Generalizations of the Kerr-Newman Solution

Total Page:16

File Type:pdf, Size:1020Kb

Generalizations of the Kerr-Newman Solution Generalizations of the Kerr-Newman solution Contents 1 Topics 663 1.1 ICRANetParticipants. 663 1.2 Ongoingcollaborations. 663 1.3 Students ............................... 663 2 Brief description 665 3 Introduction 667 4 Thegeneralstaticvacuumsolution 669 4.1 Line element and field equations . 669 4.2 Staticsolution ............................ 671 5 Stationary generalization 673 5.1 Ernst representation . 673 5.2 Representation as a nonlinear sigma model . 674 5.3 Representation as a generalized harmonic map . 676 5.4 Dimensional extension . 680 5.5 Thegeneralsolution ........................ 683 6 Static and slowly rotating stars in the weak-field approximation 687 6.1 Introduction ............................. 687 6.2 Slowly rotating stars in Newtonian gravity . 689 6.2.1 Coordinates ......................... 690 6.2.2 Spherical harmonics . 692 6.3 Physical properties of the model . 694 6.3.1 Mass and Central Density . 695 6.3.2 The Shape of the Star and Numerical Integration . 697 6.3.3 Ellipticity .......................... 699 6.3.4 Quadrupole Moment . 700 6.3.5 MomentofInertia . 700 6.4 Summary............................... 701 6.4.1 Thestaticcase........................ 702 6.4.2 The rotating case: l = 0Equations ............ 702 6.4.3 The rotating case: l = 2Equations ............ 703 6.5 Anexample:Whitedwarfs. 704 6.6 Conclusions ............................. 708 659 Contents 7 PropertiesoftheergoregionintheKerrspacetime 711 7.1 Introduction ............................. 711 7.2 Generalproperties ......................... 712 7.2.1 The black hole case (0 < a < M) ............. 713 7.2.2 The extreme black hole case (a = M) .......... 714 7.2.3 The naked singularity case (a > M) ........... 714 7.2.4 The equatorial plane . 714 7.2.5 Symmetries and Killing vectors . 715 7.2.6 The energetic inside the Kerr ergoregion . 716 7.2.7 The particle’s energy and effective potential . 717 7.2.8 Stability of circular orbits and notable radii . 718 7.2.9 Zero-energy particles . 722 7.3 Blackholes.............................. 723 7.3.1 The set BH I : a [0, a˜ ] ................. 723 − ∈ 1 7.3.2 The set BH II : a ]a˜ , a˜ ] ................ 727 − ∈ 1 2 7.3.3 The set BH III : a ]a˜ , M] ............... 729 − ∈ 2 7.3.4 Some final notes on the BH case ............ 729 − 7.4 Nakedsingularities . 730 7.4.1 The set NS I : a ]1, a˜ ] ................. 730 − ∈ 3 7.4.2 The set NS II : a ]a˜ , a˜ ] ................ 734 − ∈ 3 4 7.4.3 The set NS III : a ]a˜ , a˜ ] ............... 737 − ∈ 4 5 7.4.4 The set NS IV : a ]a˜ , +∞] .............. 737 − ∈ 5 7.5 Theextremeblackhole . 737 7.6 Thestaticlimit............................ 740 7.7 Summary of black holes and naked singularities . 742 7.8 Conclusions ............................. 745 8 Charged boson stars 749 8.1 Introduction ............................. 749 8.2 The Einstein-Maxwell-Klein-Gordon equations . 751 8.3 Charge, radius, mass and particle number . 754 8.4 Numericalintegration . 756 8.4.1 Klein-Gordon field and metric functions . 757 8.4.2 Mass, charge, radius and particle number . 760 8.5 Neutralbosonstars ......................... 768 8.6 Conclusions ............................. 772 9 A stationary q metric 781 − 9.1 Introduction ............................. 781 9.2 The q metricanditsproperties. 782 − 9.3 The rotating q metric ....................... 783 − 9.4 Conclusions ............................. 785 660 Contents 10 RepulsivegravityintheKerr-Newmanspacetime 787 10.1 Introduction ............................. 787 10.2 Theeffectivemass. 788 10.3 Curvature invariants and eigenvalues . 790 10.4 Naked singularities with black hole counterparts . 794 10.5 Final outlooks and perspectives . 