The Penrose and Hawking Singularity Theorems Revisited

Total Page:16

File Type:pdf, Size:1020Kb

The Penrose and Hawking Singularity Theorems Revisited Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook The Penrose and Hawking Singularity Theorems revisited Roland Steinbauer Faculty of Mathematics, University of Vienna Prague, October 2016 The Penrose and Hawking Singularity Theorems revisited 1 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Overview Long-term project on Lorentzian geometry and general relativity with metrics of low regularity jointly with `theoretical branch' (Vienna & U.K.): Melanie Graf, James Grant, G¨untherH¨ormann,Mike Kunzinger, Clemens S¨amann,James Vickers `exact solutions branch' (Vienna & Prague): Jiˇr´ıPodolsk´y,Clemens S¨amann,Robert Svarcˇ The Penrose and Hawking Singularity Theorems revisited 2 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Contents 1 The classical singularity theorems 2 Interlude: Low regularity in GR 3 The low regularity singularity theorems 4 Key issues of the proofs 5 Outlook The Penrose and Hawking Singularity Theorems revisited 3 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Table of Contents 1 The classical singularity theorems 2 Interlude: Low regularity in GR 3 The low regularity singularity theorems 4 Key issues of the proofs 5 Outlook The Penrose and Hawking Singularity Theorems revisited 4 / 27 Theorem (Pattern singularity theorem [Senovilla, 98]) In a spacetime the following are incompatible (i) Energy condition (iii) Initial or boundary condition (ii) Causality condition (iv) Causal geodesic completeness (iii) initial condition ; causal geodesics start focussing (i) energy condition ; focussing goes on ; focal point (ii) causality condition ; no focal points way out: one causal geodesic has to be incomplete, i.e., : (iv) Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Singularities in GR singularities occur in exact solutions; high degree of symmetries singularities as obstruction to extend causal geodesics [Penrose, 65] The Penrose and Hawking Singularity Theorems revisited 5 / 27 (iii) initial condition ; causal geodesics start focussing (i) energy condition ; focussing goes on ; focal point (ii) causality condition ; no focal points way out: one causal geodesic has to be incomplete, i.e., : (iv) Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Singularities in GR singularities occur in exact solutions; high degree of symmetries singularities as obstruction to extend causal geodesics [Penrose, 65] Theorem (Pattern singularity theorem [Senovilla, 98]) In a spacetime the following are incompatible (i) Energy condition (iii) Initial or boundary condition (ii) Causality condition (iv) Causal geodesic completeness The Penrose and Hawking Singularity Theorems revisited 5 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Singularities in GR singularities occur in exact solutions; high degree of symmetries singularities as obstruction to extend causal geodesics [Penrose, 65] Theorem (Pattern singularity theorem [Senovilla, 98]) In a spacetime the following are incompatible (i) Energy condition (iii) Initial or boundary condition (ii) Causality condition (iv) Causal geodesic completeness (iii) initial condition ; causal geodesics start focussing (i) energy condition ; focussing goes on ; focal point (ii) causality condition ; no focal points way out: one causal geodesic has to be incomplete, i.e., : (iv) The Penrose and Hawking Singularity Theorems revisited 5 / 27 Theorem ([Hawking, 1967] Big Bang) A spacetime is future timelike geodesically incomplete, if (i) Ric (X ; X ) ≥ 0 for every timelike vector X (ii) There exists a compact space-like hypersurface S in M (iii) The unit normals to S are everywhere converging, θ := −tr K < 0. Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook The classical theorems Theorem ([Penrose, 1965] Gravitational collapse) A spacetime is future null geodesically incomplete, if (i) Ric (X ; X ) ≥ 0 for every null vector X (ii) There exists a non-compact Cauchy hypersurface S in M (iii) There exists a trapped surface (cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature) The Penrose and Hawking Singularity Theorems revisited 6 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook The classical theorems Theorem ([Penrose, 1965] Gravitational collapse) A spacetime is future null geodesically incomplete, if (i) Ric (X ; X ) ≥ 0 for every null vector X (ii) There exists a non-compact Cauchy hypersurface S in M (iii) There exists a trapped surface (cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature) Theorem ([Hawking, 1967] Big Bang) A spacetime is future timelike geodesically incomplete, if (i) Ric (X ; X ) ≥ 0 for every timelike vector X (ii) There exists a compact space-like hypersurface S in M (iii) The unit normals to S are everywhere converging, θ := −tr K < 0. The Penrose and Hawking Singularity Theorems revisited 6 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Hawking's Thm: proof strategy (C2-case) Analysis: θ evolves along the normal geodesic congruence of S by Raychaudhury's equation θ2 θ0 + + Ric(γ; _ γ_ ) + tr(σ2) = 0 3 (i) =) θ0 + (1=3)θ2 ≤ 0 =) (θ−1)0 ≥ 1=3 (iii) =) θ(0) < 0 =) θ ! 1 in finite time =) focal point Causality theory: 9 longest curves in the Cauchy development =) no focal points in the Cauchy development + completeness =) D (S) ⊆ exp([0; T ] · nS ). compact =) horizon H+(M) compact, ; 2 possibilities (1) H+(M) = ;. Then I +(S) ⊆ D+(S) =) timlike incomplete (2) H+(M) 6= ; compact =) p 7! d(S; p) has min on H+(S) But from every point in H+(M) there starts a past null generator γ (inextendible past directed null geodesic contained in H+(S)) and p 7! d(S; p) strictly decreasing along γ =) unbounded The Penrose and Hawking Singularity Theorems revisited 7 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Regularity for the singularity theorems of GR Pattern singularity theorem [Senovilla, 98] In a C2-spacetime the following are incompatible (i) Energy condition (iii) Initial or boundary condition (ii) Causality condition (iv) Causal geodesic completeness Theorem allows (i){(iv) and g 2 C1;1 ≡ C2−. But C1;1-spacetimes are physically reasonable models are not really singular (curvature bounded) still allow unique solutions of geodesic eq. ; formulation sensible Moreover below C1;1 we have unbded curv., non-unique geos, no convexity ; `really singular' Hence C1;1 is the natural regularity class for singularity theorems! The Penrose and Hawking Singularity Theorems revisited 8 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Table of Contents 1 The classical singularity theorems 2 Interlude: Low regularity in GR 3 The low regularity singularity theorems 4 Key issues of the proofs 5 Outlook The Penrose and Hawking Singularity Theorems revisited 9 / 27 Why is it needed? 1 Physics: Realistic matter models ; g 62 C2 2 Analysis: ivp solved in Sobolev spaces ; g 2 H5=2(M) Where is the problem? Physics and Analysis vs. Lorentzian geometry want/need low regularity needs high regularity But isn't it just a silly game for mathematicians? NO! Low regularity really changes the geometry! Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Low regularity GR What is is? GR and Lorentzian geometry on spacetime manifolds (M; g), where M is smoot but g is non-smooth (below C2) The Penrose and Hawking Singularity Theorems revisited 10 / 27 Where is the problem? Physics and Analysis vs. Lorentzian geometry want/need low regularity needs high regularity But isn't it just a silly game for mathematicians? NO! Low regularity really changes the geometry! Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Low regularity GR What is is? GR and Lorentzian geometry on spacetime manifolds (M; g), where M is smoot but g is non-smooth (below C2) Why is it needed? 1 Physics: Realistic matter models ; g 62 C2 2 Analysis: ivp solved in Sobolev spaces ; g 2 H5=2(M) The Penrose and Hawking Singularity Theorems revisited 10 / 27 But isn't it just a silly game for mathematicians? NO! Low regularity really changes the geometry! Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Low regularity GR What is is? GR and Lorentzian geometry on spacetime manifolds (M; g), where M is smoot but g is non-smooth (below C2) Why is it needed? 1 Physics: Realistic matter models ; g 62 C2 2 Analysis: ivp solved in Sobolev spaces ; g 2 H5=2(M) Where is the problem? Physics and Analysis vs. Lorentzian geometry want/need low regularity needs high regularity The Penrose and Hawking Singularity Theorems revisited 10 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Low regularity GR What is is? GR and Lorentzian geometry on spacetime manifolds (M; g), where M is smoot but g is non-smooth (below C2) Why is it needed? 1 Physics: Realistic matter
