Prontosil Sulfonamide

Total Page:16

File Type:pdf, Size:1020Kb

Prontosil Sulfonamide Chemotherapy: this term is refers to treatment of disease by chemicals that kill cells, specifically those of micro-organism (virus ,bacteria, fungi, protozoa, and parasites) or cancer. *1877: Louis Pasteur, discovered bacterial diseases . *1900:Ehrlish was working on tissue dyes with in Arsenic derivatives (salvarsan) which effective against trypanosoma (sphlis) ,but later they found that arsenic causes hepatotoxicity or nephrotoxicity . ** selective toxicity ( S.T) : The substance or drug which inhibit or kill the M.O selectively with no or little effect on host . *1929:Fleming discover penicillin *1939:Domagk developed the prontosil from red tissue dye . prontosil sulfonamide *1940:Florey used the penicillin as drug . *1942:Waksmas ,define the antibiotic substance produce from the living M.O which inhibit or kill the another living M.O Waksmas Streptomycin Antibacterial not antibiotic. Antibacterial include chemical drug and antibiotic . *Antibiotic :is a substance or compound (made from a living source) that kill or inhibit the growth of bacteria . *Antibacterial : is a substance or compound that kills or inhibit the growth of bacteria 1 Classification of Antibacterials : There are -4- ways to classify the antibacterial they are : 1-according to the nature: a-synthetic chemical e.g. sulfonamide. b-antibiotic e.g. penicillin G. c-semi synthetic ( modified the antibiotic ) e.g. ampicillin, carbenicillin 2-according to the effectiveness: a- Bactericidal : (agent that destroys or kills bacteria ) e.g. penicillin, amino glycoside , cephalosporin (narrow spectrum) b- Bacteriostatic: (agent that inhibits the growth or reproduction of bacteria) . e.g. tetracycline , chloramphenicol ,erythromycin ,sulfonamide. (broad spectrum) 3- according to the spectrum : a- narrow spectrum : (agent acting only on single or limited group of micro-organisms ) . e.g. penicillin G, amino glycoside like streptomycin . b- broad spectrum :(agent that effective against G+ also against G- bacteria). e.g.ampicillin , chloramphenicol , tetracycline c- extend spectrum : (agent that effect on a wide range arity of M.O ) e.g. enrofloxacin , sulfa and trimethoprim . 4- according to the mechanism of action : a- antibacterial which inhibit cell wall synthesis. β – lactum ring b- antibacterial which inhibit protein synthesis they effect on ribosome which effect to 30s and 50s : 1- binding irreversibly to 30s, e.g. aminoglycosides , streptomycin 2 2-binding reversibly to 30s , e.g. tetracycline 3- binding reversibly to 50s , e.g. chloramphenicol , macrolides , erythromycin , lincocins. c- antibacterial which effect on permeability of cell membrane they act as detergent cell membrane . e.g. polymyxins d- antibacterial which inhibit synthesis of folic acid (antimetabolites) e.g. sulfonamides and trimethoprim. e- antibacterial which inhibit RNA synthesis e.g. rifampin ( (for tuberculosis ). f- antibacterial which inhibit DNA synthesis e.g. 1- fluroquinolone : enrofloxacin ,flumequine 2- nitrofurans : furaltidone. ** Resistance of M.O to antibacterial : - Drug resistance :temporary or permanent capacity of micro-organism to remain viable or multiplying in presence of certain concentration of antibacterial which would destroy another similar M.O. - type of resistance : 1-intrinsic ( natural ) resistance : It is naturally resistant to antibacterial without prior exposure to the antibacterial because of the lack of receptor on the M.O. e.g. mycoplasma . naturally resistance to penicillin because of lack the cell wall . 2- acquired resistance : It is resistance of M.O which due to prior exposure to certain antibacterial or transferred from another M.O. *acquired res. Consist by- 2- ways: 1-either from using sub lethal or sub inhibitory concentration for long time and become resistance . 2-transfer from other resistance M.O (more common ) 3 *Transferable resistance : It is an extra chromosomal piece of DNA which carry genes (code)for resistance is called resistance factor . Resistant factor consist of 2 parts : 1- resistance determent (RD) 2- resistance transfer (RTS) *mechanism of resistance : 1-codes for enzymes which destroy or change the structure of antibacterial -penicillinase only for penicillin . -acetyl transferase for chloramphenicol. -adenylase , phosforylase , acetylase for amino glycosides . 