800 Bibliography 803 661 1 Topics Generalizations of the Kerr-Newman solution • Properties of Kerr-Newman spacetimes • 1.1 ICRANet Participants Donato Bini • Andrea Geralico • Roy P. Kerr • Hernando Quevedo • Jorge A. Rueda • Remo Ruffini • 1.2 Ongoing collaborations Medeu Abishev (Kazakh National University - KazNU, Kazakhstan) • Kuantay Boshkayev (Kazakh National University - KazNU, Kazakhstan) • Calixto Gutierrez (University of Bolivar, Colombia) • Cesar´ S. Lopez-Monsalvo´ (UNAM, Mexico) • Orlando Luongo (University of Naples, Italy) • Daniela Pugliese (Silesian University in Opava, Czech Republic) • 1.3 Students Saken Toktarbay (KazNU PhD, Kazakhstan) • Viridiana Pineda (UNAM PhD, Mexico) • Pedro Sanchez´ (UNAM PhD, Mexico) • 663 2 Brief description One of the most important metrics in general relativity is the Kerr-Newman solution that describes the gravitational and electromagnetic fields of a rotat- ing charged mass. For astrophysical purposes, however, it is necessary to take into account the effects due to the moment of inertia of the object. To attack this problem we have derived exact solutions of Einstein-Maxwell equations which posses an infinite set of gravitational and electromagnetic multipole moments. Several analysis have been performed that investigate the physi- cal effects generated by a rotating deformed mass distribution in which the angular momentum and the quadrupole determine the dominant multipole moments. In this connection, we propose an approximate method based upon the Hartle formalism to study slowly rotating stars in hydrostatic equilibrium in the framework of Newtonian gravity. All the relevant quantities are con- sidered up to the second order in the angular velocity. It is shown that the gravitational equilibrium conditions reduce to a system of ordinary differen- tial equations which can be integrated numerically. Moreover, we find ex- plicitly the total mass of rotating configurations, the moment of inertia, the quadrupole moment, the eccentricity and the equation that relates the mass and the central density of the rotating body. We also investigate in detail the circular motion of test particles on the equatorial plane of the ergoregion in the Kerr spacetime. We find all the regions inside the ergoregion where circular motion is allowed, and ana- lyze their stability properties and the energy and angular momentum of the test particles. We show that the structure of the stability regions has def- inite features that make it possible to distinguish between black holes and naked singularities. The naked singularity case presents a very structured non-connected regions of orbital stability. The properties of the circular or- bits turn out to be so distinctive that they allow the introduction of a complete classification of Kerr spacetimes, each class of which is characterized by dif- ferent physical effects that could be of particular relevance in observational astrophysics. The presence of counterrotating particles and zero angular mo- mentum particles inside the ergoregion of a specific class of naked singulari- ties is interpreted as due to the presence of a repulsive field generated by the central source of gravity. In an attempt to include an arbitrary quadrupole into the Kerr spacetime, we derive a stationary generalization of the static q metric, the simplest gen- eralization of the Schwarzschild solution that contains− a quadrupole param- 665 2 Brief description eter. It possesses three independent parameters that are related to the mass, quadrupole moment and angular momentum. We investigate the geometric and physical properties of this exact solution of Einstein’s vacuum equations, and show that it can be used to describe the exterior gravitational field of ro- tating, axially symmetric, compact objects. To understand the physical properties of the Reissner-Nordstron spacetime in the presence of a scalar field, we study time-independent, spherically sym- metric, self-gravitating systems minimally coupled to a scalar field with U(1) gauge symmetry: charged boson stars. We find numerical solutions to the Einstein-Maxwell equations coupled to the relativistic Klein-Gordon equa- tion. It is shown that bound stable configurations exist only for values of the coupling constant less than or equal to a certain critical value. The metric coefficients and the relevant physical quantities such as the total mass and charge, turn out to be in general bound functions of the radial coordinate, reaching their maximum values at a critical value of the scalar field at the origin. We discuss the stability problem both from the quantitative and qual- itative point of view. We take into account the electromagnetic contribution to the total mass, and investigate the stability issue considering the binding energy per particle. We verify the existence of configurations with positive binding energy in which objects that are apparently