Recommended publications
  • Classical and Semi-Classical Energy Conditions Arxiv:1702.05915V3 [Gr-Qc] 29 Mar 2017
    Classical and semi-classical energy conditions1 Prado Martin-Morunoa and Matt Visserb aDepartamento de F´ısica Te´orica I, Ciudad Universitaria, Universidad Complutense de Madrid, E-28040 Madrid, Spain bSchool of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand E-mail: [email protected]; [email protected] Abstract: The standard energy conditions of classical general relativity are (mostly) linear in the stress-energy tensor, and have clear physical interpretations in terms of geodesic focussing, but suffer the significant drawback that they are often violated by semi-classical quantum effects. In contrast, it is possible to develop non-standard energy conditions that are intrinsically non-linear in the stress-energy tensor, and which exhibit much better well-controlled behaviour when semi-classical quantum effects are introduced, at the cost of a less direct applicability to geodesic focussing. In this chapter we will first review the standard energy conditions and their various limitations. (Including the connection to the Hawking{Ellis type I, II, III, and IV classification of stress-energy tensors). We shall then turn to the averaged, nonlinear, and semi-classical energy conditions, and see how much can be done once semi-classical quantum effects are included. arXiv:1702.05915v3 [gr-qc] 29 Mar 2017 1Draft chapter, on which the related chapter of the book Wormholes, Warp Drives and Energy Conditions (to be published by Springer) will be based. Contents 1 Introduction1 2 Standard energy conditions2 2.1 The Hawking{Ellis type I | type IV classification4 2.2 Alternative canonical form8 2.3 Limitations of the standard energy conditions9 3 Averaged energy conditions 11 4 Nonlinear energy conditions 12 5 Semi-classical energy conditions 14 6 Discussion 16 1 Introduction The energy conditions, be they classical, semiclassical, or \fully quantum" are at heart purely phenomenological approaches to deciding what form of stress-energy is to be considered \physically reasonable".
    [Show full text]
  • Closed Timelike Curves, Singularities and Causality: a Survey from Gödel to Chronological Protection
    Closed Timelike Curves, Singularities and Causality: A Survey from Gödel to Chronological Protection Jean-Pierre Luminet Aix-Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille , France; Centre de Physique Théorique de Marseille (France) Observatoire de Paris, LUTH (France) [email protected] Abstract: I give a historical survey of the discussions about the existence of closed timelike curves in general relativistic models of the universe, opening the physical possibility of time travel in the past, as first recognized by K. Gödel in his rotating universe model of 1949. I emphasize that journeying into the past is intimately linked to spacetime models devoid of timelike singularities. Since such singularities arise as an inevitable consequence of the equations of general relativity given physically reasonable assumptions, time travel in the past becomes possible only when one or another of these assumptions is violated. It is the case with wormhole-type solutions. S. Hawking and other authors have tried to save the paradoxical consequences of time travel in the past by advocating physical mechanisms of chronological protection; however, such mechanisms remain presently unknown, even when quantum fluctuations near horizons are taken into account. I close the survey by a brief and pedestrian discussion of Causal Dynamical Triangulations, an approach to quantum gravity in which causality plays a seminal role. Keywords: time travel; closed timelike curves; singularities; wormholes; Gödel’s universe; chronological protection; causal dynamical triangulations 1. Introduction In 1949, the mathematician and logician Kurt Gödel, who had previously demonstrated the incompleteness theorems that broke ground in logic, mathematics, and philosophy, became interested in the theory of general relativity of Albert Einstein, of which he became a close colleague at the Institute for Advanced Study at Princeton.