2-codes for decrease or prevent entry (uptake ) of antibacterial in side of M.O e.g. aminoglycosides 3- decrease the affinity of binding of antibacterial to it is binding site e.g. tetracycline 4-change the shape or structure of binding site . *method of transfer bacterial resistance : 1-conjugation : transfer the R.F from R.M.O (donor) to non R.M.O by direct contact through piles (bridge). 2-transduction : transfer of RD after multiplication by bacteriofage from R.M.O to non R.M.O 3-transformation :transfer of RF from R.M.O after lyses to non R.M.O 4-transposon:part of plasmid which contain one gene cod which jumped from plasmid to plasmid or from plasmid to chromosome or from chromosome to plasmid inside the organism. 4 Penicillin -discovered by Fleming 1929 ,produced by penicillinum natatum , contain β –lactam ring (6- amino pencillinic acid) - - -mechanism of action : Inhibit the cell wall synthesis by inhibiting the rigidity of peptidoglycan layer by inhibiting the transpeptidase. enzyme . • Penicillins can be divided to four groups they are:- 1- Natural(Basic) Penicillins: - They are narrow spectrum, bactericidal, and penicillinase sensitive (Penicillinase is specific type of -lactamase, affect the penicillins by hydrolysing the -lactam ring). - There are two types of natural penicillins they are: a- Penicillin G: (Benzyl penicillin, Procain penicillin, Benzathine penicillin): It was the first of the penicillins, and remains an important and useful antibiotic,it is particularly active against Gram-positive bacteria, sensitive micro-organisms include Gram positive streptococci, Gram-positive Bacilli, Gram-negative cocci (Neisseria), most anaerobic bacteria including Clostridium and Spirochetes. -Staphylococcus aureus resist natural penicillins because of its ability to produce penicillinase (β-lactamase) Penicillin G is inactivated by gastric juice (Acid labile) so that it not administrated orally but used via other routes like intravenous and 5 Intramuscular. b-Penicillin V: (Phenoxymethyl penicillin) - Semi synthetic penicillin, it has similar bacterial effect to Penicillin G. Penicillin V is acid stable in contrast to Penicillin G therefore it can be administred orally. 2- Antistaphylococcal (penicillinase resistant) Penicillins: They are semi-synthetic, narrow spectrum, acid stable (can be administrated orally) and penicillinase resistant penicillins. These antibiotics are effective against streptococci and most community- acquired Penicillin-resistant staph. infection (drug of choice). Examples; Nafcillin, oxacillin, cloxacillin, and dicloxacillin 3-Aminopencillins (extended spectrum pencillins): Semi –synthetic ,extended spectrum ,acid stable and penicillinase sensitive penicillins .they have an antibacterial spectrum similar to penicillin G but more effective against Gram-negative bacilli ,they have given orally and paraenterally . Examples : Ampicillin , Amoxicillin and Pivampicillin. 4-Antipseudomonal penicillins: Semi-synthetic, broad spectrum, acid labile and penicillinase sensitive penicillins. Examples; Carbencillin, Mezlocillin, piperacillin, and ticarcillin. Clinical problems with penicillins : 1- Narrow spectrum: it corrected by administration of extended or broad spectrum penicillins instead of narrow spectrum penicillins 2- Acid lability: it corrected by administration of acid stable penicillins . 3- Short Half- life: it corrected by increase the half life of penicillins by using of probencid which blocks the tubular secretion of penicillin . thereby prolonging it is half-life. 4- Penicillinase sensitivity: it solved by using of Clavulanic- 6 suitable penicillin . Side effect of penicillins: 1-hypersensitivity : it range between skin rash to anaphylactic shock lead to death. 2-oral penicillin it cause GIT disturbance (diarrhea) due to effect to normal micro flora of the GIT , e.g. fungus and bacteria(E coli)and cause diarrhea. 3-slight nephrotoxicity . 4-neurotoxicity :penicillins irritant to the neural tissues so that they induce seizures . Dose : Penicillin G it is Biological I.U Substance which measure in I.U(international unit) but it is not equal in all time . I.U for penicillin G = 0.6 µg 1667 I.U = 1mg Cephalosporins: -the cephalosporins are semi-synthetic antibiotic because of very toxic ,derived from products of various micro-organism ,including cephalosporium and streptomyces. -all cephalosporins have a7- amino cephalosporanic acid and composed of dihydrothiazine ring fused to β – lactam ring -the cephalosporin β – lactam ring is the chemical group associated with 7 Mechanism of action : It is the same like penicillin. *cephalosporins can be divided into four generations they are: 1-First generation : example – oral (acid stable) I.M ,I.V (acid lable) The first generation drugs are active against of both G+ and G- ,pasteurella,E.coli ,actinobacillus actinomyces , haemophilus , clostridium and salmonella spp. 2-Second generation: Example oral I.V ,I.M Second generation have good activity against G+ and G- 3-Third generation : Third generation more active against the G-including β-lactamase producing strains and drug choice for pseudomonas . 4-Fourth generation -cefeprime . I.V 8 They are extremely broad spectrum being highly active
