scientists at Berkeley – George Smoot in 2006 prize.
    [Show full text]
  • The Cosmic Microwave Background: the History of Its Experimental Investigation and Its Significance for Cosmology
    REVIEW ARTICLE The Cosmic Microwave Background: The history of its experimental investigation and its significance for cosmology Ruth Durrer Universit´ede Gen`eve, D´epartement de Physique Th´eorique,1211 Gen`eve, Switzerland E-mail: [email protected] Abstract. This review describes the discovery of the cosmic microwave background radiation in 1965 and its impact on cosmology in the 50 years that followed. This discovery has established the Big Bang model of the Universe and the analysis of its fluctuations has confirmed the idea of inflation and led to the present era of precision cosmology. I discuss the evolution of cosmological perturbations and their imprint on the CMB as temperature fluctuations and polarization. I also show how a phase of inflationary expansion generates fluctuations in the spacetime curvature and primordial gravitational waves. In addition I present findings of CMB experiments, from the earliest to the most recent ones. The accuracy of these experiments has helped us to estimate the parameters of the cosmological model with unprecedented precision so that in the future we shall be able to test not only cosmological models but General Relativity itself on cosmological scales. Submitted to: Class. Quantum Grav. arXiv:1506.01907v1 [astro-ph.CO] 5 Jun 2015 The Cosmic Microwave Background 2 1. Historical Introduction The discovery of the Cosmic Microwave Background (CMB) by Penzias and Wilson, reported in Refs. [1, 2], has been a 'game changer' in cosmology. Before this discovery, despite the observation of the expansion of the Universe, see [3], the steady state model of cosmology still had a respectable group of followers.
    [Show full text]
  • Nobel Lectures™ 2001-2005
    World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of
    [Show full text]
  • Reversed out (White) Reversed
    Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments.
    [Show full text]
  • Mysteries of the Universe
    Mysteries of the Universe Harry Ringermacher, Ph.D. General Electric Research Center Schenectady, NY Elliott-Nowell-White Science Symposium Oct. 11, 2012 Overview • Astronomy 101 - Scales of distance, light measure • The “Big-Bang Universe” – how we see • What do we know about Dark Matter and Dark Energy ? • The search for Dark Matter “Astronomy 101” Andromeda galaxy photo by H. Ringermacher Milky Way scaled against our nearest neighbor galaxy, Andromeda 100,000 Ly 1 light year = distance light travels in 1 year 6,000,000,000,000 miles Time-line of the Universe Wilkinson Microwave Anisotropy Probe – WMAP (2001) Cosmic Background Explorer COBE – forerunner (1989) WMAP produced unprecedented images of the earliest light in the universe – the Cosmic Microwave Background (CMB) What did WMAP discover? • Universe is 13.7 billion years old , (± 1%) • First stars ignited 200 million years after the Big Bang . • Light in the WMAP picture is from 379,000 years after the Big Bang . • Content of the Universe: 4% Atoms, 23% Cold Dark Matter, 73% Dark Energy . • The Universe will expand forever (it is “flat”) and is accelerating . • The nature of the Dark Energy and Dark Matter is still a mystery . 2006 Nobel Prize in Physics Blackbody from and anisotropy of the Cosmic Microwave Background Radiation John Mather George Smoot NASA Goddard UC Berkeley The Accelerating Universe • How do we measure the speed of expansion? • Astronomers use “Standard Candles” • Astronomers use the brightest “candle” SUPERNOVA 2011 Nobel Prize in Physics Discovery of the accelerating expansion of the universe through observations of distant supernovae Brian Schmidt, Australian Nat’l U.