    [Show full text]
  • Light Rays, Singularities, and All That
    Light Rays, Singularities, and All That Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article is an introduction to causal properties of General Relativity. Topics include the Raychaudhuri equation, singularity theorems of Penrose and Hawking, the black hole area theorem, topological censorship, and the Gao-Wald theorem. The article is based on lectures at the 2018 summer program Prospects in Theoretical Physics at the Institute for Advanced Study, and also at the 2020 New Zealand Mathematical Research Institute summer school in Nelson, New Zealand. Contents 1 Introduction 3 2 Causal Paths 4 3 Globally Hyperbolic Spacetimes 11 3.1 Definition . 11 3.2 Some Properties of Globally Hyperbolic Spacetimes . 15 3.3 More On Compactness . 18 3.4 Cauchy Horizons . 21 3.5 Causality Conditions . 23 3.6 Maximal Extensions . 24 4 Geodesics and Focal Points 25 4.1 The Riemannian Case . 25 4.2 Lorentz Signature Analog . 28 4.3 Raychaudhuri’s Equation . 31 4.4 Hawking’s Big Bang Singularity Theorem . 35 5 Null Geodesics and Penrose’s Theorem 37 5.1 Promptness . 37 5.2 Promptness And Focal Points . 40 5.3 More On The Boundary Of The Future . 46 1 5.4 The Null Raychaudhuri Equation . 47 5.5 Trapped Surfaces . 52 5.6 Penrose’s Theorem . 54 6 Black Holes 58 6.1 Cosmic Censorship . 58 6.2 The Black Hole Region . 60 6.3 The Horizon And Its Generators . 63 7 Some Additional Topics 66 7.1 Topological Censorship . 67 7.2 The Averaged Null Energy Condition .
    [Show full text]
  • Problem Set 4 (Causal Structure)
    \Singularities, Black Holes, Thermodynamics in Relativistic Spacetimes": Problem Set 4 (causal structure) 1. Wald (1984): ch. 8, problems 1{2 2. Prove or give a counter-example: there is a spacetime with two points simultaneously con- nectable by a timelike geodesic, a null geodesic and a spacelike geodesic. 3. Prove or give a counter-example: if two points are causally related, there is a spacelike curve connecting them. 4. Prove or give a counter-example: any two points of a spacetime can be joined by a spacelike curve. (Hint: there are three cases to consider, first that the temporal futures of the two points intesect, second that their temporal pasts do, and third that neither their temporal futures nor their temporal pasts intersect; recall that the manifold must be connected.) 5. Prove or give a counter-example: every flat Lorentzian metric is temporally orientable. 6. Prove or give a counter-example: if the temporal futures of two points do not intersect, then neither do their temporal pasts. 7. Prove or give a counter-example: for a point p in a spacetime, the temporal past of the temporal future of the temporal past of the temporal future. of p is the entire spacetime. (Hint: if two points can be joined by a spacelike curve, then they can be joined by a curve consisting of some finite number of null geodesic segments glued together; recall that the manifold is connected.) 8. Prove or give a counter-example: if the temporal past of p contains the entire temporal future of q, then there is a closed timelike curve through p.