Recommended publications
  • A TWO-YEAR RETROSPECTIVE ANALYSIS of ADVERSE DRUG REACTIONS with 5PSQ-031 FLUOROQUINOLONE and QUINOLONE ANTIBIOTICS 24Th Congress Of
    A TWO-YEAR RETROSPECTIVE ANALYSIS OF ADVERSE DRUG REACTIONS WITH 5PSQ-031 FLUOROQUINOLONE AND QUINOLONE ANTIBIOTICS 24th Congress of V. Borsi1, M. Del Lungo2, L. Giovannetti1, M.G. Lai1, M. Parrilli1 1 Azienda USL Toscana Centro, Pharmacovigilance Centre, Florence, Italy 2 Dept. of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), 27-29 March 2019 Section of Pharmacology and Toxicology , University of Florence, Italy BACKGROUND PURPOSE On 9 February 2017, the Pharmacovigilance Risk Assessment Committee (PRAC) initiated a review1 of disabling To review the adverse drugs and potentially long-lasting side effects reported with systemic and inhaled quinolone and fluoroquinolone reactions (ADRs) of antibiotics at the request of the German medicines authority (BfArM) following reports of long-lasting side effects systemic and inhaled in the national safety database and the published literature. fluoroquinolone and quinolone antibiotics that MATERIAL AND METHODS involved peripheral and central nervous system, Retrospective analysis of ADRs reported in our APVD involving ciprofloxacin, flumequine, levofloxacin, tendons, muscles and joints lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin, prulifloxacin, rufloxacin, cinoxacin, nalidixic acid, reported from our pipemidic given systemically (by mouth or injection). The period considered is September 2016 to September Pharmacovigilance 2018. Department (PVD). RESULTS 22 ADRs were reported in our PVD involving fluoroquinolone and quinolone antibiotics in the period considered and that affected peripheral or central nervous system, tendons, muscles and joints. The mean patient age was 67,3 years (range: 17-92 years). 63,7% of the ADRs reported were serious, of which 22,7% caused hospitalization and 4,5% caused persistent/severe disability. 81,8% of the ADRs were reported by a healthcare professional (physician, pharmacist or other) and 18,2% by patient or a non-healthcare professional.
    [Show full text]
  • CHM 114: Bioorganic Molecules Week 6 Laboratory
    CHM 114: Bioorganic Molecules Week 6 Laboratory Azosulfonamides: Part 1. Synthesis of a Ligand for Protein Binding Studies1 Dyes and Serendipity: In the Persian fairy tale The Three Princes of Serendip, the title characters were forever discovering things they were not looking for at the time—thus, serendipity is the aptitude for for making happy discoveries by accident. The preparation of the first commercially important synthetic dye by William Henry Perkin (not of Perkin’s restaurant fame) in 1854 is a good example of a serendipitous discovery in science. During the nineteenth century quinine was the only drug known to be effective against malaria, and it could be obtained only from the bark of the cinchona tree, which grew in South America. French chemists had isolated pure quinine from cinchona bark in 1820, but the inaccessibility of the tree made natural quinine very expensive. Perkin, then an 18-year-old graduate student working for the eminent German chemist August Wilhelm von Hofmann, realized that anyone who could make synthetic quinine might well become rich and famous. Perkin knew nothing about the molecular structure of quinine—structural organic chemistry was in its infancy in the mid-1800’s—but he knew that quinine’s molecular formula was C20H24N2O2. Perkin prepared some allytoluidine (C10H13N), apparently thinking that two molecules of allyltoluidine plus three oxygen atoms minus a molecule of water would magically yield C20H24N2O2 –quinine! (Figure 1). H H N N +3[O] 2 OH H H C -H2O 3 H3CO Allyltoluidine N Quinine Figure 1. Perkin’s Idea for the Synthesis of Quinine Of course Perkin had attempted the impossible.
