The Systematist 33
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Early Tetrapod World; Laying the Foundations of the Modern Vertebrate Fauna
The Early Tetrapod World; laying the foundations of the modern vertebrate fauna. A one-day conference celebrating the career of Prof Jenny Clack FRS. 10.00 Welcome Head of Department of Zoology Session 1 Chair Per Ahlberg 10.10 Tim Smithson et al. Traquair’s lungfish from Loanhead: dipnoan diversity and tooth plate growth in the late Mississippian. 10.30 Mike Coates Same old fish: new name, new fins. 10.50 Zerina Johanson et al. Ontogenetic development of the otic region in the new model animal Leucoraja. 11.10 Coffee Session 2 Chair Tim Smithson 11.30 John Marshall Palynology – sometimes little things make a big difference. 11.50 Dave Millward Palaeogeography during Romer’s Gap and its potential influence on tetrapod terrestrialisation. 12.10 Sarah Davies et al. Early Carboniferous palaeoenvironments: uncovering the landscapes of Romer’s Gap. 12.30 Henning Blom New data from the late Devonian of East Greenland. 12.50 Lunch Session 3 Chair Marcello Ruta 2.00 Per Ahlberg New data, new insights and new problems: some thoughts about the origin of tetrapods. 2.20 Jason Anderson et al. Enigmatic tetrapod from Five Points, Ohio (Upper Carboniferous) further supports late survivorship of stem tetrapod lineages. 2.40 Angela Milner Keraterpeton, the earliest horned nectridean revisited. 3.10 Andrew Milner Two primitive trematopid amphibians from the Carboniferous of the Czech Republic 3.30 Tea Session 4 Chair 3.50 Nick Fraser et al. Restoring the flat-pack skull of the Triassic protorosaur Tanystropheus. 4.10 Sophie Sanchez The life history traits of stem tetrapods 4.30 Eva Herbst et al. -
June 2, 2016 TO
June 2, 2016 TO: Members of the Board of Regents Designated Representatives to the Board of Regents FROM: Joan Goldblatt, Secretary of the Board of Regents RE: Schedule of Meetings THURSDAY, JUNE 9, 2016 8:30 to 10:05 a.m. Petersen Room ACADEMIC AND STUDENT AFFAIRS Allen Library COMMITTEE: Regents Rice (Chair), Kritzer, Riojas, Simon *10:20 to 11:20 a.m. Petersen Room FINANCE AND ASSET MANAGEMENT Allen Library COMMITTEE: Regents Jaech (Chair), Ayer, Benoliel, Blake, Harrell 11:45 a.m. Petersen Room REGULAR MEETING OF BOARD OF Allen Library REGENTS: Regents Shanahan (Chair), Ayer, Benoliel, Blake, Harrell, Jaech, Kritzer, Rice, Riojas, Simon *or upon conclusion of the previous session. Unless otherwise indicated, committee meetings of the Board of Regents will run consecutively; starting times following the first committee are estimates only. If a session ends earlier than expected, the next scheduled session may convene immediately. Committee meetings may be attended by all members of the Board of Regents and all members may participate. To request disability accommodation, contact the Disability Services Office at: 206.543.6450 (voice), 206.543.6452 (TTY), 206.685.7264 (fax), or email at [email protected]. The University of Washington makes every effort to honor disability accommodation requests. Requests can be responded to most effectively if received as far in advance of the event as possible. 1.1/206-16 6/9/16 UNIVERSITY OF WASHINGTON BOARD OF REGENTS Academic and Student Affairs Committee Regents Rice (Chair), Kritzer, Riojas, Simon June 9, 2016 8:30 to 10:05 a.m. Petersen Room, Allen Library Approval of Minutes of Committee Meeting on May 12, 2016 COMMITTEE ACTION 1. -
Durrell D. Kapan
Durrell D. Kapan Biographical United States Citizen details Born 7 August 1965, San Francisco, California Married, spouse: Shannon N. Bennett, one child Anika Ku’ulei Kapan Current Assistant Researcher, Center for Conservation and Research Training, Pacific position Biosciences Research Center, University of Hawaii, Manoa Present address: Honolulu, HI 96822 Email: Center for Conservation Research and Training durrell AT hawaii DOT edu 3050 Maile Way, Gilmore 406 Ph.D. Thesis “Divergent natural selection and Müllerian mimicry in polymorphic Education Heliconius cydno (Lepidoptera: Nymphalidae).” Supervised by Prof. Dolph Schluter, Department of Zoology, University of British Columbia, Vancouver, BC, Canada. April 1998. B.A. Zoology. Department of Zoology, University of California, Berkeley, California, U.S.A. May 1988. Career May 2006 – present. Assistant Researcher. Center for Conservation and Research Training, Pacific Biosciences Research Center, University of Hawaii, Manoa under Director Dr. Ken Kaneshiro. Currently investigating Evolutionary genetics and gene-expression of local adaptation in rare Hawaiian Drosophila in collaboration with Cam Muir from UH Hilo (UH NSF EPSCoR REAP award) and working to develop projects on the evolutionary ecology of infectious disease (Dengue virus, Leptospirosis) with researchers Dr. Shannon Bennett and Dr. Bruce Wilcox of the Asia Pacific Institute of Tropical Medicine and Infectious Disease, University of Hawaii, School of Medicine. May 2006 – present. IGERT: Integrative Training in Ecology, Conservation and Pathogen Biology Core Curriculum Team Leader. Pacific Biosciences Research Center & Asia Pacific Institute of Emerging Infectious Diseases University of Hawaii, Manoa. I am presently teaching the core-curriculum I designed for the recently awarded Integrative Training in Ecology, Conservation and Pathogen Biology program (NSF-IGERT # 0549514). -