    [Show full text]
  • Theoretical Computer Science Causal Set Topology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 405 (2008) 188–197 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Causal set topology Sumati Surya Raman Research Institute, Bangalore, India article info a b s t r a c t Keywords: The Causal Set Theory (CST) approach to quantum gravity is motivated by the observation Space–time that, associated with any causal spacetime (M, g) is a poset (M, ≺), with the order relation Causality ≺ corresponding to the spacetime causal relation. Spacetime in CST is assumed to have a Topology Posets fundamental atomicity or discreteness, and is replaced by a locally finite poset, the causal Quantum gravity set. In order to obtain a well defined continuum approximation, the causal set must possess the requisite intrinsic topological and geometric properties that characterise a continuum spacetime in the large. The study of causal set topology is thus dictated by the nature of the continuum approximation. We review the status of causal set topology and present some new results relating poset and spacetime topologies. The hope is that in the process, some of the ideas and questions arising from CST will be made accessible to the larger community of computer scientists and mathematicians working on posets. © 2008 Published by Elsevier B.V. 1. The spacetime poset and causal sets In Einstein’s theory of gravity, space and time are merged into a single entity represented by a pseudo-Riemannian or Lorentzian geometry g of signature − + ++ on a differentiable four dimensional manifold M.
    [Show full text]
  • General Relativistic Energy Conditions: the Hubble Expansion in the Epoch of Galaxy Formation
    General Relativistic Energy Conditions: The Hubble expansion in the epoch of galaxy formation. Matt Visser† Physics Department Washington University Saint Louis Missouri 63130-4899 USA 26 May 1997; gr-qc/9705070 Abstract The energy conditions of Einstein gravity (classical general relativity) are designed to extract as much information as possible from classical general relativity without enforcing a particular equation of state for the stress-energy. This systematic avoidance of the need to specify a particular equation of state is particularly useful in a cosmological setting — since the equation of state for the cosmological fluid in a Friedmann–Robertson– Walker type universe is extremely uncertain. I shall show that the energy conditions provide simple and robust bounds on the behaviour of both the density and look-back time as a function of red-shift. I shall show that current observations suggest that the so-called strong energy condition (SEC) is violated sometime between the epoch of galaxy formation and the present. This implies that no possible combination of “normal” matter is capable of fitting the observational data. PACS: 98.80.-k; 98.80.Bp; 98.80.Hw; 04.90.+e † E-mail: [email protected] 1 1 Introduction The discussion presented in this paper is a model-independent analysis of the misnamed age-of-the-universe problem, this really being an age-of-the-oldest- stars problem. In this paper I trade off precision against robustness: I sacrifice the precision that comes from assuming a particular equation of state, for the robustness that arises from model independence. A briefer presentation of these ideas can be found in [1], while a related analysis is presented in [2].
    [Show full text]
  • Black Holes and Black Hole Thermodynamics Without Event Horizons
    General Relativity and Gravitation (2011) DOI 10.1007/s10714-008-0739-9 RESEARCHARTICLE Alex B. Nielsen Black holes and black hole thermodynamics without event horizons Received: 18 June 2008 / Accepted: 22 November 2008 c Springer Science+Business Media, LLC 2009 Abstract We investigate whether black holes can be defined without using event horizons. In particular we focus on the thermodynamic properties of event hori- zons and the alternative, locally defined horizons. We discuss the assumptions and limitations of the proofs of the zeroth, first and second laws of black hole mechan- ics for both event horizons and trapping horizons. This leads to the possibility that black holes may be more usefully defined in terms of trapping horizons. We also review how Hawking radiation may be seen to arise from trapping horizons and discuss which horizon area should be associated with the gravitational entropy. Keywords Black holes, Black hole thermodynamics, Hawking radiation, Trapping horizons Contents 1 Introduction . 2 2 Event horizons . 4 3 Local horizons . 8 4 Thermodynamics of black holes . 14 5 Area increase law . 17 6 Gravitational entropy . 19 7 The zeroth law . 22 8 The first law . 25 9 Hawking radiation for trapping horizons . 34 10 Fluid flow analogies . 36 11 Uniqueness . 37 12 Conclusion . 39 A. B. Nielsen Center for Theoretical Physics and School of Physics College of Natural Sciences, Seoul National University Seoul 151-742, Korea [email protected] 2 A. B. Nielsen 1 Introduction Black holes play a central role in physics. In astrophysics, they represent the end point of stellar collapse for sufficiently large stars.
