YTHDF2/3 Are Required for Somatic Reprogramming Through Different RNA Deadenylation Pathways

Total Page:16

File Type:pdf, Size:1020Kb

YTHDF2/3 Are Required for Somatic Reprogramming Through Different RNA Deadenylation Pathways Report YTHDF2/3 Are Required for Somatic Reprogramming through Different RNA Deadenylation Pathways Graphical Abstract Authors Jiadong Liu, Mingwei Gao, Shuyang Xu, ..., Weiwei Liu, Xichen Bao, Jiekai Chen Correspondence [email protected] In Brief Liu et al. show that the YTHDF2-CCR4- NOT complex promotes the mRNA clearance of somatic genes, especially Tead2, paralleling the activity of the YTHDF3-PAN2-PAN3 deadenylase complex during reprogramming. Furthermore, Ythdf2/3 deficiency suppresses the mesenchymal-to- epithelial transition (MET) process and MEF-related chromatin loci silencing in the early stage of reprogramming and then decreases reprogramming efficiency. Highlights d Knockdown of Ythdf2/3, but not Ythdf1, inhibits somatic cell reprogramming d YTHDF2/3 recruits different deadenylase complexes to regulate mRNA clearance d YTHDF2/3 regulates the MET process through Hippo signaling pathway effector Tead2 d Ythdf2/3 deficiency represses silencing of MEF-related chromatin loci Liu et al., 2020, Cell Reports 32, 108120 September 8, 2020 ª 2020 The Author(s). https://doi.org/10.1016/j.celrep.2020.108120 ll ll OPEN ACCESS Report YTHDF2/3 Are Required for Somatic Reprogramming through Different RNA Deadenylation Pathways Jiadong Liu,1,2,3,7 Mingwei Gao,1,2,3,7 Shuyang Xu,1,2 Yaping Chen,1,2,3 Kaixin Wu,1,2,5 He Liu,1,2,4,5 Jie Wang,1,2 Xuejie Yang,4 Junwei Wang,1,2 Weiwei Liu,6 Xichen Bao,1,2,3,5 and Jiekai Chen1,2,3,4,5,8,* 1CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China 2Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China 3University of Chinese Academy of Sciences, Beijing 100049, China 4Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 511436, China 5Guangzhou Regenerative Medicine and Health GuangDong Laboratory (GRMH-GDL), Guangzhou 510005, China 6CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China 7These authors contributed equally 8Lead Contact *Correspondence: [email protected] https://doi.org/10.1016/j.celrep.2020.108120 SUMMARY N6-methyladenosine (m6A), the most abundant reversible modification on eukaryote messenger RNA, is recognized by a series of readers, including the YT521-B homology domain family (YTHDF) proteins, which are coupled to perform physiological functions. Here, we report that YTHDF2 and YTHDF3, but not YTHDF1, are required for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). Mechanistically, we found that YTHDF3 recruits the PAN2-PAN3 deadenylase complex and conduces to reprogramming by promoting mRNA clearance of somatic genes, including Tead2 and Tgfb1, which parallels the activity of the YTHDF2-CCR4-NOT deadenylase complex. Ythdf2/3 deficiency represses mesenchymal-to-epithelial transition (MET) and chromatin silencing at loci containing the TEAD motif, contributing to decreased reprog- ramming efficiency. Moreover, RNA interference of Tgfb1 or the Hippo signaling effectors Yap1, Taz, and Tead2 rescues Ythdf2/3-defective reprogramming. Overall, YTHDF2/3 couples RNA deadenylation and regu- lation with the clearance of somatic genes and provides insights into iPSC reprogramming at the posttran- scriptional level. INTRODUCTION 2, have been identified as directly recognizing m6A modification within RNAs (Li et al., 2014; Xu et al., 2014; Zhu et al., 2014). In N6-methyladenosine (m6A), the most abundant modification of the nucleus, YTHDC1 regulates target mRNA splicing, nuclear messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) export, and X chromosome inactivation (Patil et al., 2016; in eukaryotes (Adams and Cory, 1975; Desrosiers et al., 1974), is Roundtree et al., 2017; Xiao et al., 2016). In the cytosol, YTHDF1 responsible for posttranscriptional regulation. m6A modifications interacts with initiation factors to facilitate the translational effi- are often located within the conserved sequence RR(m6A)CH (in ciency of target mRNAs (Wang et al., 2015), whereas YTHDF2 which R = G/A and H = A/C/U) in RNAs (Dominissini