Dynamics of the Four Kinds of Trapping Horizons & Existence of Hawking
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Universal Thermodynamics in the Context of Dynamical Black Hole
universe Article Universal Thermodynamics in the Context of Dynamical Black Hole Sudipto Bhattacharjee and Subenoy Chakraborty * Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal, India; [email protected] * Correspondence: [email protected] Received: 27 April 2018; Accepted: 22 June 2018; Published: 1 July 2018 Abstract: The present work is a brief review of the development of dynamical black holes from the geometric point view. Furthermore, in this context, universal thermodynamics in the FLRW model has been analyzed using the notion of the Kodama vector. Finally, some general conclusions have been drawn. Keywords: dynamical black hole; trapped surfaces; universal thermodynamics; unified first law 1. Introduction A black hole is a region of space-time from which all future directed null geodesics fail to reach the future null infinity I+. More specifically, the black hole region B of the space-time manifold M is the set of all events P that do not belong to the causal past of future null infinity, i.e., B = M − J−(I+). (1) Here, J−(I+) denotes the causal past of I+, i.e., it is the set of all points that causally precede I+. The boundary of the black hole region is termed as the event horizon (H), H = ¶B = ¶(J−(I+)). (2) A cross-section of the horizon is a 2D surface H(S) obtained by intersecting the event horizon with a space-like hypersurface S. As event the horizon is a causal boundary, it must be a null hypersurface generated by null geodesics that have no future end points. In the black hole region, there are trapped surfaces that are closed 2-surfaces (S) such that both ingoing and outgoing congruences of null geodesics are orthogonal to S, and the expansion scalar is negative everywhere on S. -
Stephen Hawking: 'There Are No Black Holes' Notion of an 'Event Horizon', from Which Nothing Can Escape, Is Incompatible with Quantum Theory, Physicist Claims
NATURE | NEWS Stephen Hawking: 'There are no black holes' Notion of an 'event horizon', from which nothing can escape, is incompatible with quantum theory, physicist claims. Zeeya Merali 24 January 2014 Artist's impression VICTOR HABBICK VISIONS/SPL/Getty The defining characteristic of a black hole may have to give, if the two pillars of modern physics — general relativity and quantum theory — are both correct. Most physicists foolhardy enough to write a paper claiming that “there are no black holes” — at least not in the sense we usually imagine — would probably be dismissed as cranks. But when the call to redefine these cosmic crunchers comes from Stephen Hawking, it’s worth taking notice. In a paper posted online, the physicist, based at the University of Cambridge, UK, and one of the creators of modern black-hole theory, does away with the notion of an event horizon, the invisible boundary thought to shroud every black hole, beyond which nothing, not even light, can escape. In its stead, Hawking’s radical proposal is a much more benign “apparent horizon”, “There is no escape from which only temporarily holds matter and energy prisoner before eventually a black hole in classical releasing them, albeit in a more garbled form. theory, but quantum theory enables energy “There is no escape from a black hole in classical theory,” Hawking told Nature. Peter van den Berg/Photoshot and information to Quantum theory, however, “enables energy and information to escape from a escape.” black hole”. A full explanation of the process, the physicist admits, would require a theory that successfully merges gravity with the other fundamental forces of nature. -
The Negative Energy in Generalized Vaidya Spacetime
universe Communication The Negative Energy in Generalized Vaidya Spacetime Vitalii Vertogradov 1,2 1 Department of the Theoretical Physics and Astronomy, Herzen State Pedagogical University, 191186 St. Petersburg, Russia; [email protected] 2 The SAO RAS, Pulkovskoe Shosse 65, 196140 St. Petersburg, Russia Received: 17 August 2020; Accepted: 17 September 2020; Published: 22 September 2020 Abstract: In this paper we consider the negative energy problem in generalized Vaidya spacetime. We consider several models where we have the naked singularity as a result of the gravitational collapse. In these models we investigate the geodesics for particles with negative energy when the II type of the matter field satisfies the equation of the state P = ar (a 2 [0 , 1]). Keywords: generalized Vaidya spacetime; naked singularity; black hole; negative energy 1. Introduction In 1969 R. Penrose theoretically predicted the effect of the negative energy formation in the Kerr metric during the process of the decay or the collision. Furthermore, the nature of the geodesics for particles with negative energy was investigated [1,2]. It was shown that in the ergosphere of a rotating black hole closed orbits for such particles are absent. This geodesics must appear from the region inside the gravitational radius. Moreover, there was research devoted to the particles with negative energy in Schwarzschild spacetime which was conducted by A. A. Grib and Yu. V. Pavlov [3]. They showed that the particles with negative energy can exist only in the region inside of the event horizon. However, the Schwarzschild black hole is the eternal one and we must consider the gravitational collapse to speak about the past of the geodesics for particles with negative energy. -