bound can be unstable against small perturbations, in full analogy with the effect observed in the mass-radius relation of neutron stars. An interesting physical effect that has been found in Kerr-Newman space- times is that test particles under certain circumstance experience a repulsive force in a region close to the horizons. Repulsive gravity has been investi- gated in several scenarios near compact objects by using different intuitive approaches. Here, we propose an invariant method to characterize regions of repulsive gravity, associated to black holes and naked singularities. Our method is based upon the behavior of the curvature tensor eigenvalues, and leads to an invariant definition of a repulsion radius. The repulsion radius determines a physical region, which can be interpreted as a repulsion sphere, where the effects due to repulsive gravity naturally arise. Further, we show that the use of effective masses to characterize repulsion regions can
Recommended publications
  • A Mathematical Derivation of the General Relativistic Schwarzschild
    A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components .................
    [Show full text]
  • Schwarzschild Solution to Einstein's General Relativity
    Schwarzschild Solution to Einstein's General Relativity Carson Blinn May 17, 2017 Contents 1 Introduction 1 1.1 Tensor Notations . .1 1.2 Manifolds . .2 2 Lorentz Transformations 4 2.1 Characteristic equations . .4 2.2 Minkowski Space . .6 3 Derivation of the Einstein Field Equations 7 3.1 Calculus of Variations . .7 3.2 Einstein-Hilbert Action . .9 3.3 Calculation of the Variation of the Ricci Tenosr and Scalar . 10 3.4 The Einstein Equations . 11 4 Derivation of Schwarzschild Metric 12 4.1 Assumptions . 12 4.2 Deriving the Christoffel Symbols . 12 4.3 The Ricci Tensor . 15 4.4 The Ricci Scalar . 19 4.5 Substituting into the Einstein Equations . 19 4.6 Solving and substituting into the metric . 20 5 Conclusion 21 References 22 Abstract This paper is intended as a very brief review of General Relativity for those who do not want to skimp on the details of the mathemat- ics behind how the theory works. This paper mainly uses [2], [3], [4], and [6] as a basis, and in addition contains short references to more in-depth references such as [1], [5], [7], and [8] when more depth was needed. With an introduction to manifolds and notation, special rel- ativity can be constructed which are the relativistic equations of flat space-time. After flat space-time, the Lagrangian and calculus of vari- ations will be introduced to construct the Einstein-Hilbert action to derive the Einstein field equations. With the field equations at hand the Schwarzschild equation will fall out with a few assumptions.
    [Show full text]
  • The Schwarzschild Metric and Applications 1
    The Schwarzschild Metric and Applications 1 Analytic solutions of Einstein's equations are hard to come by. It's easier in situations that e hibit symmetries. 1916: Karl Schwarzschild sought the metric describing the static, spherically symmetric spacetime surrounding a spherically symmetric mass distribution. A static spacetime is one for which there exists a time coordinate t such that i' all the components of g are independent of t ii' the line element ds( is invariant under the transformation t -t A spacetime that satis+es (i) but not (ii' is called stationary. An example is a rotating azimuthally symmetric mass distribution. The metric for a static spacetime has the form where xi are the spatial coordinates and dl( is a time*independent spatial metric. -ross-terms dt dxi are missing because their presence would violate condition (ii'. 23ote: The Kerr metric, which describes the spacetime outside a rotating ( axisymmetric mass distribution, contains a term ∝ dt d.] To preser)e spherical symmetry& dl( can be distorted from the flat-space metric only in the radial direction. In 5at space, (1) r is the distance from the origin and (2) 6r( is the area of a sphere. Let's de+ne r such that (2) remains true but (1) can be violated. Then, A,xi' A,r) in cases of spherical symmetry. The Ricci tensor for this metric is diagonal, with components S/ 10.1 /rimes denote differentiation with respect to r. The region outside the spherically symmetric mass distribution is empty. 9 The vacuum Einstein equations are R = 0. To find A,r' and B,r'# (.