et al., 2012; accelerates target mRNA decay by recruiting the CCR4-NOT Meyer et al., 2012), are especially enriched in long exons and 30 deadenylase complex (Du et al., 2016; Wang et al., 2014a). In untranslated regions (30 UTRs), and are near the stop codons of addition, both YTHDF3 and YTHDC2 play a role in promoting mRNAs (Fu et al., 2014; Meyer and Jaffrey, 2014; Zhao et al., target mRNA translation and degradation (Hsu et al., 2017; Li 2017a). In mammals, m6A is catalyzed by a large methyltransfer- et al., 2017a; Shi et al., 2017). In recent years, accumulating ev- ase complex containing methyltransferase-like (METTL) 3, idence has demonstrated that the m6A modification is crucial in METTL14, and Wilms’ tumor 1-associating protein (WTAP) in regulating stem cell self-renewal, development, and somatic cell the nucleus (Bokar et al., 1997; Liu et al., 2014; Ping et al., reprogramming, playing a crucial role in cell fate transition 2014) and removed by the demethylase fat mass and obesity- (Aguilo et al., 2015; Batista et al., 2014; Chen et al., 2015; Geula associated protein (FTO) or the alkylated DNA repair protein et al., 2015; Wang et al., 2014b). alkB homolog 5 (ALKBH5) (Jia et al., 2011; Zheng et al., 2013). Somatic cell reprogramming by Yamanaka factors to induced In addition, the proteins containing an YTH domain, including pluripotent stem cells (iPSCs) is a system for studying the molec- YT521-B homology domain family (YTHDF) 1-3 and YTHDC1- ular mechanism of cell fate transition (Takahashi and Yamanaka, Cell Reports 32, 108120, September 8, 2020 ª 2020 The Author(s). 1 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). ll OPEN ACCESS Report 2006). However, the effects of m6A modification in the genera- butions of YTHDF2 and YTHDF3 to reprogramming (Figures 1E tion of iPSCs are inconsistent, which might result from compli- and 1H). Then, we constructed YTHDF2 W432A and YTHDF3 cated biological functions of m6A(Aguilo et al., 2015; Chen W438A mutants in which a single amino acid residue in the et al., 2015). mRNA decay mediated by the m6A reader YTHDF2 YTH domain had been mutated (Figure 1F), which significantly was shown to be a critical regulator of hematopoietic stem and reduced the m6A RNA binding affinity (Li et al., 2014; Zhu progenitor cell specification (Zhang et al., 2017). In addition, in- et al., 2014). The decreased reprogramming efficiency could hibition of YTHDF2 promoted hematopoietic stem cell regenera- not be rescued by these point mutants, indicating that m6A tion and expansion (Li et al., 2018; Wang et al., 2018). The studies modification is important in this process (Figures 1G and 1H). imply that the m6A reader proteins YTHDFs may play a specific Ectopic protein expression was validated by western blotting role in cell fate transition. (Figures S1H and S1I). In conclusion, defects in Ythdf2/3 impair Here, we reported that knockdown of YTHDF2 or YTHDF3, but reprogramming by upregulating developmental genes and not YTHDF1, in mouse embryonic fibroblasts (MEFs) led to a sig- reduced cell proliferation, and these functions depend on m6A nificant m6A-dependent decrease of reprogramming efficiency. modification. We showed that YTHDF3 recruits the PAN2-PAN3 deadenylase complex to regulate target mRNA deadenylation, paralleling the Ythdf2/3 Deficiency Impairs Reprogramming through activity of the YTHDF2-CCR4-NOT deadenylase complex. Different mRNA Deadenylation Pathways Mechanistically, we found that Ythdf2/3 deficiency suppressed In mammals, three major deadenylase complexes have been the mRNA clearance of MEF-related genes, especially Tead2, characterized as decay enzymes involved in mRNA degradation: an effector of the Hippo signaling pathway that facilitates the the nine-subunit CCR4-NOT complex, the PAN2-PAN3 hetero- epithelial-to-mesenchymal transition (EMT), which is known to multimeric complex, and the PARN homodimer (Lau et al., repress reprogramming (Diepenbruck et al., 2014; Li et al., 2010). 