Early Tetrapod Relationships Revisited
Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria -
Thegreatestshowonearth-Indonesian.Pdf
1 PERTUNJUKAN TERHEBAT DI MUKA BUMI BUKTI YANG MENDUKUNG EVOLUSI RICHARD DAWKINS Diterjemahkan oleh Wahyu Ginting Terjemahan ini diterbitkan dan tersedia GRATIS di translationsproject.org 2 Daftar Isi Prakata ............................................................................................................................. 3 BAB 1 HANYA TEORI? ............................................................................................... 5 BAB 2 ANJING, SAPI, DAN KUBIS ......................................................................... 16 BAB 3 JALAN BERTABUR BUNGA MENUJU MAKRO-EVOLUSI ................. 31 BAB 4 KEHENINGAN DAN WAKTU YANG LAMBAT ...................................... 58 BAB 5 DI DEPAN MATA KEPALA KITA .............................................................. 74 BAB 6 MATA RANTAI YANG HILANG? APA MAKSUDNYA, ‘HILANG’? ... 96 BAB 7 ORANG-ORANG HILANG? TIDAK HILANG LAGI ............................. 121 BAB 8 ANDA SENDIRI MELAKUKANNYA DALAM SEMBILAN BULAN .. 139 BAB 9 BAHTERA BENUA-BENUA ....................................................................... 167 BAB 10 POHON KEKERABATAN SEPUPU ........................................................ 188 BAB 11 SEJARAH TERTULIS DI SEKUJUR TUBUH KITA ............................ 222 BAB 12 PERLOMBAAN SENJATA DAN ‘TEODISI EVOLUSIONER’ ........... 245 BAB 13 ADA KEMEGAHAN DALAM CARA PANDANG INI .......................... 260 LAMPIRAN PARA PENYANGKAL SEJARAH................................................... 279 CATATAN .................................................................................................................. -
The Contribution of Temperature and Continental Fragmentation to Amphibian Diversification
Received: 25 May 2018 | Revised: 30 March 2019 | Accepted: 2 April 2019 DOI: 10.1111/jbi.13592 RESEARCH PAPER The contribution of temperature and continental fragmentation to amphibian diversification Jonathan Rolland1 | Fabien L. Condamine2 1Department of Zoology, University of British Columbia, Vancouver, British Abstract Columbia, Canada Aim: Abiotic factors such as global temperature or continental fragmentation may 2 CNRS, UMR 5554, Institut des Sciences favour speciation through the ecological and geographical isolation of lineages, but de l'Evolution de Montpellier (Université de Montpellier), Montpellier, France macroevolutionary quantifications of such effect with both fossil and phylogenetic data are rarely performed. Here, we propose to use biogeographical estimations and Correspondence Jonathan Rolland, Department of Zoology, palaeo‐environmental diversification models to estimate whether and how palae‐ University of British Columbia, #4200‐6270 otemperature and the sequential break‐ups of Pangaea, Gondwana and Laurasia University Blvd., Vancouver, BC, Canada. Email: [email protected] have affected the diversification of amphibians through time. Location: Global. Funding information University of British Columbia, Grant/Award Methods: Using a time‐calibrated phylogeny for 3,309 amphibian species and a Number: 151042; Agence Nationale de la genus‐level fossil record, we estimated the diversification rates of the group with Recherche, Grant/Award Number: ANR‐10‐ LABX‐25‐01 birth–death models allowing rates to depend on the temporal variations of the envi‐ ronment. We used estimates of global palaeotemperature and an index of continental Editor: Richard Ree fragmentation through time to test the association between speciation and/or ex‐ tinction rates and past temperature and fragmentation. We also estimated the bio‐ geographical history based on a time‐stratified parametric model informed by the global palaeogeography. -
Color-Pattern Evolution in Response to Environmental Stress in Butterflies