    [Show full text]
  • A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre
    A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre To cite this version: Tessa Trouchon, Sebastien Lefebvre. A Review of Enrofloxacin for Veterinary Use. Open Journal of Veterinary Medicine, 2016, 6 (2), pp.40-58. 10.4236/ojvm.2016.62006. hal-01503397 HAL Id: hal-01503397 https://hal.archives-ouvertes.fr/hal-01503397 Submitted on 7 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Open Journal of Veterinary Medicine, 2016, 6, 40-58 Published Online February 2016 in SciRes. http://www.scirp.org/journal/ojvm http://dx.doi.org/10.4236/ojvm.2016.62006 A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sébastien Lefebvre USC 1233 INRA-Vetagro Sup, Veterinary School of Lyon, Marcy l’Etoile, France Received 12 January 2016; accepted 21 February 2016; published 26 February 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract This review outlines the current knowledge on the use of enrofloxacin in veterinary medicine from biochemical mechanisms to the use in the field conditions and even resistance and ecotoxic- ity.
    [Show full text]
  • Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
    ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org).
    [Show full text]
  • Screening 36 Veterinary Drugs in Animal Origin Food by LC/MS/MS Combined with Modified Quechers Method
    Screening 36 Veterinary Drugs in Animal Origin Food by LC/MS/MS Combined with Modified QuEChERS Method Application Note Food Testing and Agriculture Authors Abstract Jin-Lan Sun, Chang Liu, Yue Song This application note introduces a modified QuEChERS method that screens food for Agilent Technologies Co., Ltd., four classes of veterinary drugs-sulfanilamides, macrocyclic lactones, quinolones, and Shanghai, 200131 China clopidols. The modified QuEChERS consists of an extraction kit (4 g Na2SO4+ Jian-Zhong Li 1 g NaCl) and a dispersive-SPE kit (50 mg PSA, 150 mg, C18EC, 900 mg Na2SO4); the Agilent Technologies Co., Ltd., extraction solvent is 1% acetic acid in acetonitrile. Satisfactory recoveries were Beijing, 100102 China achieved by this method for all four classes of veterinary drugs. The veterinary drugs were quantified by LC/ESI/MS/MS using Dynamic Multiple Reaction Monitoring (DMRM). The observed limits of detection are in accordance with the various MRLs for the four classes of veterinary drugs, and the average recoveries exceed 50%, thus meeting the requirement for routine analysis. Introduction Solutions and standards A 1% formic acid solution in ACN was made fresh daily by The QuEChERS method was first introduced for the extraction adding 1 mL of formic acid to 100 mL of ACN, then mixing of pesticides from fruits and vegetables [1]. The QuEChERS well. A 1% acetic acid solution in ACN was made fresh daily methodology can be divided into two steps, extraction/parti- by adding 1 mL of acetic acid to 100 mL of ACN, then mixing tioning and dispersive SPE (d-SPE). In the first step, acetoni- well.
    [Show full text]
  • Antibacterial Residue Excretion Via Urine As an Indicator for Therapeutical Treatment Choice and Farm Waste Treatment
    antibiotics Article Antibacterial Residue Excretion via Urine as an Indicator for Therapeutical Treatment Choice and Farm Waste Treatment María Jesús Serrano 1, Diego García-Gonzalo 1 , Eunate Abilleira 2, Janire Elorduy 2, Olga Mitjana 1 , María Victoria Falceto 1, Alicia Laborda 1, Cristina Bonastre 1 , Luis Mata 3 , Santiago Condón 1 and Rafael Pagán 1,* 1 Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; [email protected] (M.J.S.); [email protected] (D.G.-G.); [email protected] (O.M.); [email protected] (M.V.F.); [email protected] (A.L.); [email protected] (C.B.); [email protected] (S.C.) 2 Public Health Laboratory, Office of Public Health and Addictions, Ministry of Health of the Basque Government, 48160 Derio, Spain; [email protected] (E.A.); [email protected] (J.E.) 3 Department of R&D, ZEULAB S.L., 50197 Zaragoza, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-9-7676-2675 Abstract: Many of the infectious diseases that affect livestock have bacteria as etiological agents. Thus, therapy is based on antimicrobials that leave the animal’s tissues mainly via urine, reaching the environment through slurry and waste water. Once there, antimicrobial residues may lead to antibacterial resistance as well as toxicity for plants, animals, or humans. Hence, the objective was to describe the rate of antimicrobial excretion in urine in order to select the most appropriate molecule while reducing harmful effects. Thus, 62 pigs were treated with sulfamethoxypyridazine, Citation: Serrano, M.J.; oxytetracycline, and enrofloxacin. Urine was collected through the withdrawal period and analysed García-Gonzalo, D.; Abilleira, E.; via LC-MS/MS.