2009; Mangus et al., 2004; Wu et al., 2005). YTHDF2 physically interacts with CNOT1 to recruit the CCR4-NOT complex and in- RESULTS duces mRNA deadenylation (Du et al., 2016). A recent study showed that YTHDF3 binds YTHDF2 to promote mRNA decay Ythdf2/3 Deficiency Impairs Somatic Cell (Shi et al., 2017). However, there is no evidence to illustrate Reprogramming in an m6A-Dependent Manner which pathway is responsible for YTHDF3-mediated deadenyla- To explore the possible features of YTHDFs during reprogram- tion (Figure 2A). To address this, we knocked down the mRNA ming, we used our previously described reprogramming system, levels of CCR4-NOT complex subunits CNOT1 or CCR4A to which includes ectopically expressed Oct4, Klf4, and Sox2 study their effects on reprogramming (Figures S2A and S2B). It (OKS) transcription factors; the optimized chemically defined is showed that knockdown of Cnot1 or Ccr4a reduced reprog- medium iCD1; and MEFs harboring the Oct4-GFP reporter ramming efficiency, which could not be rescued by overexpres- (Chen et al., 2011)(Figure 1A). We first knocked down the sion of YTHDF2 (Figures 2B, 2E, S2C, and S2D). In contrast, the mRNA of Ythdf1, Ythdf2,orYthdf3 throughout the reprogram- decreased reprogramming efficiency could be recovered by ming process using short
Recommended publications
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Caspases Switch Off M6a RNA Modification Pathway to Reactivate A
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.377127; this version posted November 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 6 1 Caspases switch off m A RNA modification pathway to reactivate a 2 ubiquitous human tumor virus 3 Kun Zhang1,2, Yucheng Zhang3, Jun Wan3,4,5 and Renfeng Li1,2,6,7,8* 4 1Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth 5 University, Richmond, Virginia, 23298, USA 6 2Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia 7 Commonwealth University, Richmond, Virginia, 23298, USA 8 3Department of Medical and Molecular Genetics, Indiana University School of Medicine, 9 Indianapolis, Indiana, 46202, USA 10 4Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 11 Indianapolis, Indiana, 46202, USA. 12 5Department of BioHealth Informatics, School of Informatics and Computing, Indiana University 13 – Purdue University at Indianapolis, Indianapolis, Indiana, 46202, USA 14 6Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth 15 University, Richmond, Virginia, 23298, USA 16 7Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, 23298, USA. 17 8Lead Contact 18 19 *Corresponding author: [email protected] (RL) 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.377127; this version posted November 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Role of Cyclin B3 in Mammalian Meiosis
    THE ROLE OF CYCLIN B3 IN MAMMALIAN MEIOSIS by Mehmet Erman Karasu A Dissertation Presented to the Faculty of the Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy New York, NY November, 2018 Scott Keeney, PhD Date Dissertation Mentor Copyright © Mehmet Erman Karasu 2018 DEDICATION I would like to dedicate this thesis to my parents, Mukaddes and Mustafa Karasu. I have been so lucky to have their support and unconditional love in this life. ii ABSTRACT Cyclins and cyclin dependent kinases (CDKs) lie at the center of the regulation of the cell cycle. Cyclins as regulatory partners of CDKs control the switch-like cell cycle transitions that orchestrate orderly duplication and segregation of genomes. Similar to somatic cell division, temporal regulation of cyclin-CDK activity is also important in meiosis, which is the specialized cell division that generates gametes for sexual production by halving the genome. Meiosis does so by carrying out one round of DNA replication followed by two successive divisions without another intervening phase of DNA replication. In budding yeast, cyclin-CDK activity has been shown to have a crucial role in meiotic events such as formation of meiotic double-strand breaks that initiate homologous recombination. Mammalian cells express numerous cyclins and CDKs, but how these proteins control meiosis remains poorly understood. Cyclin B3 was previously identified as germ cell specific, and its restricted expression pattern at the beginning of meiosis made it an interesting candidate to regulate meiotic events.
