Black Holes from a to Z
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Mathematical Derivation of the General Relativistic Schwarzschild
A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components ................. -
Universal Thermodynamics in the Context of Dynamical Black Hole
universe Article Universal Thermodynamics in the Context of Dynamical Black Hole Sudipto Bhattacharjee and Subenoy Chakraborty * Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal, India; [email protected] * Correspondence: [email protected] Received: 27 April 2018; Accepted: 22 June 2018; Published: 1 July 2018 Abstract: The present work is a brief review of the development of dynamical black holes from the geometric point view. Furthermore, in this context, universal thermodynamics in the FLRW model has been analyzed using the notion of the Kodama vector. Finally, some general conclusions have been drawn. Keywords: dynamical black hole; trapped surfaces; universal thermodynamics; unified first law 1. Introduction A black hole is a region of space-time from which all future directed null geodesics fail to reach the future null infinity I+. More specifically, the black hole region B of the space-time manifold M is the set of all events P that do not belong to the causal past of future null infinity, i.e., B = M − J−(I+). (1) Here, J−(I+) denotes the causal past of I+, i.e., it is the set of all points that causally precede I+. The boundary of the black hole region is termed as the event horizon (H), H = ¶B = ¶(J−(I+)). (2) A cross-section of the horizon is a 2D surface H(S) obtained by intersecting the event horizon with a space-like hypersurface S. As event the horizon is a causal boundary, it must be a null hypersurface generated by null geodesics that have no future end points. In the black hole region, there are trapped surfaces that are closed 2-surfaces (S) such that both ingoing and outgoing congruences of null geodesics are orthogonal to S, and the expansion scalar is negative everywhere on S. -
Arxiv:2010.09481V1 [Gr-Qc] 19 Oct 2020 Ally Neutral Plasma Start to Be Relevant
Radiative Penrose process: Energy Gain by a Single Radiating Charged Particle in the Ergosphere of Rotating Black Hole Martin Koloˇs, Arman Tursunov, and ZdenˇekStuchl´ık Research Centre for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava, Bezruˇcovon´am.13,CZ-74601 Opava, Czech Republic∗ We demonstrate an extraordinary effect of energy gain by a single radiating charged particle inside the ergosphere of a Kerr black hole in presence of magnetic field. We solve numerically the covariant form of the Lorentz-Dirac equation reduced from the DeWitt-Brehme equation and analyze energy evolution of the radiating charged particle inside the ergosphere, where the energy of emitted radiation can be negative with respect to a distant observer in dependence on the relative orientation of the magnetic field, black hole spin and the direction of the charged particle motion. Consequently, the charged particle can leave the ergosphere with energy greater than initial in expense of black hole's rotational energy. In contrast to the original Penrose process and its various modification, the new process does not require the interactions (collisions or decay) with other particles and consequent restrictions on the relative velocities between fragments. We show that such a Radiative Penrose effect is potentially observable and discuss its possible relevance in formation of relativistic jets and in similar high-energy astrophysical settings. INTRODUCTION KERR SPACETIME AND EXTERNAL MAGNETIC FIELD The fundamental role of combined strong gravitational The Kerr metric in the Boyer{Lindquist coordinates and magnetic fields for processes around BH has been and geometric units (G = 1 = c) reads proposed in [1, 2]. -
Dynamics of the Four Kinds of Trapping Horizons & Existence of Hawking
Dynamics of the four kinds of Trapping Horizons & Existence of Hawking Radiation Alexis Helou1 AstroParticule et Cosmologie, Universit´eParis Diderot, CNRS, CEA, Observatoire de Paris, Sorbonne Paris Cit´e Bˆatiment Condorcet, 10, rue Alice Domon et L´eonieDuquet, F-75205 Paris Cedex 13, France Abstract We work with the notion of apparent/trapping horizons for spherically symmetric, dynamical spacetimes: these are quasi-locally defined, simply based on the behaviour of congruence of light rays. We show that the sign of the dynamical Hayward-Kodama surface gravity is dictated by the in- ner/outer nature of the horizon. Using the tunneling method to compute Hawking Radiation, this surface gravity is then linked to a notion of temper- ature, up to a sign that is dictated by the future/past nature of the horizon. Therefore two sign effects are conspiring to give a positive temperature for the black hole case and the expanding cosmology, whereas the same quantity is negative for white holes and contracting cosmologies. This is consistent with the fact that, in the latter cases, the horizon does not act as a separating membrane, and Hawking emission should not occur. arXiv:1505.07371v1 [gr-qc] 27 May 2015 [email protected] Contents 1 Introduction 1 2 Foreword 2 3 Past Horizons: Retarded Eddington-Finkelstein metric 4 4 Future Horizons: Advanced Eddington-Finkelstein metric 10 5 Hawking Radiation from Tunneling 12 6 The four kinds of apparent/trapping horizons, and feasibility of Hawking radiation 14 6.1 Future-outer trapping horizon: black holes . 15 6.2 Past-inner trapping horizon: expanding cosmology . -
