Quantum Fluctuations and Thermodynamic Processes in The

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Fluctuations and Thermodynamic Processes in The Quantum fluctuations and thermodynamic processes in the presence of closed timelike curves by Tsunefumi Tanaka A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Montana State University © Copyright by Tsunefumi Tanaka (1997) Abstract: A closed timelike curve (CTC) is a closed loop in spacetime whose tangent vector is everywhere timelike. A spacetime which contains CTC’s will allow time travel. One of these spacetimes is Grant space. It can be constructed from Minkowski space by imposing periodic boundary conditions in spatial directions and making the boundaries move toward each other. If Hawking’s chronology protection conjecture is correct, there must be a physical mechanism preventing the formation of CTC’s. Currently the most promising candidate for the chronology protection mechanism is the back reaction of the metric to quantum vacuum fluctuations. In this thesis the quantum fluctuations for a massive scalar field, a self-interacting field, and for a field at nonzero temperature are calculated in Grant space. The stress-energy tensor is found to remain finite everywhere in Grant space for the massive scalar field with sufficiently large field mass. Otherwise it diverges on chronology horizons like the stress-energy tensor for a massless scalar field. If CTC’s exist they will have profound effects on physical processes. Causality can be protected even in the presence of CTC’s if the self-consistency condition is imposed on all processes. Simple classical thermodynamic processes of a box filled with ideal gas in the presence of CTC’s are studied. If a system of boxes is closed, its state does not change as it travels through a region of spacetime with CTC’s. But if the system is open, the final state will depend on the interaction with the environment. The second law of thermodynamics is shown to hold for both closed and open systems. A similar problem is investigated at a statistical level for a gas consisting of multiple selves of a single particle in a spacetime with CTC’s. QUANTUM FLUCTUATIONS AND THERMODYNAMIC PROCESSES IN THE PRESENCE OF CLOSED TIMELIKE CURVES by Tsunefumi Tanaka A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics MONTANA STATE UNIVERSITY - BOZEMAN Bozeman, Montana April 1997 J)3l% ii APPROVAL of a thesis submitted by Tsunefumi Tanaka This thesis has been read by each member of the thesis committee, and has been found to be satisfactory regarding content, English usage, format, citations, biblio­ graphic style, and consistency, and is ready for submission to the College of Graduate Studies. William A. Hiscock A L zi /n ^ (Signature) Date ^ Approved for the Department of Physics John Hermanson (Signature) Date Approved for the College of Graduate Studies Z? / ? Zv -7 Robert Brown (Signature) Date iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a doctoral degree at Montana State University - Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this thesis is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U. S. Copyright Law. Requests for extensive copying or reproduction of this thesis should be referred to University Microfilms International, 300 North.Zeeb Road, Ann Arbor, Michigan, 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microform along with the non­ exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Signature _ Date v5~/ QIJ iv ACKNOWLEDGMENTS I wish to express my gratitude and appreciation to my grandparents who had set the goal of my life for which I will be always striving. V TABLE OF CONTENTS 1. Introduction I Closed Timelike Curves ................................................................................... I Chronology Horizons . ....................................................................................... 2 Spacetimes with CTCs ....................................................................................... 3 Van Stockum Space.............................................................................'. 4 The Godel Universe.................................... 5 Gott Space ........................................... 6 Misner S p a c e .................................................... 7 Wormhole Spacetim e................................................................................ 8 Chronology P rotection...................................................................................... 10 Astronomical Observations.............................................. 11 Classical Instability of Fields.................................................................... 12 Weak Energy C o n d itio n ...............................' ......................................... 13 Vacuum Fluctuations............................................................. 13 2. Scalar Fields in Grant Space 17 Grant Space............................................................................................ ... 19 Calculation of (01 ^ | 0) in Grant S pace ................................................. ... 22 vi Stress-Energy Tensor for a Free Scalar F ie ld ............................ 23 Vacuum State of Grant Space . ■........................................... 24 Method of Images . .................................................................... 27 Massive Scalar Field . .................................................................... 29 Self-Interacting Scalar Field (A</>4) . ............................... ..................... 