    [Show full text]
  • Ythdc2 Is an N6-Methyladenosine Binding Protein That Regulates Mammalian Spermatogenesis
    Cell Research (2017) 27:1115-1127. © 2017 IBCB, SIBS, CAS All rights reserved 1001-0602/17 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis Phillip J Hsu1, 2, 3, *, Yunfei Zhu4, *, Honghui Ma1, 2, *, Yueshuai Guo4, *, Xiaodan Shi4, Yuanyuan Liu4, Meijie Qi4, Zhike Lu1, 2, Hailing Shi1, 2, Jianying Wang4, Yiwei Cheng4, Guanzheng Luo1, 2, Qing Dai1, 2, Mingxi Liu4, Xuejiang Guo4, Jiahao Sha4, Bin Shen4, Chuan He1, 2, 5 1Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; 2Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; 3Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; 4State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China; 5Department of Biochemistry and Molecular Biology, The University of Chi- cago, Chicago, IL 60637, USA N6-methyladenosine (m6A) is the most common internal modification in eukaryotic mRNA. It is dynamically in- stalled and removed, and acts as a new layer of mRNA metabolism, regulating biological processes including stem cell pluripotency, cell differentiation, and energy homeostasis. m6A is recognized by selective binding proteins; YTHDF1 and YTHDF3 work in concert to affect the translation of m6A-containing mRNAs, YTHDF2 expedites mRNA decay, and YTHDC1 affects the nuclear processing of its targets. The biological function of YTHDC2, the final member of the YTH protein family, remains unknown. We report that YTHDC2 selectively binds m6A at its consensus motif. YTHDC2 enhances the translation efficiency of its targets and also decreases their mRNA abundance.
    [Show full text]
  • 'Next- Generation' Sequencing Data Analysis
    Novel Algorithm Development for ‘Next- Generation’ Sequencing Data Analysis Agne Antanaviciute Submitted in accordance with the requirements for the degree of Doctor of Philosophy University of Leeds School of Medicine Leeds Institute of Biomedical and Clinical Sciences 12/2017 ii The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly given within the thesis where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement ©2017 The University of Leeds and Agne Antanaviciute The right of Agne Antanaviciute to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. Acknowledgements I would like to thank all the people who have contributed to this work. First and foremost, my supervisors Dr Ian Carr, Professor David Bonthron and Dr Christopher Watson, who have provided guidance, support and motivation. I could not have asked for a better supervisory team. I would also like to thank my collaborators Dr Belinda Baquero and Professor Adrian Whitehouse for opening new, interesting research avenues. A special thanks to Dr Belinda Baquero for all the hard wet lab work without which at least half of this thesis would not exist. Thanks to everyone at the NGS Facility – Carolina Lascelles, Catherine Daley, Sally Harrison, Ummey Hany and Laura Crinnion – for the generation of NGS data used in this work and creating a supportive and stimulating work environment.
    [Show full text]
  • Datasheet Blank Template
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . YTHDC2 (G-19): sc-249370 BACKGROUND APPLICATIONS YTHDC2 (YTH domain containing 2), also known as probable ATP-dependent YTHDC2 (G-19) is recommended for detection of YTHDC2 of mouse, rat and RNA helicase YTHDC2, is a 1,430 amino acid protein. Belonging to the DEAD human origin by Western Blotting (starting dilution 1:200, dilution range 1:100- box helicase family and DEAH subfamily, YTHDC2 contains two ANK repeats, 1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) a helicase ATP-binding domain, helicase C-terminal domain, R3H domain and and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000); non a YTH domain, a potential RNA binding domain. The gene encoding YTHDC2 cross-reactive with YTHDC1. maps to human chromosome 5q22.2 and mouse chromosome 18 B3. With YTHDC2 (G-19) is also recommended for detection of YTHDC2 in additional 181 million base pairs encoding around 1,000 genes, chromosome 5 make up species, including bovine. approximately 6% of human genomic DNA. Chromosome 5 is associated with Cockayne syndrome through the ERCC8 gene and familial adenomatous poly - Suitable for use as control antibody for YTHDC2 siRNA (h): sc-91804, YTHDC2 posis through the adenomatous polyposis coli (APC) tumor suppressor gene. siRNA (m): sc-155422, YTHDC2 shRNA Plasmid (h): sc-91804-SH, YTHDC2 Treacher Collins syndrome is also chromosome 5 associated and is caused by shRNA Plasmid (m): sc-155422-SH, YTHDC2 shRNA (h) Lentiviral Particles: insertions or deletions within the TCOF1 gene.