    [Show full text]
  • The Election—IV Steven Weinberg
    3/26/13 The Election—IV by Steven Weinberg, Garry Wills, and Jeffrey D. Sachs | The New York Review of Books The Election—IV NOVEMBER 8, 2012 Steven Weinberg, Garry Wills, and Jeffrey D. Sachs Barack Obama; drawing by John Springs Steven Weinberg The presidency of Barack Obama began to fail on January 6, 2009, a fortnight before the president was inaugurated. Only on that day, the first day of a new Congress, the rules of the Senate could have been changed by a simple majority vote. That was the last opportunity to revise the rule that requires sixty votes to limit a filibuster. Of course, no president-elect or president has authority to change the Senate rules, but this president- elect had ample means to exert pressure on senators. For instance, he could have confronted Harry Reid of Nevada, the Senate majority leader, with the prospect of administration support for the nuclear waste disposal facility at Yucca Mountain, whose worst drawback was its unpopularity in Nevada. Alas, Barack Obama proved himself to be no Lyndon Johnson. Even though Democrats would have a majority in both houses of Congress for the next www.nybooks.com/articles/archives/2012/nov/08/election-4/?pagination=false 1/10 3/26/13 The Election—IV by Steven Weinberg, Garry Wills, and Jeffrey D. Sachs | The New York Review of Books two years, the Republican ability to filibuster in the Senate meant that bipartisan compromise would be needed to pass any legislation or approve any appointments. This sort of compromise may have been congenial to President Obama anyway, but after January 6 it was unavoidable.
    [Show full text]
  • NSF Sensational 60
    Cover credits Background: © 2010 JupiterImages Corporation Inset credits (left to right): Courtesy Woods Hole Oceanographic Institution; Gemini Observatory; Nicolle Rager Fuller, National Science Foundation; Zee Evans, National Science Foundation; Nicolle Rager Fuller, National Science Foundation; Zina Deretsky, National Science Foundation, adapted from map by Chris Harrison, Human-Computer Interaction Institute, Carnegie Mellon University; Tobias Hertel, Insti- tute for Physical Chemistry, University of Würzburg Design by: Adrian Apodaca, National Science Foundation 1 Introduction The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. Congress passed legislation creating the NSF in 1950 and President Harry S. Truman signed that legislation on May 10, 1950, creating a government agency that funds research in the basic sciences, engineering, mathematics and technology. NSF is the federal agency responsible for nonmedical research in all fields of science, engineering, education and technology. NSF funding is approved through the federal budget process. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF has an independent governing body called the National Science Board (NSB) that oversees and helps direct NSF programs and activities. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. NSF is the funding source for approximately 20 percent of all federally supported basic research conducted by America’s colleges and universities. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly. NSF has a total workforce of about 1,700 at its Arlington, Va., headquarters, including approximately 1,200 career employees, 150 scientists from research institutions on temporary duty, 200 contract workers and the staff of the NSB office and the Office of the Inspector General.
    [Show full text]
  • Big and Small
    Big and Small R D Ekers1 CSIRO-ATNF Sydney, NSW, Australia E-mail: [email protected] Abstract Technology leads discovery in astronomy, as in all other areas of science, so growth in technology leads to the continual stream of new discoveries which makes our field so fascinating. Derek de Solla Price had analysed the discovery process in science in the 1960s and he introduced the terms 'Little Science' and 'Big Science' as part of his discussion of the role of exponential growth in science. I will show how the development of astronomical facilities has followed this same trend from 'Little Science' to 'Big Science' as a field matures. We can see this in the discoveries resulting in Nobel Prizes in astronomy. A more detailed analysis of discoveries in radio astronomy shows the same effect. I include a digression to look at how science progresses, comparing the roles of prediction, serendipity, measurement and explanation. Finally I comment on the differences between the 'Big Science' culture in Physics and in Astronomy. Accelerating the Rate of Astronomical Discovery - sps5 Rio de Janeiro, Brazil August 11–14 2009 1 Speaker © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it Big and Small Ekers 1. Exponential Growth in Science Harwit [1] showed that most important discoveries in astronomy result from technical innovation. The discoveries peak soon after new technology appears, and usually within 5 years of the technical capability. Instruments used for discoveries are often built by the observer. He also noted that new astronomical phenomena are more frequently found by researchers trained outside astronomy.
    [Show full text]