The Conformal Flow of Metrics and the General Penrose Inequality 3
THE CONFORMAL FLOW OF METRICS AND THE GENERAL PENROSE INEQUALITY QING HAN AND MARCUS KHURI Abstract. The conformal flow of metrics [2] has been used to successfully establish a special case of the Penrose inequality, which yields a lower bound for the total mass of a spacetime in terms of horizon area. Here we show how to adapt the conformal flow of metrics, so that it may be applied to the Penrose inequality for general initial data sets of the Einstein equations. The Penrose conjecture without the assumption of time symmetry is then reduced to solving a system of PDE with desirable properties. 1. Introduction Let (M,g,k) be an initial data set for the Einstein equations with a single asymptotically flat end. This triple consists of a 3-manifold M, on which a Riemannian metric g and symmetric 2-tensor k are defined and satisfy the constraint equations (1.1) 16πµ = R + (T rk)2 − |k|2, 8πJ = div(k + (T rk)g). The quantities µ and J represent the energy and momentum densities of the matter fields, respec- tively, whereas R denotes the scalar curvature of g. The dominant energy condition will be assumed µ ≥ |J|. This asserts that all measured energy densities are nonnegative, and implies that matter cannot travel faster than the speed of light. Null expansions measure the strength of the gravitational field around a hypersurface S ⊂ M and are given by (1.2) θ± := HS ± T rSk, where HS denotes the mean curvature with respect to the unit normal pointing towards spatial infinity. -
Black Holes and Black Hole Thermodynamics Without Event Horizons
General Relativity and Gravitation (2011) DOI 10.1007/s10714-008-0739-9 RESEARCHARTICLE Alex B. Nielsen Black holes and black hole thermodynamics without event horizons Received: 18 June 2008 / Accepted: 22 November 2008 c Springer Science+Business Media, LLC 2009 Abstract We investigate whether black holes can be defined without using event horizons. In particular we focus on the thermodynamic properties of event hori- zons and the alternative, locally defined horizons. We discuss the assumptions and limitations of the proofs of the zeroth, first and second laws of black hole mechan- ics for both event horizons and trapping horizons. This leads to the possibility that black holes may be more usefully defined in terms of trapping horizons. We also review how Hawking radiation may be seen to arise from trapping horizons and discuss which horizon area should be associated with the gravitational entropy. Keywords Black holes, Black hole thermodynamics, Hawking radiation, Trapping horizons Contents 1 Introduction . 2 2 Event horizons . 4 3 Local horizons . 8 4 Thermodynamics of black holes . 14 5 Area increase law . 17 6 Gravitational entropy . 19 7 The zeroth law . 22 8 The first law . 25 9 Hawking radiation for trapping horizons . 34 10 Fluid flow analogies . 36 11 Uniqueness . 37 12 Conclusion . 39 A. B. Nielsen Center for Theoretical Physics and School of Physics College of Natural Sciences, Seoul National University Seoul 151-742, Korea [email protected] 2 A. B. Nielsen 1 Introduction Black holes play a central role in physics. In astrophysics, they represent the end point of stellar collapse for sufficiently large stars. -
Verlinde's Emergent Gravity and Whitehead's Actual Entities
The Founding of an Event-Ontology: Verlinde's Emergent Gravity and Whitehead's Actual Entities by Jesse Sterling Bettinger A Dissertation submitted to the Faculty of Claremont Graduate University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Faculty of Religion and Economics Claremont, California 2015 Approved by: ____________________________ ____________________________ © Copyright by Jesse S. Bettinger 2015 All Rights Reserved Abstract of the Dissertation The Founding of an Event-Ontology: Verlinde's Emergent Gravity and Whitehead's Actual Entities by Jesse Sterling Bettinger Claremont Graduate University: 2015 Whitehead’s 1929 categoreal framework of actual entities (AE’s) are hypothesized to provide an accurate foundation for a revised theory of gravity to arise compatible with Verlinde’s 2010 emergent gravity (EG) model, not as a fundamental force, but as the result of an entropic force. By the end of this study we should be in position to claim that the EG effect can in fact be seen as an integral sub-sequence of the AE process. To substantiate this claim, this study elaborates the conceptual architecture driving Verlinde’s emergent gravity