Stephen Hawking: 'There Are No Black Holes' Notion of an 'Event Horizon', from Which Nothing Can Escape, Is Incompatible with Quantum Theory, Physicist Claims
NATURE | NEWS Stephen Hawking: 'There are no black holes' Notion of an 'event horizon', from which nothing can escape, is incompatible with quantum theory, physicist claims. Zeeya Merali 24 January 2014 Artist's impression VICTOR HABBICK VISIONS/SPL/Getty The defining characteristic of a black hole may have to give, if the two pillars of modern physics — general relativity and quantum theory — are both correct. Most physicists foolhardy enough to write a paper claiming that “there are no black holes” — at least not in the sense we usually imagine — would probably be dismissed as cranks. But when the call to redefine these cosmic crunchers comes from Stephen Hawking, it’s worth taking notice. In a paper posted online, the physicist, based at the University of Cambridge, UK, and one of the creators of modern black-hole theory, does away with the notion of an event horizon, the invisible boundary thought to shroud every black hole, beyond which nothing, not even light, can escape. In its stead, Hawking’s radical proposal is a much more benign “apparent horizon”, “There is no escape from which only temporarily holds matter and energy prisoner before eventually a black hole in classical releasing them, albeit in a more garbled form. theory, but quantum theory enables energy “There is no escape from a black hole in classical theory,” Hawking told Nature. Peter van den Berg/Photoshot and information to Quantum theory, however, “enables energy and information to escape from a escape.” black hole”. A full explanation of the process, the physicist admits, would require a theory that successfully merges gravity with the other fundamental forces of nature. -
Energetics of the Kerr-Newman Black Hole by the Penrose Process
J. Astrophys. Astr. (1985) 6, 85 –100 Energetics of the Kerr-Newman Black Hole by the Penrose Process Manjiri Bhat, Sanjeev Dhurandhar & Naresh Dadhich Department of Mathematics, University of Poona, Pune 411 007 Received 1984 September 20; accepted 1985 January 10 Abstract. We have studied in detail the energetics of Kerr–Newman black hole by the Penrose process using charged particles. It turns out that the presence of electromagnetic field offers very favourable conditions for energy extraction by allowing for a region with enlarged negative energy states much beyond r = 2M, and higher negative values for energy. However, when uncharged particles are involved, the efficiency of the process (defined as the gain in energy/input energy) gets reduced by the presence of charge on the black hole in comparison with the maximum efficiency limit of 20.7 per cent for the Kerr black hole. This fact is overwhelmingly compensated when charged particles are involved as there exists virtually no upper bound on the efficiency. A specific example of over 100 per cent efficiency is given. Key words: black hole energetics—Kerr-Newman black hole—Penrose process—energy extraction 1. Introduction The problem of powering active galactic nuclei, X-raybinaries and quasars is one of the most important problems today in high energy astrophysics. Several mechanisms have been proposed by various authors (Abramowicz, Calvani & Nobili 1983; Rees et al., 1982; Koztowski, Jaroszynski & Abramowicz 1978; Shakura & Sunyaev 1973; for an excellent review see Pringle 1981). Rees et al. (1982) argue that the electromagnetic extraction of black hole’s rotational energy can be achieved by appropriately putting charged particles in negative energy orbits. -
The Penrose and Hawking Singularity Theorems Revisited
Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook The Penrose and Hawking Singularity Theorems revisited Roland Steinbauer Faculty of Mathematics, University of Vienna Prague, October 2016 The Penrose and Hawking Singularity Theorems revisited 1 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Overview Long-term project on Lorentzian geometry and general relativity with metrics of low regularity jointly with `theoretical branch' (Vienna & U.K.): Melanie Graf, James Grant, G¨untherH¨ormann,Mike Kunzinger, Clemens S¨amann,James Vickers `exact solutions branch' (Vienna & Prague): Jiˇr´ıPodolsk´y,Clemens S¨amann,Robert Svarcˇ The Penrose and Hawking Singularity Theorems revisited 2 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Contents 1 The classical singularity theorems 2 Interlude: Low regularity in GR 3 The low regularity singularity theorems 4 Key issues of the proofs 5 Outlook The Penrose and Hawking Singularity Theorems revisited 3 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Table of Contents 1 The classical singularity theorems 2 Interlude: Low regularity in GR 3 The low regularity singularity theorems 4 Key issues of the proofs 5 Outlook The Penrose and Hawking Singularity Theorems revisited 4 / 27 Theorem (Pattern singularity theorem [Senovilla, 98]) In a spacetime the following are incompatible (i) Energy condition (iii) Initial or boundary condition (ii) Causality condition (iv) Causal geodesic completeness (iii) initial condition ; causal geodesics start focussing (i) energy condition ; focussing goes on ; focal point (ii) causality condition ; no focal points way out: one causal geodesic has to be incomplete, i.e., : (iv) Classical singularity thms. -
The Large Scale Universe As a Quasi Quantum White Hole
International Astronomy and Astrophysics Research Journal 3(1): 22-42, 2021; Article no.IAARJ.66092 The Large Scale Universe as a Quasi Quantum White Hole U. V. S. Seshavatharam1*, Eugene Terry Tatum2 and S. Lakshminarayana3 1Honorary Faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India. 2760 Campbell Ln. Ste 106 #161, Bowling Green, KY, USA. 3Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India. Authors’ contributions This work was carried out in collaboration among all authors. Author UVSS designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors ETT and SL managed the analyses of the study. All authors read and approved the final manuscript. Article Information Editor(s): (1) Dr. David Garrison, University of Houston-Clear Lake, USA. (2) Professor. Hadia Hassan Selim, National Research Institute of Astronomy and Geophysics, Egypt. Reviewers: (1) Abhishek Kumar Singh, Magadh University, India. (2) Mohsen Lutephy, Azad Islamic university (IAU), Iran. (3) Sie Long Kek, Universiti Tun Hussein Onn Malaysia, Malaysia. (4) N.V.Krishna Prasad, GITAM University, India. (5) Maryam Roushan, University of Mazandaran, Iran. Complete Peer review History: http://www.sdiarticle4.com/review-history/66092 Received 17 January 2021 Original Research Article Accepted 23 March 2021 Published 01 April 2021 ABSTRACT We emphasize the point that, standard model of cosmology is basically a model of classical general relativity and it seems inevitable to have a revision with reference to quantum model of cosmology. Utmost important point to be noted is that, ‘Spin’ is a basic property of quantum mechanics and ‘rotation’ is a very common experience. -
4. Kruskal Coordinates and Penrose Diagrams
4. Kruskal Coordinates and Penrose Diagrams. 4.1. Removing a coordinate Singularity at the Schwarzschild Radius. The Schwarzschild metric has a singularity at r = rS where g 00 → 0 and g11 → ∞ . However, we have already seen that a free falling observer acknowledges a smooth motion without any peculiarity when he passes the horizon. This suggests that the behaviour at the Schwarzschild radius is only a coordinate singularity which can be removed by using another more appropriate coordinate system. This is in GR always possible provided the transformation is smooth and differentiable, a consequence of the diffeomorphism of the spacetime manifold. Instead of the 4-dimensional Schwarzschild metric we study a 2-dimensional t,r-version. The spherical symmetry of the Schwarzschild BH guaranties that we do not loose generality. −1 ⎛ r ⎞ ⎛ r ⎞ ds 2 = ⎜1− S ⎟ dt 2 − ⎜1− S ⎟ dr 2 (4.1) ⎝ r ⎠ ⎝ r ⎠ To describe outgoing and ingoing null geodesics we divide through dλ2 and set ds 2 = 0. −1 ⎛ rS ⎞ 2 ⎛ rS ⎞ 2 ⎜1− ⎟t& − ⎜1− ⎟ r& = 0 (4.2) ⎝ r ⎠ ⎝ r ⎠ or rewritten 2 −2 ⎛ dt ⎞ ⎛ r ⎞ ⎜ ⎟ = ⎜1− S ⎟ (4.3) ⎝ dr ⎠ ⎝ r ⎠ Note that the angle of the light cone in t,r-coordinate.decreases when r approaches rS After integration the outgoing and ingoing null geodesics of Schwarzschild satisfy t = ± r * +const. (4.4) r * is called “tortoise coordinate” and defined by ⎛ r ⎞ ⎜ ⎟ r* = r + rS ln⎜ −1⎟ (4.5) ⎝ rS ⎠ −1 dr * ⎛ r ⎞ so that = ⎜1− S ⎟ . (4.6) dr ⎝ r ⎠ As r ranges from rS to ∞, r* goes from -∞ to +∞. We introduce the null coordinates u,υ which have the direction of null geodesics by υ = t + r * and u = t − r * (4.7) From (4.7) we obtain 1 dt = ()dυ + du (4.8) 2 and from (4.6) 28 ⎛ r ⎞ 1 ⎛ r ⎞ dr = ⎜1− S ⎟dr* = ⎜1− S ⎟()dυ − du (4.9) ⎝ r ⎠ 2 ⎝ r ⎠ Inserting (4.8) and (4.9) in (4.1) we find ⎛ r ⎞ 2 ⎜ S ⎟ ds = ⎜1− ⎟ dudυ (4.10) ⎝ r ⎠ Fig. -
Quantum-Corrected Rotating Black Holes and Naked Singularities in (2 + 1) Dimensions