32 Nonzero tem perature....................................., .................................... 37 3. Physics in the Presence of CTC’s 43 Classical Scattering in Wormhole Spacetime .................................. ... 44 Quantum Mechanics in a Nonchronal Region..................................... 46 Path Integral Formulation.......................................................... 47 Density Matrix Formulation . : ........................................ 50 4. Classical Thermodynamic Processes in a Nonchronal Region 55 A pparatus............ ; .........................................................................; . 56 Step I ............................................................................................ 58 Step 2 ...................................................................................... ... 60 Step 3 ............................................................................................ 60 Self-consistency c o n d itio n .................................................................... 60 Closed Systems . ............................................................................. 61 Heat T ransfer................................................................................ 62 Adiabatic Expansion................................................................... 65 Mixing of the Gases 67 ) vii Open Systems .............................................................. 68 Isothermal Expansion . ..................................... 69 Isobaxic E xpansion........................................... 73 5. Statistical Mechanics in a Nonchronal Region 77 Formation of a Multiple-Self G a s ............................ 77 Objectives.................................................................... 80 General Approach....................................................... 81. Self- Consistency Condition........................................ 88 Simplifications .......................................................... 88 Model Spacetim e.............................................. 88 Particle Structure.............................................. 90 Particle Interaction........................................... 91 Next S te p .................................................................... 93 6. Conclusion 94 Quantum Fluctuations . 95 Thermodynamic Processes 97 Multiple-Self Gas ...... 98 BIBLIOGRAPHY 99 viii LIST OF FIGURES 1 Nonchronal region...................................................................................... 3 2 Van Stockum sp a ce ................................................................................... 5 3 Gott space ................................................................................................... 7 4 Misner space...............................' .............................................................. 8 5 Wormhole spacetime .......................................................... 9 6 Wormhole time m ac h in e .......................................................................... 10 7 Defocusing e ff e c t...................................................................................... 12 8 Grant sp a c e .............................................. 21 9 Energy density vs field m a s s ..................... ■............................................. 31 10 Thermal contribution to p ........................................'....................... ... 40 11 Foliation of spacetime................................................................................ 47 12 Quantum computational network . .................................................. 51 13 One time traverse..................................................................................... 56 14 Trajectories for one time tra v e rse ...........................................................
Recommended publications
  • The Penrose and Hawking Singularity Theorems Revisited
    Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook The Penrose and Hawking Singularity Theorems revisited Roland Steinbauer Faculty of Mathematics, University of Vienna Prague, October 2016 The Penrose and Hawking Singularity Theorems revisited 1 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Overview Long-term project on Lorentzian geometry and general relativity with metrics of low regularity jointly with `theoretical branch' (Vienna & U.K.): Melanie Graf, James Grant, G¨untherH¨ormann,Mike Kunzinger, Clemens S¨amann,James Vickers `exact solutions branch' (Vienna & Prague): Jiˇr´ıPodolsk´y,Clemens S¨amann,Robert Svarcˇ The Penrose and Hawking Singularity Theorems revisited 2 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Contents 1 The classical singularity theorems 2 Interlude: Low regularity in GR 3 The low regularity singularity theorems 4 Key issues of the proofs 5 Outlook The Penrose and Hawking Singularity Theorems revisited 3 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Table of Contents 1 The classical singularity theorems 2 Interlude: Low regularity in GR 3 The low regularity singularity theorems 4 Key issues of the proofs 5 Outlook The Penrose and Hawking Singularity Theorems revisited 4 / 27 Theorem (Pattern singularity theorem [Senovilla, 98]) In a spacetime the following are incompatible (i) Energy condition (iii) Initial or boundary condition (ii) Causality condition (iv) Causal geodesic completeness (iii) initial condition ; causal geodesics start focussing (i) energy condition ; focussing goes on ; focal point (ii) causality condition ; no focal points way out: one causal geodesic has to be incomplete, i.e., : (iv) Classical singularity thms.