hypothesis in concert with the corresponding structural dynamics of Whitehead’s philosophical/scientific logic comprising actual entities. This proceeds to the extent that both are shown to mutually integrate under the event-based covering logic of a generative process underwriting experience and physical ontology. In comparing the components of both frameworks across the epistemic modalities of pure philosophy, string theory, and cosmology/relativity physics, this study utilizes a geomodal convention as a pre-linguistic, neutral observation language—like an augur between the two theories—wherein a visual event-logic is progressively enunciated in concert with the specific details of both models, leading to a cross-pollinized language of concepts shown to mutually inform each other. -
Redalyc.Quantization of Horizon Entropy and the Thermodynamics of Spacetime
Brazilian Journal of Physics ISSN: 0103-9733 [email protected] Sociedade Brasileira de Física Brasil Skákala, Jozef Quantization of Horizon Entropy and the Thermodynamics of Spacetime Brazilian Journal of Physics, vol. 44, núm. 2-3, -, 2014, pp. 291-304 Sociedade Brasileira de Física Sâo Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=46431122018 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Braz J Phys (2014) 44:291–304 DOI 10.1007/s13538-014-0177-y PARTICLES AND FIELDS Quantization of Horizon Entropy and the Thermodynamics of Spacetime Jozef Skakala´ Received: 10 August 2013 / Published online: 20 February 2014 © Sociedade Brasileira de F´ısica 2014 Abstract This is a review of my work published in the basic results from some of the papers I published during papers of Skakala (JHEP 1201:144, 2012; JHEP 1206:094, that period [1–4]. It gives a more detailed discussion of the 2012) and Chirenti et al. (Phys. Rev. D 86:124008, 2012; results than the accounts in those papers, and it connects the Phys. Rev. D 87:044034, 2013). It offers a more detailed dis- results in [1–4] to certain conclusions recently reached by cussion of the results than the accounts in those papers, and other researchers. It also presents some new results, such it links my results to some conclusions recently reached by that provide additional support for the basic idea presented other authors. -
Spacetime Penrose Inequality for Asymptotically Hyperbolic Spherical Symmetric Initial Data
U.U.D.M. Project Report 2020:27 Spacetime Penrose Inequality For Asymptotically Hyperbolic Spherical Symmetric Initial Data Mingyi Hou Examensarbete i matematik, 30 hp Handledare: Anna Sakovich Examinator: Julian Külshammer Augusti 2020 Department of Mathematics Uppsala University Spacetime Penrose Inequality For Asymptotically Hyperbolic Spherically Symmetric Initial Data Mingyi Hou Abstract In 1973, R. Penrose conjectured that the total mass of a space-time containing black holes cannot be less than a certain function of the sum of the areas of the event horizons. In the language of differential geometry, this is a statement about an initial data set for the Einstein equations that contains apparent horizons. Roughly speaking, an initial data set for the Einstein equations is a mathematical object modelling a slice of a space-time and an apparent horizon is a certain generalization of a minimal surface. Two major breakthroughs concerning this conjecture were made in 2001 by Huisken and Ilmanen respectively Bray who proved the conjecture in the so-called asymptotically flat Riemannian case, that is when the slice of a space-time has no extrinsic curvature and its intrinsic geometry resembles that of Euclidean space. Ten years later, Bray and Khuri proposed an approach using the so-called generalized Jang equation which could potentially be employed to deal with the general asymptotically flat case by reducing it to the Riemannian case. Bray and Khuri have successfully implemented this strategy under the assumption that the initial data is spherically symmetric. In this thesis, we study a suitable modification of Bray and Khuri's approach in the case when the initial data is asymptotically hyperbolic (i.e. -
Black Holes from a to Z
Black Holes from A to Z Andrew Strominger Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138, USA Last updated: July 15, 2015 Abstract These are the lecture notes from Professor Andrew Strominger's Physics 211r: Black Holes from A to Z course given in Spring 2015, at Harvard University. It is the first half of a survey of black holes focusing on the deep puzzles they present concerning the relations between general relativity, quantum mechanics and ther- modynamics. Topics include: causal structure, event horizons, Penrose diagrams, the Kerr geometry, the laws of black hole thermodynamics, Hawking radiation, the Bekenstein-Hawking entropy/area law, the information puzzle, microstate counting and holography. Parallel issues for cosmological and de Sitter event horizons are also discussed. These notes are prepared by Yichen Shi, Prahar Mitra, and Alex Lupsasca, with all illustrations by Prahar Mitra. 1 Contents 1 Introduction 3 2 Causal structure, event horizons and Penrose diagrams 4 2.1 Minkowski space . .4 2.2 de Sitter space . .6 2.3 Anti-de Sitter space . .9 3 Schwarzschild black holes 11 3.1 Near horizon limit . 11 3.2 Causal structure . 12 3.3 Vaidya metric . 15 4 Reissner-Nordstr¨omblack holes 18 4.1 m2 < Q2: a naked singularity . 18 4.2 m2 = Q2: the extremal case . 19 4.3 m2 > Q2: a regular black hole with two horizons . 22 5 Kerr and Kerr-Newman black holes 23 5.1 Kerr metric . 23 5.2 Singularity structure . 24 5.3 Ergosphere . 25 5.4 Near horizon extremal Kerr . 27 5.5 Penrose process . -