    [Show full text]
  • Quantum Fluctuations and Thermodynamic Processes in The
    Quantum fluctuations and thermodynamic processes in the presence of closed timelike curves by Tsunefumi Tanaka A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Montana State University © Copyright by Tsunefumi Tanaka (1997) Abstract: A closed timelike curve (CTC) is a closed loop in spacetime whose tangent vector is everywhere timelike. A spacetime which contains CTC’s will allow time travel. One of these spacetimes is Grant space. It can be constructed from Minkowski space by imposing periodic boundary conditions in spatial directions and making the boundaries move toward each other. If Hawking’s chronology protection conjecture is correct, there must be a physical mechanism preventing the formation of CTC’s. Currently the most promising candidate for the chronology protection mechanism is the back reaction of the metric to quantum vacuum fluctuations. In this thesis the quantum fluctuations for a massive scalar field, a self-interacting field, and for a field at nonzero temperature are calculated in Grant space. The stress-energy tensor is found to remain finite everywhere in Grant space for the massive scalar field with sufficiently large field mass. Otherwise it diverges on chronology horizons like the stress-energy tensor for a massless scalar field. If CTC’s exist they will have profound effects on physical processes. Causality can be protected even in the presence of CTC’s if the self-consistency condition is imposed on all processes. Simple classical thermodynamic processes of a box filled with ideal gas in the presence of CTC’s are studied. If a system of boxes is closed, its state does not change as it travels through a region of spacetime with CTC’s.
    [Show full text]
  • On the Categorical and Topological Structure of Timelike Homotopy Classes of Paths in Smooth Spacetimes
    ON THE CATEGORICAL AND TOPOLOGICAL STRUCTURE OF TIMELIKE AND CAUSAL HOMOTOPY CLASSES OF PATHS IN SMOOTH SPACETIMES MARTIN GUNTHER¨ ∗ Institute of Algebra and Geometry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. Abstract. For a smooth spacetime X, based on the timelike homotopy classes of its timelike paths, we define a topology on X that refines the Alexandrov topology and always coincides with the manifold topology. The space of timelike or causal homotopy classes forms a semicategory or a category, respectively. We show that either of these algebraic structures encodes enough information to reconstruct the topology and conformal structure of X. Furthermore, the space of timelike homotopy classes carries a natural topology that we prove to be locally euclidean but, in general, not Hausdorff. The presented results do not require any causality conditions on X and do also hold under weaker regularity assumptions. 1. Main results For simplicity, (X; g) will be a smooth spacetime throughout this paper, i.e. a smooth time-oriented Lorentzian manifold. Nevertheless, all of the following results are true for a broader class of manifolds, namely C1-spacetimes that satisfy lemma 2.1, which is a local condition on the topology and chronological structure. Let P (X) be the space of paths in X, i.e. continuous maps [0; 1] ! X, and t c arXiv:2008.00265v2 [math.DG] 13 Aug 2021 P (X) ⊆ P (X) ⊆ P (X) the spaces of continuous future-directed timelike or causal paths in X. A juxtaposed pair of points x; y 2 X shall restrict t=c these sets to only paths from x to y.
    [Show full text]
  • K-Causal Structure of Space-Time in General Relativity
    PRAMANA °c Indian Academy of Sciences Vol. 70, No. 4 | journal of April 2008 physics pp. 587{601 K-causal structure of space-time in general relativity SUJATHA JANARDHAN1;¤ and R V SARAYKAR2 1Department of Mathematics, St. Francis De Sales College, Nagpur 440 006, India 2Department of Mathematics, R.T.M. Nagpur University, Nagpur 440 033, India ¤Corresponding author E-mail: sujata [email protected]; r saraykar@redi®mail.com MS received 3 January 2007; revised 29 November 2007; accepted 5 December 2007 Abstract. Using K-causal relation introduced by Sorkin and Woolgar [1], we generalize results of Garcia-Parrado and Senovilla [2,3] on causal maps. We also introduce causality conditions with respect to K-causality which are analogous to those in classical causality theory and prove their inter-relationships. We introduce a new causality condition fol- lowing the work of Bombelli and Noldus [4] and show that this condition lies in between global hyperbolicity and causal simplicity. This approach is simpler and more general as compared to traditional causal approach [5,6] and it has been used by Penrose et al [7] in giving a new proof of positivity of mass theorem. C0-space-time structures arise in many mathematical and physical situations like conical singularities, discontinuous matter distributions, phenomena of topology-change in quantum ¯eld theory etc. Keywords. C0-space-times; causal maps; causality conditions; K-causality. PACS Nos 04.20.-q; 02.40.Pc 1. Introduction The condition that no material particle signals can travel faster than the velocity of light ¯xes the causal structure for Minkowski space-time.