    [Show full text]
  • Novel Candidate Genes of Thyroid Tumourigenesis Identified in Trk-T1 Transgenic Mice
    Endocrine-Related Cancer (2012) 19 409–421 Novel candidate genes of thyroid tumourigenesis identified in Trk-T1 transgenic mice Katrin-Janine Heiliger*, Julia Hess*, Donata Vitagliano1, Paolo Salerno1, Herbert Braselmann, Giuliana Salvatore 2, Clara Ugolini 3, Isolde Summerer 4, Tatjana Bogdanova5, Kristian Unger 6, Gerry Thomas6, Massimo Santoro1 and Horst Zitzelsberger Research Unit of Radiation Cytogenetics, Helmholtz Zentrum Mu¨nchen, Ingolsta¨dter Landstr. 1, 85764 Neuherberg, Germany 1Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Universita` Federico II, Naples 80131, Italy 2Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Universita` ‘Parthenope’, Naples 80133, Italy 3Division of Pathology, Department of Surgery, University of Pisa, 56100 Pisa, Italy 4Institute of Radiation Biology, Helmholtz Zentrum Mu¨nchen, 85764 Neuherberg, Germany 5Institute of Endocrinology and Metabolism, Academy of Medical Sciences of the Ukraine, 254114 Kiev, Ukraine 6Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0HS, UK (Correspondence should be addressed to H Zitzelsberger; Email: [email protected]) *(K-J Heiliger and J Hess contributed equally to this work) Abstract For an identification of novel candidate genes in thyroid tumourigenesis, we have investigated gene copy number changes in a Trk-T1 transgenic mouse model of thyroid neoplasia. For this aim, 30 thyroid tumours from Trk-T1 transgenics were investigated by comparative genomic hybridisation. Recurrent gene copy number alterations were identified and genes located in the altered chromosomal regions were analysed by Gene Ontology term enrichment analysis in order to reveal gene functions potentially associated with thyroid tumourigenesis. In thyroid neoplasms from Trk-T1 mice, a recurrent gain on chromosomal bands 1C4–E2.3 (10.0% of cases), and losses on 3H1–H3 (13.3%), 4D2.3–E2 (43.3%) and 14E4–E5 (6.7%) were identified.
    [Show full text]
  • Ketu Mutant Mice Uncover an Essential Meiotic Function for the Ancient, Putative RNA Helicase YTHDC2
    bioRxiv preprint doi: https://doi.org/10.1101/171827; this version posted August 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ketu mutant mice uncover an essential meiotic function for the ancient, putative RNA helicase YTHDC2 Devanshi Jain1, M. Rhyan Puno2,4, Kathryn V. Anderson3, and Scott Keeney1,4 * 1Molecular Biology Program, 2Structural Biology Program, 3Developmental Biology Program, and 4Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA Running title: Ythdc2 is essential for mouse meiosis Keywords Meiosis, spermatogonia, MEIOC, Bgcn, Bam, RNA binding proteins, gametogenesis *Correspondence: Scott Keeney Howard Hughes Medical Institute Molecular Biology Program Memorial Sloan Kettering Cancer Center 1275 York Ave, Box 97 New York, NY 10065 (212) 639-5182 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/171827; this version posted August 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Mechanisms regulating mammalian meiotic progression are poorly understood. Here we identify mouse YTHDC2 as a critical component of this regulation. A screen yielded a mutant, “ketu”, with male and female sterility caused by a Ythdc2 missense mutation. Mutant germ cells enter meiosis but proceed prematurely to aberrant metaphase and apoptosis.
    [Show full text]
  • Downregulation of M6a Reader YTHDC2 Promotes the Proliferation
    Int. J. Biol. Sci. 2021, Vol. 17 2633 Ivyspring International Publisher International Journal of Biological Sciences 2021; 17(10): 2633-2651. doi: 10.7150/ijbs.58514 Research Paper Downregulation of m6A Reader YTHDC2 Promotes the Proliferation and Migration of Malignant Lung Cells via CYLD/NF-κB Pathway Jin Wang1#, Lirong Tan1#, Beibei Jia1, Xiaofan Yu1, Ruixin Yao1, Nan OUYang1, Xueting Yu1, Xiyuan Cao1, Jian Tong1, Tao Chen1, Rui Chen2 and Jianxiang Li1 1. Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China. 2. Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215004, China. #These authors contributed equally to this work. Corresponding authors: Jianxiang Li, E-mail: [email protected]; Rui Chen, E-mail: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2021.02.03; Accepted: 2021.06.08; Published: 2021.06.22 Abstract Lung cancer is one of the most common types of carcinoma worldwide. Cigarette smoking is considered the leading cause of lung cancer. Aberrant expression of several YT521-B homology (YTH) family proteins has been reported to be closely associated with multiple cancer types. The present study aims to evaluate the function and regulatory mechanisms of the N6-methyladenosine (m6A) reader protein YTH domain containing 2 (YTHDC2) by in vitro, in vivo and bioinformatics analyses. The results revealed that YTHDC2 was reduced in lung cancer and cigarette smoke-exposed cells.