    [Show full text]
  • Multi-Residue Determination of Sulfonamide and Quinolone Residues in Fish Tissues by High Performance Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
    674 Journal of Food and Drug Analysis, Vol. 20, No. 3, 2012, Pages 674-680 doi:10.6227/jfda.2012200315 Multi-Residue Determination of Sulfonamide and Quinolone Residues in Fish Tissues by High Performance Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) CHUNG-WEI TSAI1, CHAN-SHING LIN1 AND WEI-HSIEN WANG1,2* 1. Division of Marine Biotechnology, Asia-Pacific Ocean Research Center, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C. 2. National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, R.O.C. (Received: August 30, 2010; Accepted: April 26, 2012) ABSTRACT A LC-MS/MS method was validated for the simultaneous quantification of 4 quinolones (oxolinic acid, enrofloxacine, ciprofloxacine, norfloxacine) and 4 sulfonamides (sulfamethoxypyridazine, sulfadoxine, sulfadimidine, sulfamerazine) on fish muscle following the Euro- pean Union’s (EU) criteria for the analysis of veterinary drug residues in foods. One gram of sample was extracted by acidic acetonitrile (0.5 mL of 0.1% formic acid in 7 mL of ACN), followed by LC-MS/MS analysis using an electrospray ionization interface. Typical recoveries of the 4 quinolones in the fish tissues ranged from 85 to 104%. While those of the sulfonamides ranged from 75 to 94% at the fortification level of 5.0 μg/kg. The decision limits (CCα) and detection capabilities (CCβ) of the quinolones were 1.35 to 2.10 μg/kg and 1.67 to 2.75 μg/kg, respectively. Meanwhile, the CCα and CCβ of the sulfonamides ranged from 1.62 μg/kg to 2.53μg/kg and 2.01μg/kg to 3.13 μg/kg, respectively.
    [Show full text]
  • AMEG Categorisation of Antibiotics
    12 December 2019 EMA/CVMP/CHMP/682198/2017 Committee for Medicinal Products for Veterinary use (CVMP) Committee for Medicinal Products for Human Use (CHMP) Categorisation of antibiotics in the European Union Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 29 October 2018 Adopted by the CVMP for release for consultation 24 January 2019 Adopted by the CHMP for release for consultation 31 January 2019 Start of public consultation 5 February 2019 End of consultation (deadline for comments) 30 April 2019 Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 19 November 2019 Adopted by the CVMP 5 December 2019 Adopted by the CHMP 12 December 2019 Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Categorisation of antibiotics in the European Union Table of Contents 1. Summary assessment and recommendations .......................................... 3 2. Introduction ............................................................................................ 7 2.1. Background ........................................................................................................
    [Show full text]
  • WSAVA List of Essential Medicines for Cats and Dogs
    The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs .....................................................................................................................