PHYSICAL REVIEW D 99, 104023 (2019) Quantum-corrected rotating black holes and naked singularities in (2 + 1) dimensions † ‡ Marc Casals,1,2,* Alessandro Fabbri,3, Cristián Martínez,4, and Jorge Zanelli4,§ 1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, CEP 22290-180, Brazil 2School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland 3Departamento de Física Teórica and IFIC, Universidad de Valencia-CSIC, C. Dr. Moliner 50, 46100 Burjassot, Spain 4Centro de Estudios Científicos (CECs), Arturo Prat 514, Valdivia 5110466, Chile (Received 15 February 2019; published 13 May 2019) We analytically investigate the perturbative effects of a quantum conformally coupled scalar field on rotating (2 þ 1)-dimensional black holes and naked singularities. In both cases we obtain the quantum- backreacted metric analytically. In the black hole case, we explore the quantum corrections on different regions of relevance for a rotating black hole geometry. We find that the quantum effects lead to a growth of both the event horizon and the ergosphere, as well as to a reduction of the angular velocity compared to their corresponding unperturbed values. Quantum corrections also give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the naked singularity case, quantum effects lead to the formation of a horizon that hides the conical defect, thus turning it into a black hole. The fact that these effects occur not only for static but also for spinning geometries makes a strong case for the role of quantum mechanics as a cosmic censor in Nature. -
New APS CEO: Jonathan Bagger APS Sends Letter to Biden Transition
Penrose’s Connecting students A year of Back Page: 02│ black hole proof 03│ and industry 04│ successful advocacy 08│ Bias in letters of recommendation January 2021 • Vol. 30, No. 1 aps.org/apsnews A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY GOVERNMENT AFFAIRS GOVERNANCE APS Sends Letter to Biden Transition Team Outlining New APS CEO: Jonathan Bagger Science Policy Priorities BY JONATHAN BAGGER BY TAWANDA W. JOHNSON Editor's note: In December, incoming APS CEO Jonathan Bagger met with PS has sent a letter to APS staff to introduce himself and President-elect Joe Biden’s answer questions. We asked him transition team, requesting A to prepare an edited version of his that he consider policy recom- introductory remarks for the entire mendations across six issue areas membership of APS. while calling for his administra- tion to “set a bold path to return the United States to its position t goes almost without saying of global leadership in science, that I am both excited and technology, and innovation.” I honored to be joining the Authored in December American Physical Society as its next CEO. I look forward to building by then-APS President Phil Jonathan Bagger Bucksbaum, the letter urges Biden matically improve the current state • Stimulus Support for Scientific on the many accomplishments of to consider recommendations in the of America’s scientific enterprise Community: Provide supple- my predecessor, Kate Kirby. But following areas: COVID-19 stimulus and put us on a trajectory to emerge mental funding of at least $26 before I speak about APS, I should back on track. -
Final Fate of a Massive Star
FINAL FATE OF A MASSIVE STAR Modern science has introduced the world to plenty of strange ideas, but surely one of the strangest is the fate of a massive star that has reached the end of its life. Having exhausted the fuel that sustained it for millions of years, the star is no longer able to hold itself up under its own weight, and it starts collapsing catastrophically. Modest stars like the sun also collapse but they stabilize again at a smaller size, whereas if a star is massive enough, its gravity overwhelms all the forces that might halt the collapse. From a size of Fig. 1 Black Hole (Artist’s conception) millions of kilometers across, the star crumples to a pinprick smaller than the dot on an “i.” What is the final fate of such massive collapsing stars? This is one of the most exciting questions in astrophysics and modern cosmology today. An amazing inter-play of the key forces of nature takes place here, including the gravity and quantum mechanics. This phenomenon may hold the key secrets to man’s search for a unified understanding of all forces of nature. It also may have most exciting connections and implications for astronomy and high energy astrophysics. This is an outstanding unresolved issue that excites physicists and the lay person alike. The story really began some eight decades ago when Subrahmanyan Fig. 2 An artist’s conception of Chandrasekhar probed the question of final fate of stars such as the Sun. He naked singularity showed that such a star, on exhausting its internal nuclear fuel, would stabilize as a `white dwarf', which is about a thousand kilometers in size.