    [Show full text]
  • Spacetimes with Singularities Ovidiu Cristinel Stoica
    Spacetimes with Singularities Ovidiu Cristinel Stoica To cite this version: Ovidiu Cristinel Stoica. Spacetimes with Singularities. An. Stiint. Univ. Ovidius Constanta, Ser. Mat., 2012, pp.26. hal-00617027v2 HAL Id: hal-00617027 https://hal.archives-ouvertes.fr/hal-00617027v2 Submitted on 30 Nov 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Spacetimes with Singularities ∗†‡ Ovidiu-Cristinel Stoica Abstract We report on some advances made in the problem of singularities in general relativity. First is introduced the singular semi-Riemannian geometry for met- rics which can change their signature (in particular be degenerate). The standard operations like covariant contraction, covariant derivative, and constructions like the Riemann curvature are usually prohibited by the fact that the metric is not invertible. The things become even worse at the points where the signature changes. We show that we can still do many of these operations, in a different framework which we propose. This allows the writing of an equivalent form of Einstein’s equation, which works for degenerate metric too. Once we make the singularities manageable from mathematical view- point, we can extend analytically the black hole solutions and then choose from the maximal extensions globally hyperbolic regions.
    [Show full text]
  • Embeddings and Time Evolution of the Schwarzschild Wormhole
    Embeddings and time evolution of the Schwarzschild wormhole Peter Collasa) Department of Physics and Astronomy, California State University, Northridge, Northridge, California 91330-8268 David Kleinb) Department of Mathematics and Interdisciplinary Research Institute for the Sciences, California State University, Northridge, Northridge, California 91330-8313 (Received 26 July 2011; accepted 7 December 2011) We show how to embed spacelike slices of the Schwarzschild wormhole (or Einstein-Rosen bridge) in R3. Graphical images of embeddings are given, including depictions of the dynamics of this nontraversable wormhole at constant Kruskal times up to and beyond the “pinching off” at Kruskal times 61. VC 2012 American Association of Physics Teachers. [DOI: 10.1119/1.3672848] I. INTRODUCTION because the flow of time is toward r 0. Therefore, to under- stand the dynamics of the Einstein-Rosen¼ bridge or Schwarzs- 1 Schwarzschild’s 1916 solution of the Einstein field equa- child wormhole, we require a spacetime that includes not tions is perhaps the most well known of the exact solutions. only the two asymptotically flat regions associated with In polar coordinates, the line element for a mass m is Eq. (2) but also the region near r 0. For this purpose, the maximal¼ extension of Schwarzschild 1 2m 2m À spacetime by Kruskal7 and Szekeres,8 along with their global ds2 1 dt2 1 dr2 ¼À À r þ À r coordinate system,9 plays an important role. The maximal extension includes not only the interior and exterior of the r2 dh2 sin2 hd/2 ; (1) þ ð þ Þ Schwarzschild black hole [covered by the coordinates of Eq.