    [Show full text]
  • Summer 2017 Astron 9 Week 5 Final Version
    RELATIVITY OF SPACE AND TIME IN POPULAR SCIENCE RICHARD ANANTUA PREDESTINATION (MON JUL 31) REVIEW OF JUL 24, 26 & 28 • Flying atomic clocks, muon decay, light bending around stars and gravitational waves provide experimental confirmation of relativity • In 1919, Einstein’s prediction for the deflection of starlight was confirmed by • The 1971 Hafele-Keating experiment confirmed • The 1977 CERN muon experiment confirmed • In 2016 LIGO confirmed the existence of REVIEW OF JUL 24, 26 & 28 • Flying atomic clocks, muon decay, light bending around stars and gravitational waves provide experimental confirmation of relativity • In 1919, Einstein’s prediction for the deflection of starlight was confirmed by Sir Arthur Eddington • The 1971 Hafele-Keating experiment confirmed motional and gravitational time dilation • The 1977 CERN muon experiment confirmed motional time dilation • In 2016 LIGO confirmed the existence of gravitational waves TIME TRAVEL IN RELATIVITY • Methods of time travel theoretically possible in relativity are • (Apparently) faster than light travel – window into the past? • Closed timelike curved • (Apparent) paradoxes with time travel • Kill your grandfather – past time travel may alter seemingly necessary conditions for the future time traveler to have started the journey • Predestination - apparent cause of past event is in the future SPECIAL RELATIVISTIC VELOCITY ADDITION • In special relativity, no object or information can travel faster than light, a fact reflected in the relativistic law of composition of velocities v &v vAB v = $% %' A !" v$%v%' (& * ) vBC B C • vAB is the (1D) velocity of A with respect to B • vBC is the (1D) velocity of B with respect to C POP QUIZ - FASTER THAN LIGHT TRAVEL • A spaceship traveling at v>c is returning from a moving planet (L0 away right before the journey).
    [Show full text]
  • Closed Timelike Curves Make Quantum and Classical Computing Equivalent
    Closed Timelike Curves Make Quantum and Classical Computing Equivalent Scott Aaronson∗ John Watrous† MIT University of Waterloo Abstract While closed timelike curves (CTCs) are not known to exist, studying their consequences has led to nontrivial insights in general relativity, quantum information, and other areas. In this paper we show that if CTCs existed, then quantum computers would be no more powerful than classical computers: both would have the (extremely large) power of the complexity class PSPACE, consisting of all problems solvable by a conventional computer using a polynomial amount of memory. This solves an open problem proposed by one of us in 2005, and gives an essentially complete understanding of computational complexity in the presence of CTCs. Following the work of Deutsch, we treat a CTC as simply a region of spacetime where a “causal consistency” condition is imposed, meaning that Nature has to produce a (probabilistic or quantum) fixed-point of some evolution operator. Our conclusion is then a consequence of the following theorem: given any quantum circuit (not necessarily unitary), a fixed-point of the circuit can be (implicitly) computed in polynomial space. This theorem might have independent applications in quantum information. 1 Introduction The possibility of closed timelike curves (CTCs) within general relativity and quantum gravity theories has been studied for almost a century [11, 15, 13]. A different line of research has sought to understand the implications of CTCs, supposing they existed, for quantum mechanics, computation, and information [9, 8, 5]. In this paper we contribute to the latter topic, by giving the first complete characterization of the computational power of CTCs.
    [Show full text]
  • BLACK HOLES: the OTHER SIDE of INFINITY General Information
    BLACK HOLES: THE OTHER SIDE OF INFINITY General Information Deep in the middle of our Milky Way galaxy lies an object made famous by science fiction—a supermassive black hole. Scientists have long speculated about the existence of black holes. German astronomer Karl Schwarzschild theorized that black holes form when massive stars collapse. The resulting gravity from this collapse would be so strong that the matter would become more and more dense. The gravity would eventually become so strong that nothing, not even radiation moving at the speed of light, could escape. Schwarzschild’s theories were predicted by Einstein and then borne out mathematically in 1939 by American astrophysicists Robert Oppenheimer and Hartland Snyder. WHAT EXACTLY IS A BLACK HOLE? First, it’s not really a hole! A black hole is an extremely massive concentration of matter, created when the largest stars collapse at the end of their lives. Astronomers theorize that a point with infinite density—called a singularity—lies at the center of black holes. SO WHY IS IT CALLED A HOLE? Albert Einstein’s 1915 General Theory of Relativity deals largely with the effects of gravity, and in essence predicts the existence of black holes and singularities. Einstein hypothesized that gravity is a direct result of mass distorting space. He argued that space behaves like an invisible fabric with an elastic quality. Celestial bodies interact with this “fabric” of space-time, appearing to create depressions termed “gravity wells” and drawing nearby objects into orbit around them. Based on this principle, the more massive a body is in space, the deeper the gravity well it will create.