View metadata, citation and similar papers at core.ac.uk brought to you by CORE MINI REVIEW ARTICLE published: 06 February 2012provided by PubMed Central doi: 10.3389/fgene.2012.00015 Color-pattern evolution in response to environmental stress in butterflies Atsuki Hiyama,WataruTaira and Joji M. Otaki* The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan Edited by: It is generally accepted that butterfly wing color-patterns have ecological and behavioral Igor Kovalchuk, University of functions that evolved through natural selection. However, particular wing color-patterns Lethbridge, Canada may be produced physiologically in response to environmental stress, and they may lack Reviewed by: Olga Kovalchuk, University of significant function. These patterns would represent an extreme expression of phenotypic Lethbridge, Canada plasticity and can eventually be fixed genetically in a population. Here, three such cases in Carmel Mothersill, McMaster butterflies are concisely reviewed, and their possible mechanisms of genetic assimilation University, Canada are discussed. First, a certain modified color-pattern of Vanessa indica induced by tem- *Correspondence: perature treatments resembles the natural color-patterns of its closely related species of Joji M. Otaki, Department of Chemistry, Biology and Marine the genus Vanessa (sensu stricto). Second, a different type of color-pattern modification Science, Faculty of Science, can be induced in Vanessa cardui as a result of a general stress response. This modified University of the Ryukyus, 1 Senbaru, pattern is very similar to the natural color-pattern of its sister species Vanessa kershawi. Nishihara, Okinawa 903-0213, Japan. -
The Devonian Tetrapod Acanthostega Gunnari Jarvik: Postcranial Anatomy, Basal Tetrapod Interrelationships and Patterns of Skeletal Evolution M
Transactions of the Royal Society of Edinburgh: Earth Sciences, 87, 363-421, 1996 The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution M. I. Coates ABSTRACT: The postcranial skeleton of Acanthostega gunnari from the Famennian of East Greenland displays a unique, transitional, mixture of features conventionally associated with fish- and tetrapod-like morphologies. The rhachitomous vertebral column has a primitive, barely differentiated atlas-axis complex, encloses an unconstricted notochordal canal, and the weakly ossified neural arches have poorly developed zygapophyses. More derived axial skeletal features include caudal vertebral proliferation and, transiently, neural radials supporting unbranched and unsegmented lepidotrichia. Sacral and post-sacral ribs reiterate uncinate cervical and anterior thoracic rib morphologies: a simple distal flange supplies a broad surface for iliac attachment. The octodactylous forelimb and hindlimb each articulate with an unsutured, foraminate endoskeletal girdle. A broad-bladed femoral shaft with extreme anterior torsion and associated flattened epipodials indicates a paddle-like hindlimb function. Phylogenetic analysis places Acanthostega as the sister- group of Ichthyostega plus all more advanced tetrapods. Tulerpeton appears to be a basal stem- amniote plesion, tying the amphibian-amniote split to the uppermost Devonian. Caerorhachis may represent a more derived stem-amniote plesion. Postcranial evolutionary trends spanning the taxa traditionally associated with the fish-tetrapod transition are discussed in detail. Comparison between axial skeletons of primitive tetrapods suggests that plesiomorphic fish-like morphologies were re-patterned in a cranio-caudal direction with the emergence of tetrapod vertebral regionalisation. The evolution of digited limbs lags behind the initial enlargement of endoskeletal girdles, whereas digit evolution precedes the elaboration of complex carpal and tarsal articulations. -
Jason T. Weir
Jason T. Weir Curriculum Vitae Department of Biological Sciences, University of Toronto (Scarborough campus), 1265 Military Trail. Toronto, ON, M1C 1A4 CANADA. Email: [email protected] EDUCATION 2001 - 2007 Ph.D. (Zoology) University of British Columbia, Canada Advisor: Dr. Dolph Schluter PROFESSIONAL EXPERIENCE 2010 - present Assistant Professor of Biogeography: University of Toronto Scarborough 2007 - 2010 Postdoctoral Fellow: University of Chicago 2001 English Teacher: Kang’s Language School, South Korea Taught English as a second language to all age and skill categories. 1999 Contract Biologist: Central Okanagan Naturalist Club Field assessment of breeding requirements of American avocet at colonies in British Columbia, Canada. GRANTS, FELLOWSHIPS AND AWARDS 2011 NSERC Discovery Grant 2010 National Geographic Wait Grant 2007 - 2009 NSERC Postdoctoral Fellowship 2008 NSERC Doctoral Prize Award 2008 Faculty of Science Graduate Prize for Outstanding PhD, The University of British Columbia 2007 Society for the Study of Evolution, travel award 2005 American Museum of Natural History Collections Study Grant 2004 - 2006 NSERC PGSD Doctoral Fellowship 2003 Smithsonian Short Term Fellowship 2002 - 2004 NSERC PGSB Doctoral Fellowship 2001 Valedictorian of graduating class, undergraduate 1999 Canada Trust's Friends of the Environment Fund 1999 Rhodes Divisional Scholarships (Science), undergraduate PUBLICATIONS Articles Published in Refereed Journals: Chaves, J. A., Weir, J. T., & Smith, T. B. 2011. Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology. Published online Weir, J. T. & Price, M. 2011. Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Molecular Ecology. Published online Miller, J. M., Weir, J.T. Angehr, G. R., Guitton, P., Bermingham, E. 2011. An ornithological survey of Pinas Bay, a site on the Pacific coast of Darien Province, Panama. -
BMC Bioinformatics
BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. Pigmentary and photonic coloration mechanisms reveal taxonomic relationships of the Cattlehearts (Lepidoptera: Papilionidae: Parides) BMC Evolutionary Biology 2014, 14:160 doi:10.1186/s12862-014-0160-9 Bodo Wilts ([email protected]) Natasja IJbema ([email protected]) Doekele Stavenga ([email protected]) Sample ISSN 1471-2148 Article type Research article Submission date 2 April 2014 Acceptance date 14 July 2014 Article URL http://www.biomedcentral.com/1471-2148/14/1/160 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © Wilts et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Pigmentary and -
Lepidoptera: Papilionidae: Parides) Bodo D Wilts1,2*, Natasja Ijbema1,3 and Doekele G Stavenga1
Wilts et al. BMC Evolutionary Biology 2014, 14:160 http://www.biomedcentral.com/1471-2148/14/160 RESEARCH ARTICLE Open Access Pigmentary and photonic coloration mechanisms reveal taxonomic relationships of the Cattlehearts (Lepidoptera: Papilionidae: Parides) Bodo D Wilts1,2*, Natasja IJbema1,3 and Doekele G Stavenga1 Abstract Background: The colorful wing patterns of butterflies, a prime example of biodiversity, can change dramatically within closely related species. Wing pattern diversity is specifically present among papilionid butterflies. Whether a correlation between color and the evolution of these butterflies exists so far remained unsolved. Results: We here investigate the Cattlehearts, Parides, a small Neotropical genus of papilionid butterflies with 36 members, the wings of which are marked by distinctly colored patches. By applying various physical techniques, we investigate the coloration toolkit of the wing scales. The wing scales contain two different, wavelength-selective absorbing pigments, causing pigmentary colorations. Scale ridges with multilayered lamellae, lumen multilayers or gyroid photonic crystals in the scale lumen create structural colors that are variously combined with these pigmentary colors. Conclusions: The pigmentary and structural traits strongly correlate with the taxonomical distribution of Parides species. The experimental findings add crucial insight into the evolution of butterfly wing scales and show the importance of morphological parameter mapping for butterfly phylogenetics. Keywords: Iridescence, -
Curriculum Vitae, October 26, 2020
H. López-Fernández, Curriculum Vitae, October 26, 2020 HERNÁN LÓPEZ-FERNÁNDEZ - CURRICULUM VITAE Department of Ecology and Evolutionary Biology and Program in the Environment, University of Michigan, 1105 N. University, Biological Sciences Building, Office 2014, Ann Arbor, MI 48109, USA Email: [email protected] - Phone: Office - (734) 764-4816 Web: https://sites.google.com/site/hlffishes/ Professional preparation: 2006 – 2007 - Postdoctoral Research Associate, Section of Ecology, Evolution and Systematic Biology, Texas A&M University. Postdoctoral advisors: Kirk O. Winemiller and Rodney L. Honeycutt. 2005 – 2006 - Postodoctoral Fellow, Section of Integrative Biology, University of Texas at Austin. Postdoctoral advisor: Daniel I. Bolnick. 2004 - Ph. D. Section of Ecology, Evolution and Systematic Biology, Texas A&M University. Dissertation Title: Phylogeny of geophagine cichlids from South America (Perciformes: Cichlidae). Kirk O. Winemiller and Rodney L. Honeycutt, Dissertation Co-Advisors. 1998 - Licenciate in Biology (B.S.). Universidad de Los Andes, Mérida, Venezuela. Major: Biology, Minor (Specialization): Animal Ecology. Professional appointments: 2020-2023 – Associate Chair for Collections, EEB Museum of Zoology and Herbarium, Department of Ecology and Evolutionary Biology, University of Michigan. 2019-2024 – Research Associate, Division of Ichthyology, Department of Natural History, Royal Ontario Museum, Toronto, Canada. 2019 – Affiliated Faculty, Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, USA.