    [Show full text]
  • Generalizations of the Kerr-Newman Solution
    Generalizations of the Kerr-Newman solution Contents 1 Topics 1035 1.1 ICRANetParticipants. 1035 1.2 Ongoingcollaborations. 1035 1.3 Students ............................... 1035 2 Brief description 1037 3 Introduction 1039 4 Thegeneralstaticvacuumsolution 1041 4.1 Line element and field equations . 1041 4.2 Staticsolution ............................ 1043 5 Stationary generalization 1045 5.1 Ernst representation . 1045 5.2 Representation as a nonlinear sigma model . 1046 5.3 Representation as a generalized harmonic map . 1048 5.4 Dimensional extension . 1052 5.5 Thegeneralsolution . 1055 6 Tidal indicators in the spacetime of a rotating deformed mass 1059 6.1 Introduction ............................. 1059 6.2 The gravitational field of a rotating deformed mass . 1060 6.2.1 Limitingcases. 1062 6.3 Circularorbitsonthesymmetryplane . 1064 6.4 Tidalindicators ........................... 1065 6.4.1 Super-energy density and super-Poynting vector . 1067 6.4.2 Discussion.......................... 1068 6.4.3 Limit of slow rotation and small deformation . 1069 6.5 Multipole moments, tidal Love numbers and Post-Newtonian theory................................. 1076 6.6 Concludingremarks . 1077 7 Neutrino oscillations in the field of a rotating deformed mass 1081 7.1 Introduction ............................. 1081 7.2 Stationary axisymmetric spacetimes and neutrino oscillation . 1082 7.2.1 Geodesics .......................... 1083 1033 Contents 7.2.2 Neutrinooscillations . 1084 7.3 Neutrino oscillations in the Hartle-Thorne metric . 1085 7.4 Concludingremarks . 1088 8 Gravitational field of compact objects in general relativity 1091 8.1 Introduction ............................. 1091 8.2 The Hartle-Thorne metrics . 1094 8.2.1 The interior solution . 1094 8.2.2 The Exterior Solution . 1096 8.3 The Fock’s approach . 1097 8.3.1 The interior solution .
    [Show full text]
  • Singularities, Black Holes, and Cosmic Censorship: a Tribute to Roger Penrose
    Foundations of Physics (2021) 51:42 https://doi.org/10.1007/s10701-021-00432-1 INVITED REVIEW Singularities, Black Holes, and Cosmic Censorship: A Tribute to Roger Penrose Klaas Landsman1 Received: 8 January 2021 / Accepted: 25 January 2021 © The Author(s) 2021 Abstract In the light of his recent (and fully deserved) Nobel Prize, this pedagogical paper draws attention to a fundamental tension that drove Penrose’s work on general rela- tivity. His 1965 singularity theorem (for which he got the prize) does not in fact imply the existence of black holes (even if its assumptions are met). Similarly, his versatile defnition of a singular space–time does not match the generally accepted defnition of a black hole (derived from his concept of null infnity). To overcome this, Penrose launched his cosmic censorship conjecture(s), whose evolution we discuss. In particular, we review both his own (mature) formulation and its later, inequivalent reformulation in the PDE literature. As a compromise, one might say that in “generic” or “physically reasonable” space–times, weak cosmic censorship postulates the appearance and stability of event horizons, whereas strong cosmic censorship asks for the instability and ensuing disappearance of Cauchy horizons. As an encore, an “Appendix” by Erik Curiel reviews the early history of the defni- tion of a black hole. Keywords General relativity · Roger Penrose · Black holes · Ccosmic censorship * Klaas Landsman [email protected] 1 Department of Mathematics, Radboud University, Nijmegen, The Netherlands Vol.:(0123456789)1 3 42 Page 2 of 38 Foundations of Physics (2021) 51:42 Conformal diagram [146, p. 208, Fig.