    [Show full text]
  • Transdermal Drug Delivery Device Including An
    (19) TZZ_ZZ¥¥_T (11) EP 1 807 033 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61F 13/02 (2006.01) A61L 15/16 (2006.01) 20.07.2016 Bulletin 2016/29 (86) International application number: (21) Application number: 05815555.7 PCT/US2005/035806 (22) Date of filing: 07.10.2005 (87) International publication number: WO 2006/044206 (27.04.2006 Gazette 2006/17) (54) TRANSDERMAL DRUG DELIVERY DEVICE INCLUDING AN OCCLUSIVE BACKING VORRICHTUNG ZUR TRANSDERMALEN VERABREICHUNG VON ARZNEIMITTELN EINSCHLIESSLICH EINER VERSTOPFUNGSSICHERUNG DISPOSITIF D’ADMINISTRATION TRANSDERMIQUE DE MEDICAMENTS AVEC COUCHE SUPPORT OCCLUSIVE (84) Designated Contracting States: • MANTELLE, Juan AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Miami, FL 33186 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • NGUYEN, Viet SK TR Miami, FL 33176 (US) (30) Priority: 08.10.2004 US 616861 P (74) Representative: Awapatent AB P.O. Box 5117 (43) Date of publication of application: 200 71 Malmö (SE) 18.07.2007 Bulletin 2007/29 (56) References cited: (73) Proprietor: NOVEN PHARMACEUTICALS, INC. WO-A-02/36103 WO-A-97/23205 Miami, FL 33186 (US) WO-A-2005/046600 WO-A-2006/028863 US-A- 4 994 278 US-A- 4 994 278 (72) Inventors: US-A- 5 246 705 US-A- 5 474 783 • KANIOS, David US-A- 5 474 783 US-A1- 2001 051 180 Miami, FL 33196 (US) US-A1- 2002 128 345 US-A1- 2006 034 905 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Nitroaromatic Antibiotics As Nitrogen Oxide Sources
    Review biomolecules Nitroaromatic Antibiotics as Nitrogen Oxide Sources Review Allison M. Rice, Yueming Long and S. Bruce King * Nitroaromatic Antibiotics as Nitrogen Oxide Sources Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; Allison M. Rice , Yueming [email protected] and S. Bruce (A.M.R.); King [email protected] * (Y.L.) * Correspondence: [email protected]; Tel.: +1-336-702-1954 Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; [email protected]: Nitroaromatic (A.M.R.); [email protected] antibiotics (Y.L.) show activity against anaerobic bacteria and parasites, finding * Correspondence: [email protected]; Tel.: +1-336-702-1954 use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis. Despite this activity and a clear need for the Abstract: Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding usedevelopment in the treatment of new of Heliobacter treatments pylori forinfections, these conditio tuberculosis,ns, the trichomoniasis, associated toxicity human Africanand lack of clear trypanosomiasis,mechanisms of action Chagas have disease limited and their leishmaniasis. therapeutic Despite development. this activity Nitroaro and a clearmatic need antibiotics for require thereductive development bioactivation of new treatments for activity for theseand this conditions, reductive the associatedmetabolism toxicity can convert
    [Show full text]
  • FLUOROQUINOLONES: from Structure to Activity and Toxicity
    FLUOROQUINOLONES: from structure to activity and toxicity F. Van Bambeke, Pharm. D. & P. M. Tulkens, MD, PhD Unité de Pharmacologie Cellulaire et Moléculaire Université Catholique de Louvain, Brussels, Belgium SBIMC / BVIKM www.sbimc.org - www.bvikm.org www.md.ucl.ac.be/facm www.isap.org soon... Mechanism of action of fluoroquinolones: the basics... PORIN DNA Topo DNA gyrase isomerase Gram (-) Gram (+) 2 key enzymes in DNA replication: DNA gyrase topoisomerase IV bacterial DNA is supercoiled Ternary complex DNA - enzyme - fluoroquinolone DNA GYRASE catalytic subunits COVALENTLY CLOSED CIRCULAR DNA FLUOROQUINOLONES: DNA GYRASE ATP binding subunits 4 stacked molecules (Shen, in Quinolone Antimicrobial Agents, 1993) Resistance to fluoroquinolones: the basics decreased efflux pump permeability DNA mutation of DNA gyrase Topo isomerase the enzymes Gram (-) Gram (+) Fluoroquinolones are the first entirely man-made antibiotics: do we understand our molecule ? R5 O R COOH 6 R7 X8 N R1 Don’t panic, we will travel together…. Chemistry and Activity This is where all begins... The pharmacophore common to all fluoroquinolones BINDING TO DNA R5 O O R C 6 - BINDING TO O BINDING TO THE ENZYME THE ENZYME R7 X8 N R1 AUTO-ASSEMBLING DOMAIN (for stacking) From chloroquine to nalidixic acid... nalidixic acid N CH3 O O HN CH 3 C - O chloroquine CH N N Cl N 3 C2H5 1939 O O C O- 1962 Cl N 1958 C2H5 7-chloroquinoline (synthesis intermediate found to display antibacterial activity) Nalidixic acid * a • typical chemical features of O O fluoroquinolones (a, b, c) BUT a naphthridone C - O- b (N at position 8: ) H C N N 3 • limited usefulness as drug C H 2 5 • narrow antibacterial spectrum c (Enterobacteriaceae only) • short half-life (1.5h) • high protein binding (90%) * Belg.
    [Show full text]