    [Show full text]
  • Closed Timelike Curves, Singularities and Causality: a Survey from Gödel to Chronological Protection
    Closed Timelike Curves, Singularities and Causality: A Survey from Gödel to Chronological Protection Jean-Pierre Luminet Aix-Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille , France; Centre de Physique Théorique de Marseille (France) Observatoire de Paris, LUTH (France) [email protected] Abstract: I give a historical survey of the discussions about the existence of closed timelike curves in general relativistic models of the universe, opening the physical possibility of time travel in the past, as first recognized by K. Gödel in his rotating universe model of 1949. I emphasize that journeying into the past is intimately linked to spacetime models devoid of timelike singularities. Since such singularities arise as an inevitable consequence of the equations of general relativity given physically reasonable assumptions, time travel in the past becomes possible only when one or another of these assumptions is violated. It is the case with wormhole-type solutions. S. Hawking and other authors have tried to save the paradoxical consequences of time travel in the past by advocating physical mechanisms of chronological protection; however, such mechanisms remain presently unknown, even when quantum fluctuations near horizons are taken into account. I close the survey by a brief and pedestrian discussion of Causal Dynamical Triangulations, an approach to quantum gravity in which causality plays a seminal role. Keywords: time travel; closed timelike curves; singularities; wormholes; Gödel’s universe; chronological protection; causal dynamical triangulations 1. Introduction In 1949, the mathematician and logician Kurt Gödel, who had previously demonstrated the incompleteness theorems that broke ground in logic, mathematics, and philosophy, became interested in the theory of general relativity of Albert Einstein, of which he became a close colleague at the Institute for Advanced Study at Princeton.
    [Show full text]
  • Light Rays, Singularities, and All That
    Light Rays, Singularities, and All That Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article is an introduction to causal properties of General Relativity. Topics include the Raychaudhuri equation, singularity theorems of Penrose and Hawking, the black hole area theorem, topological censorship, and the Gao-Wald theorem. The article is based on lectures at the 2018 summer program Prospects in Theoretical Physics at the Institute for Advanced Study, and also at the 2020 New Zealand Mathematical Research Institute summer school in Nelson, New Zealand. Contents 1 Introduction 3 2 Causal Paths 4 3 Globally Hyperbolic Spacetimes 11 3.1 Definition . 11 3.2 Some Properties of Globally Hyperbolic Spacetimes . 15 3.3 More On Compactness . 18 3.4 Cauchy Horizons . 21 3.5 Causality Conditions . 23 3.6 Maximal Extensions . 24 4 Geodesics and Focal Points 25 4.1 The Riemannian Case . 25 4.2 Lorentz Signature Analog . 28 4.3 Raychaudhuri’s Equation . 31 4.4 Hawking’s Big Bang Singularity Theorem . 35 5 Null Geodesics and Penrose’s Theorem 37 5.1 Promptness . 37 5.2 Promptness And Focal Points . 40 5.3 More On The Boundary Of The Future . 46 1 5.4 The Null Raychaudhuri Equation . 47 5.5 Trapped Surfaces . 52 5.6 Penrose’s Theorem . 54 6 Black Holes 58 6.1 Cosmic Censorship . 58 6.2 The Black Hole Region . 60 6.3 The Horizon And Its Generators . 63 7 Some Additional Topics 66 7.1 Topological Censorship . 67 7.2 The Averaged Null Energy Condition .