    [Show full text]
  • Weyl Metrics and Wormholes
    Prepared for submission to JCAP Weyl metrics and wormholes Gary W. Gibbons,a;b Mikhail S. Volkovb;c aDAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK bLaboratoire de Math´ematiqueset Physique Th´eorique,LMPT CNRS { UMR 7350, Universit´ede Tours, Parc de Grandmont, 37200 Tours, France cDepartment of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya street 18, 420008 Kazan, Russia E-mail: [email protected], [email protected] Abstract. We study solutions obtained via applying dualities and complexifications to the vacuum Weyl metrics generated by massive rods and by point masses. Rescal- ing them and extending to complex parameter values yields axially symmetric vacuum solutions containing singularities along circles that can be viewed as singular mat- ter sources. These solutions have wormhole topology with several asymptotic regions interconnected by throats and their sources can be viewed as thin rings of negative tension encircling the throats. For a particular value of the ring tension the geometry becomes exactly flat although the topology remains non-trivial, so that the rings liter- ally produce holes in flat space. To create a single ring wormhole of one metre radius one needs a negative energy equivalent to the mass of Jupiter. Further duality trans- formations dress the rings with the scalar field, either conventional or phantom. This gives rise to large classes of static, axially symmetric solutions, presumably including all previously known solutions for a gravity-coupled massless scalar field, as for exam- ple the spherically symmetric Bronnikov-Ellis wormholes with phantom scalar. The multi-wormholes contain infinite struts everywhere at the symmetry axes, apart from arXiv:1701.05533v3 [hep-th] 25 May 2017 solutions with locally flat geometry.
    [Show full text]
  • 5 Schwarzschild Metric 1 Rµν − Gµνr = Gµν = Κt Μν 2 Where 1 Gµν = Rµν − Gµνr 2 Einstein Thought It Would Never Be Solved
    5 Schwarzschild metric 1 Rµν − gµνR = Gµν = κT µν 2 where 1 Gµν = Rµν − gµνR 2 Einstein thought it would never be solved. His equation is a second order tensor equation - so represents 16 separate equations! Though the symmetry properties means there are ’only’ 10 independent equations!! But the way to solve it is not in full generality, but to pick a real physical situation we want to represent. The simplest is static curved spacetime round a spherically symmetric mass while the rest of spacetime is empty. Schwarzchild did this by guessing the form the metric should have c2dτ 2 = A(r)c2dt2 − B(r)dr2 − r2dθ2 − r2 sin2 θdφ2 so the gµν are not functions of t - field is static. And spherically symmetric as surfaces with r, t constant have ds2 = r2(dθ2 + sin2θdφ2). Then we can form the Lagrangian and write down the Euler lagrange equations. Then by comparision with the geodesic equations we get the Christoffel symbols in terms of the unknown functions A and B and their radial derivatives dA/dr = A′ and dB/dr = B′. We can use these to form the Ricci tensor components as this is just defined from the christoffel sym- bols and their derivatives. And for EMPTY spacetime then Rµν = 0 NB just because the Ricci tensor is zero DOES NOT means that the Riemann curvature tensor components are zero (ie no curvature)!! Setting Rνµ = 0 means that the equations are slightly easier to solve when recast into the alternative form 1 Rαβ = κ(T αβ − gαβT ) 2 empty space means all the RHS is zero, so we do simply solve for Rαβ = 0.
    [Show full text]
  • PHY390, the Kerr Metric and Black Holes
    PHY390, The Kerr Metric and Black Holes James Lattimer Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University April 1, 2021 Black Holes, Neutron Stars and Gravitational Radiation [email protected] James Lattimer PHY390, The Kerr Metric and Black Holes What Exactly is a Black Hole? Standard definition: A region of space from which nothing, not even light, can escape. I Where does the escape velocity equal the speed of light? r 2GMBH vesc = = c RSch This defines the Schwarzschild radius RSch to be 2GMBH M RSch = 2 ' 3 km c M I The event horizon marks the point of no return for any object. I A black hole is black because it absorbs everything incident on the event horizon and reflects nothing. I Black holes are hypothesized to form in three ways: I Gravitational collapse of a star I A high energy collision I Density fluctuations in the early universe I In general relativity, the black hole's mass is concentrated at the center in a singularity of infinite density. James Lattimer PHY390, The Kerr Metric and Black Holes John Michell and Black Holes The first reference is by the Anglican priest, John Michell (1724-1793), in a letter written to Henry Cavendish, of the Royal Society, in 1783. He reasoned, from observations of radiation pressure, that light, like mass, has inertia. If gravity affects light like its mass equivalent, light would be weakened. He argued that a Sun with 500 times its radius and the same density would be so massive that it's escape velocity would exceed light speed.