    [Show full text]
  • 1 Supplemental Methods 4Su RNA Isolation Cells Were Incubated In
    Supplemental Methods 4sU RNA isolation Cells were incubated in 500uM 4-thiouridine for 2.5 mins before RNA extraction using Trizol. 15-20ug RNA was biotinylated in a volume of 250μl containing 10mM HEPES (pH7.5), 5ug MTSEA Biotin-XX (Iris Biotech, dissolved in dimethyl formamide). After incubation in the dark for 90 mins, biotinylated RNA was chloroform extracted, phenol chloroform extracted and ethanol precipitated. It was re-suspended in RPB (300mM NaCl, 10mM Tris pH7.5, 5mM EDTA) and incubated with 50ul streptavidin-coated magnetic beads (Miltenyi Biotech) for 15 mins. Beads were washed 5x in (100 mM Tris-HCl pH 7.4, 10 mM EDTA, 1 M NaCl, and 0.1% Tween-20) pre-heated to 60oC. RNA was eluted in 100μl of 0.1M DTT for 15 mins at 37oC before final phenol chloroform extraction and ethanol precipitation. Metaprofiling of effects of XRN2 vs CPSF73 depletion (Figure 2A) Single-end 50-base-pair (bp) reads were screened for sequencing quality using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc); adapter sequences were then removed using Trim Galore using the default settings (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore). Trimmed reads passing QC steps were aligned to the GRCh38 (Ensembl) human genome using Hisat2 with default parameters, incorporating known splice sites (Kim et al. 2015). Unmapped, multi-mapped and reads with low mapping quality scores (MAPQ <20) were discarded using SAMtools (Li et al. 2009). For metagene analysis, expressed protein-coding genes (>50 reads per gene) were selected and a window extending 20 kb downstream from the transcription end site (TES) was applied.
    [Show full text]
  • Rna Methylation As a New Epigenetic Regulatory
    THE UNIVERSITY OF CHICAGO THE EXUBERANT VINE OF EPITRANSCRIPTOME: RNA METHYLATION AS A NEW EPIGENETIC REGULATORY MECHANISM A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY BY BOXUAN ZHAO CHICAGO, ILLINOIS AUGUST 2017 Table of Contents List of Figures ..................................................................................................................................v Acknowledgement ....................................................................................................................... viii Abstract .......................................................................................................................................... xi List of Publications ....................................................................................................................... xii Chapter 1 Introduction: RNA Modifications and Epitranscriptomics ................................. 1 1.1 Genetics and epigenetics: beyond the primary sequence .....................................................1 1.2 Epigenetic regulation of chromatin structure: histone and DNA modifications ..................2 1.3 Emergence of RNA epigenetics: chemical modifications on RNA .....................................4 1.4 N6-methyladenosine (m6A): the protagonist of epitranscriptomics ....................................7 1.5 Scope of this dissertation ...................................................................................................10
    [Show full text]
  • Comprehensive Analysis of YTH Domain Family in Lung Adenocarcinoma: Expression Profile, Association with Prognostic Value, and Immune Infiltration
    Hindawi Disease Markers Volume 2021, Article ID 2789481, 12 pages https://doi.org/10.1155/2021/2789481 Research Article Comprehensive Analysis of YTH Domain Family in Lung Adenocarcinoma: Expression Profile, Association with Prognostic Value, and Immune Infiltration Kuan Hu ,1 Lei Yao ,1 Yuanliang Yan ,2,3 Lei Zhou ,4 and Juanni Li 5 1Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China 2Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China 3National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China 4Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China 5Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China Correspondence should be addressed to Juanni Li; [email protected] Received 28 June 2021; Accepted 13 August 2021; Published 27 August 2021 Academic Editor: Cheng Zhan Copyright © 2021 Kuan Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. All YTH domain family members are m6A reader proteins accounting for the methylation modulation involved in the process of tumorgenesis and tumor progression. However, the expression profiles and roles of the YTH domain family in lung adenocarcinoma (LUAD) remain to be further illustrated. Methods. GEPIA2 and TNMplot databases were used to generate the expression profiles of the YTH family. Kaplan-Meier plotter database was employed to analysis the prognostic value of the YTH family. Coexpression profiles and genetic alterations analysis of the YTH family were undertaken using the cBioPortal database.
    [Show full text]