    [Show full text]
  • Flows Revisited: the Model Category Structure and Its Left Determinedness
    FLOWS REVISITED: THE MODEL CATEGORY STRUCTURE AND ITS LEFT DETERMINEDNESS PHILIPPE GAUCHER Abstract. Flows are a topological model of concurrency which enables to encode the notion of refinement of observation and to understand the homological properties of branchings and mergings of execution paths. Roughly speaking, they are Grandis' d-spaces without an underlying topological space. They just have an underlying homotopy type. This note is twofold. First, we give a new construction of the model category structure of flows which is more conceptual thanks to Isaev's results. It avoids the use of difficult topological arguments. Secondly, we prove that this model category is left determined by adapting an argument due to Olschok. The introduction contains some speculations about what we expect to find out by localizing this minimal model category structure. Les flots sont un mod`eletopologique de la concurrence qui permet d'encoder la no- tion de raffinement de l'observation et de comprendre les propri´et´eshomologiques des branchements et des confluences des chemins d'ex´ecution. Intuitivement, ce sont des d-espaces au sens de Grandis sans espace topologique sous-jacent. Ils ont seulement un type d'homotopie sous-jacent. Cette note a deux objectifs. Premi`erement de donner une nouvelle construction de la cat´egorie de mod`elesdes flots plus conceptuelle gr^aceau travail d'Isaev. Cela permet d'´eviterdes arguments topologiques difficiles. Deuxi`emement nous prouvons que cette cat´egoriede mod`elesest d´etermin´ee gauche en adaptant un argument de Olschok. L'introduction contient quelques sp´eculationssur ce qu'on s'attend `atrouver en localisant cette cat´egoriede mod`elesminimale.
    [Show full text]
  • Arxiv:2105.02304V1 [Quant-Ph] 5 May 2021 Relativity and Quantum Theory
    Page-Wootters formulation of indefinite causal order Veronika Baumann,1, 2, 3, ∗ Marius Krumm,1, 2, ∗ Philippe Allard Gu´erin,1, 2, 4 and Caslavˇ Brukner1, 2 1Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria 2Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria 3Faculty of Informatics, Universit`adella Svizzera italiana, Via G. Buffi 13, CH-6900 Lugano, Switzerland 4Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, N2L 2Y5, Canada (Dated: May 7, 2021) One of the most fundamental open problems in physics is the unification of general relativity and quantum theory to a theory of quantum gravity. An aspect that might become relevant in such a theory is that the dynamical nature of causal structure present in general relativity displays quantum uncertainty. This may lead to a phenomenon known as indefinite or quantum causal structure, as captured by the process matrix framework. Due to the generality of that framework, however, for many process matrices there is no clear physical interpretation. A popular approach towards a quantum theory of gravity is the Page-Wootters formalism, which associates to time a Hilbert space structure similar to spatial position. By explicitly introducing a quantum clock, it allows to describe time-evolution of systems via correlations between this clock and said systems encoded in history states. In this paper we combine the process matrix framework with a generalization of the Page-Wootters formalism in which one considers several observers, each with their own discrete quantum clock. We describe how to extract process matrices from scenarios involving such observers with quantum clocks, and analyze their properties.
    [Show full text]