    [Show full text]
  • Complex Structures in the Dynamics of Kerr Black Holes
    Complex structures in the dynamics of Kerr black holes Ben Maybee [email protected] Higgs Centre for Theoretical Physics, The University of Edinburgh YTF 20, e-Durham In a certain film… Help! I need to precisely scatter off a spinning black hole and reach a life supporting planet… Spinning black holes are very special…maybe some insight will simplify things? Christopher Nolan and Warner Bros Pictures, 2013 In a certain film… Okay, you’re good with spin; what should I try? Black holes are easy; the spin vector 푎휇 determines all multipoles. Try using the Newman- Janis shift… Hansen, 1974 Outline 1. The Newman-Janis shift 2. Kerr black holes as elementary particles? 3. Effective actions and complex worldsheets 4. Spinor equations of motion 5. Discussion The Newman-Janis shift Simple statement: Kerr metric, with spin parameter 푎, can be Newman & obtained from Schwarzschild by complex Janis, 1965 transformation 푧 → 푧 + 푖푎 Kerr and Schwarzschild are both exact Kerr-Schild solutions to GR: Kerr & Schild, 1965 Background metric Null vector, Scalar function Classical double copy: ∃ gauge theory solution Monteiro, O’Connell & White, 2014 → EM analogue of Kerr: Kerr! The Newman-Janis shift Metrics: Under 푧 → 푧 + 푖푎, 푟2 → 푟ǁ + 푖푎 cos 휃 2. Why did that just happen??? Scattering amplitudes and spin No hair theorem → all black hole multipoles specified by Hansen, 1974 mass and spin vector. Wigner classification → single particle Wigner, states specified by mass and spin s. 1939 Little group irreps Any state in a little group irrep can be represented using chiral spinor- helicity variables: Distinct spinor reps Arkani-Hamed, Huang & Huang, 2017 Little group metric Massless: 푈(1) → 훿푖푗 2-spinors Massive: 푆푈 2 → 휖푗푖 3-point exponentiation Use to calculate amplitudes for any spin s: Chiral Spin = parameter e.g.
    [Show full text]
  • The Singular Perturbation in the Analysis of Mode I Fracture
    Available at Applications and Applied http://pvamu.edu/aam Mathematics: Appl. Appl. Math. ISSN: 1932-9466 An International Journal (AAM) Vol. 9, Issue 1 (June 2014), pp. 260-271 Evaluation of Schwarz Child’s Exterior and Interior Solutions in Bimetric Theory of Gravitation M. S. Borkar* Post Graduate Department of Mathematics Mahatma Jyotiba Phule Educational Campus R T M Nagpur University Nagpur – 440 033 (India) [email protected] P. V. Gayakwad Project Fellow under Major Research Project R T M Nagpur University Nagpur – 440 033 (India) [email protected] *Corresponding author Received: May 29, 2013; Accepted: February 6, 2014 Abstract In this note, we have investigated Schwarz child’s exterior and interior solutions in bimetric theory of gravitation by solving Rosen’s field equations and concluded that the physical singularities at r 0 and at r 2M do not appear in our solution. We have ruled out the discrepancies between physical singularity and mathematical singularity at r 2M and proved that the Schwarzschild exterior solution is always regular and does not break-down at r 2M. Further, we observe that the red shift of light in our model is much stronger than that of Schwarz child’s solution in general relativity and other geometrical and physical aspects are studied. Keywords: Relativity and gravitational theory; Space-time singularities MSC (2010) No.: 83C15, 83C75 260 AAM: Intern. J., Vol. 9, Issue 1 (June 2014) 261 1. Introduction Shortly after Einstein (1915) published his field equations of general theory of relativity, Schwarzschild (1916) solved the first and still the most important exact solution of the Einstein vacuum field equations which represents the field outside a spherical symmetric mass in otherwise empty space.
    [Show full text]