    [Show full text]
  • Einstein's Gravitational Field
    Einstein’s gravitational field Abstract: There exists some confusion, as evidenced in the literature, regarding the nature the gravitational field in Einstein’s General Theory of Relativity. It is argued here that this confusion is a result of a change in interpretation of the gravitational field. Einstein identified the existence of gravity with the inertial motion of accelerating bodies (i.e. bodies in free-fall) whereas contemporary physicists identify the existence of gravity with space-time curvature (i.e. tidal forces). The interpretation of gravity as a curvature in space-time is an interpretation Einstein did not agree with. 1 Author: Peter M. Brown e-mail: [email protected] 2 INTRODUCTION Einstein’s General Theory of Relativity (EGR) has been credited as the greatest intellectual achievement of the 20th Century. This accomplishment is reflected in Time Magazine’s December 31, 1999 issue 1, which declares Einstein the Person of the Century. Indeed, Einstein is often taken as the model of genius for his work in relativity. It is widely assumed that, according to Einstein’s general theory of relativity, gravitation is a curvature in space-time. There is a well- accepted definition of space-time curvature. As stated by Thorne 2 space-time curvature and tidal gravity are the same thing expressed in different languages, the former in the language of relativity, the later in the language of Newtonian gravity. However one of the main tenants of general relativity is the Principle of Equivalence: A uniform gravitational field is equivalent to a uniformly accelerating frame of reference. This implies that one can create a uniform gravitational field simply by changing one’s frame of reference from an inertial frame of reference to an accelerating frame, which is rather difficult idea to accept.
    [Show full text]
  • Theory of Relativity
    Christian Bar¨ Theory of Relativity Summer Term 2013 OTSDAM P EOMETRY IN G Version of August 26, 2013 Contents Preface iii 1 Special Relativity 1 1.1 Classical Kinematics ............................... 1 1.2 Electrodynamics ................................. 5 1.3 The Lorentz group and Minkowski geometry .................. 7 1.4 Relativistic Kinematics .............................. 20 1.5 Mass and Energy ................................. 36 1.6 Closing Remarks about Special Relativity .................... 41 2 General Relativity 43 2.1 Classical theory of gravitation .......................... 43 2.2 Equivalence Principle and the Einstein Field Equations ............. 49 2.3 Robertson-Walker spacetime ........................... 55 2.4 The Schwarzschild solution ............................ 66 Bibliography 77 Index 79 i Preface These are the lecture notes of an introductory course on relativity theory that I gave in 2013. Ihe course was designed such that no prior knowledge of differential geometry was required. The course itself also did not introduce differential geometry (as it is often done in relativity classes). Instead, students unfamiliar with differential geometry had the opportunity to learn the subject in another course precisely set up for this purpose. This way, the relativity course could concentrate on its own topic. Of course, there is a price to pay; the first half of the course was dedicated to Special Relativity which does not require much mathematical background. Only the second half then deals with General Relativity. This gave the students time to acquire the geometric concepts. The part on Special Relativity briefly recalls classical kinematics and electrodynamics empha- sizing their conceptual incompatibility. It is then shown how Minkowski geometry is used to unite the two theories and to obtain what we nowadays call Special Relativity.
    [Show full text]
  • Stable Wormholes in the Background of an Exponential F (R) Gravity
    universe Article Stable Wormholes in the Background of an Exponential f (R) Gravity Ghulam Mustafa 1, Ibrar Hussain 2,* and M. Farasat Shamir 3 1 Department of Mathematics, Shanghai University, Shanghai 200444, China; [email protected] 2 School of Electrical Engineering and Computer Science, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan 3 National University of Computer and Emerging Sciences, Lahore Campus, Punjab 54000, Pakistan; [email protected] * Correspondence: [email protected] Received: 21 January 2020; Accepted: 3 March 2020; Published: 26 March 2020 Abstract: The current paper is devoted to investigating wormhole solutions with an exponential gravity model in the background of f (R) theory. Spherically symmetric static spacetime geometry is chosen to explore wormhole solutions with anisotropic fluid source. The behavior of the traceless matter is studied by employing a particular equation of state to describe the important properties of the shape-function of the wormhole geometry. Furthermore, the energy conditions and stability analysis are done for two specific shape-functions. It is seen that the energy condition are to be violated for both of the shape-functions chosen here. It is concluded that our results are stable and realistic. Keywords: wormholes; stability; f (R) gravity; energy conditions 1. Introduction The discussion on wormhole geometry is a very hot subject among the investigators of the different modified theories of gravity. The concept of wormhole was first expressed by Flamm [1] in 1916. After 20 years, Einstein and Rosen [2] calculated the wormhole geometry in a specific background. In fact, it was the second attempt to realize the basic structure of wormholes.