Analogue Gravity
Analogue Gravity Carlos Barcel´o, Instituto de Astrof´ısica de Andaluc´ıa Granada, Spain e-mail: [email protected] http://www.iaa.csic.es/ Stefano Liberati, International School for Advanced Studies and INFN Trieste, Italy e-mail: [email protected] http://www.sissa.it/˜liberati and Matt Visser, Victoria University of Wellington New Zealand e-mail: [email protected] http://www.mcs.vuw.ac.nz/˜visser (Friday 13 May 2005; Updated 1 June 2005; LATEX-ed February 4, 2008) 1 Abstract Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity). 2 Contents 1 Introduction 8 1.1 Going further ........................... 9 2 The simplest example of an analogue model 10 2.1 Background ............................ 10 2.2 Geometrical acoustics ....................... 11 2.3 Physical acoustics ........................ -
Romero Introduction to Black Hole Astrophysics
Black hole astrophysics Gustavo E. Romero Grupo de Astrofísica Relativista y Radioastronomía Instituto Argentino de Radioastronomía, CONICET-CIC Facultad de Ciencias Astronómicas y Geofísicas, UNLP [email protected], [email protected] What is a star? e What is a star? Eddington proposed (1926): 1.Thermonuclear reactions are the source of energy in the stars 2.The outward pressure of raditation should be taken into account in the equation for equilibrium. What is a star? What is a star? What is a star? What is a star? What is a star? What is a star? The end of stars The end of stars A pair-instability supernova occurs when pair production, the production of free electrons and positrons in the collision between atomic nuclei and energetic gamma rays, reduces thermal pressure inside a supermassive star's core. This pressure drop leads to a partial collapse, then greatly accelerated burning in a runaway thermonuclear explosion which blows the star completely apart without leaving a black hole remnant behind. Pair-instability supernovae can only happen in stars with a mass range from around 130 to 250 solar masses and low to moderate metallicity (low abundance of elements other than hydrogen and helium, a situation common in Population III stars). Oppenheimer & Snyder (1939): non-stopping collapse. Collapse to what? The answer is in General Relativity. Black holes Albert Einstein John A. Wheeler Letter from Karl Schwarzschild to Einstein, 22 December 1915 Schwarzschild is one of the few astronomers who are interested in Einstein's General Theory of Relativity. In December 1915, he is based at the Russian front line. -
Horizon in Cosmology
The apparent (gravitational) horizon in cosmology Item Type Article Authors Melia, Fulvio Citation American Journal of Physics 86, 585 (2018); doi: 10.1119/1.5045333 DOI 10.1119/1.5045333 Publisher AMER ASSOC PHYSICS TEACHERS Journal AMERICAN JOURNAL OF PHYSICS Rights © 2018 American Association of Physics Teachers. Download date 29/09/2021 22:21:29 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/630525 The apparent (gravitational) horizon in cosmology Fulvio Melia Citation: American Journal of Physics 86, 585 (2018); doi: 10.1119/1.5045333 View online: https://doi.org/10.1119/1.5045333 View Table of Contents: http://aapt.scitation.org/toc/ajp/86/8 Published by the American Association of Physics Teachers Articles you may be interested in A classical analogy for quantum band formation American Journal of Physics 86, 609 (2018); 10.1119/1.5045332 Lagrangian vs Hamiltonian: The best approach to relativistic orbits American Journal of Physics 86, 678 (2018); 10.1119/1.5047439 A simple method of coil design American Journal of Physics 86, 602 (2018); 10.1119/1.5042244 Using a shoebox spectrograph to investigate the differences between reflection and emission American Journal of Physics 86, 594 (2018); 10.1119/1.5045205 Blackbody radiation in classical physics: A historical perspective American Journal of Physics 86, 495 (2018); 10.1119/1.5034785 Precise Dimensions: A History of Units from 1791–2018 American Journal of Physics 86, 638 (2018); 10.1119/1.5040579 The apparent (gravitational) horizon in cosmology Fulvio Meliaa) Department of Physics, The Applied Math Program, and Department of Astronomy, The University of Arizona, Tucson, Arizona 85721 (Received 23 March 2018; accepted 17 June 2018) In general relativity, a gravitational horizon (more commonly known as the “apparent horizon”) is an imaginary surface beyond which all null geodesics recede from the observer.