    [Show full text]
  • Problem Set 4 (Causal Structure)
    \Singularities, Black Holes, Thermodynamics in Relativistic Spacetimes": Problem Set 4 (causal structure) 1. Wald (1984): ch. 8, problems 1{2 2. Prove or give a counter-example: there is a spacetime with two points simultaneously con- nectable by a timelike geodesic, a null geodesic and a spacelike geodesic. 3. Prove or give a counter-example: if two points are causally related, there is a spacelike curve connecting them. 4. Prove or give a counter-example: any two points of a spacetime can be joined by a spacelike curve. (Hint: there are three cases to consider, first that the temporal futures of the two points intesect, second that their temporal pasts do, and third that neither their temporal futures nor their temporal pasts intersect; recall that the manifold must be connected.) 5. Prove or give a counter-example: every flat Lorentzian metric is temporally orientable. 6. Prove or give a counter-example: if the temporal futures of two points do not intersect, then neither do their temporal pasts. 7. Prove or give a counter-example: for a point p in a spacetime, the temporal past of the temporal future of the temporal past of the temporal future. of p is the entire spacetime. (Hint: if two points can be joined by a spacelike curve, then they can be joined by a curve consisting of some finite number of null geodesic segments glued together; recall that the manifold is connected.) 8. Prove or give a counter-example: if the temporal past of p contains the entire temporal future of q, then there is a closed timelike curve through p.
    [Show full text]
  • Theoretical Computer Science Causal Set Topology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 405 (2008) 188–197 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Causal set topology Sumati Surya Raman Research Institute, Bangalore, India article info a b s t r a c t Keywords: The Causal Set Theory (CST) approach to quantum gravity is motivated by the observation Space–time that, associated with any causal spacetime (M, g) is a poset (M, ≺), with the order relation Causality ≺ corresponding to the spacetime causal relation. Spacetime in CST is assumed to have a Topology Posets fundamental atomicity or discreteness, and is replaced by a locally finite poset, the causal Quantum gravity set. In order to obtain a well defined continuum approximation, the causal set must possess the requisite intrinsic topological and geometric properties that characterise a continuum spacetime in the large. The study of causal set topology is thus dictated by the nature of the continuum approximation. We review the status of causal set topology and present some new results relating poset and spacetime topologies. The hope is that in the process, some of the ideas and questions arising from CST will be made accessible to the larger community of computer scientists and mathematicians working on posets. © 2008 Published by Elsevier B.V. 1. The spacetime poset and causal sets In Einstein’s theory of gravity, space and time are merged into a single entity represented by a pseudo-Riemannian or Lorentzian geometry g of signature − + ++ on a differentiable four dimensional manifold M.
    [Show full text]
  • Weyl Metrics and Wormholes
    Prepared for submission to JCAP Weyl metrics and wormholes Gary W. Gibbons,a;b Mikhail S. Volkovb;c aDAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK bLaboratoire de Math´ematiqueset Physique Th´eorique,LMPT CNRS { UMR 7350, Universit´ede Tours, Parc de Grandmont, 37200 Tours, France cDepartment of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya street 18, 420008 Kazan, Russia E-mail: [email protected], [email protected] Abstract. We study solutions obtained via applying dualities and complexifications to the vacuum Weyl metrics generated by massive rods and by point masses. Rescal- ing them and extending to complex parameter values yields axially symmetric vacuum solutions containing singularities along circles that can be viewed as singular mat- ter sources. These solutions have wormhole topology with several asymptotic regions interconnected by throats and their sources can be viewed as thin rings of negative tension encircling the throats. For a particular value of the ring tension the geometry becomes exactly flat although the topology remains non-trivial, so that the rings liter- ally produce holes in flat space. To create a single ring wormhole of one metre radius one needs a negative energy equivalent to the mass of Jupiter. Further duality trans- formations dress the rings with the scalar field, either conventional or phantom. This gives rise to large classes of static, axially symmetric solutions, presumably including all previously known solutions for a gravity-coupled massless scalar field, as for exam- ple the spherically symmetric Bronnikov-Ellis wormholes with phantom scalar. The multi-wormholes contain infinite struts everywhere at the symmetry axes, apart from arXiv:1701.05533v3 [hep-th] 25 May 2017 solutions with locally flat geometry.
    [Show full text]