Vent Processes and Deposits of a Hiatus in a Violent Eruption

Total Page:16

File Type:pdf, Size:1020Kb

Vent Processes and Deposits of a Hiatus in a Violent Eruption VENT PROCESSES AND DEPOSITS OF A HIATUS IN A VIOLENT ERUPTION: QUILOTOA VOLCANO, ECUADOR By Joanne A. Best A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geology Northern Arizona University December 2010 Approved: __________________________________ Michael Ort, Ph.D., Chair __________________________________ Katharine V. Cashman, Ph.D. __________________________________ Nancy Riggs, Ph.D. ABSTRACT VENT PROCESSES AND DEPOSITS OF A HIATUS IN A VIOLENT ERUPTION: QUILOTOA VOLCANO, ECUADOR Joanne A. Best The 800 BP eruption of Quilotoa volcano, Ecuador, produced two plinian eruptions separated by a short hiatus. Units 1 and 3 (U1 and U3) of the eruption correspond to the first and second Plinian eruptions, respectively, which produced fallout and pyroclastic density currents. Unit 2 (U2) records processes during the hiatus and consists of three subunits: U2a, U2b, and U2c. This study examines uppermost U1 through to lowermost U3, with particular attention paid to U2, to determine why a dual eruption occurred. The field relations of the units, and the grain-size distributions, componentry and surficial characteristics of the samples, were investigated. U2a is the product of pyroclastic surges, U2b a fallout unit, and U2c the result of a single vulcanian eruption immediately prior to the onset of the second plinian event (U3). The granulometry study revealed that the units share some common grain sizes, namely the modes at 1.0, 2.0 and 4.0 phi, which indicate a common fragmentation processes for all the units. Common crystal-size populations appear to be the most likely cause of these modal grain sizes. Componentry data show that the units are equally crystal rich. The volume fraction of lithic fragments remained low and the vent and conduit stable, except at the top of U1. ii Low glass vesicularity, as determined through the study of the surficial characteristics of the grains, indicate that the gases that drove the eruption of U2b came from depth, and not from the fragmentation of the U2b material itself. U2b is also covered in an orange dust, the product of hydrothermal alteration. Transport processes had a very limited influence upon the characteristics of the deposits, other than a general thinning with distance. Erosion of the country rock at the top of U1 blocked the conduit and ended the plinian eruption. The period of hiatus, as defined by less explosive, lower volume, discontinuous eruptions, began with the emplacement of U2a surges from the main vent. The vent was eventually plugged with a dome. Gas flux from depth oxidized the U2b material located in a fumarole or secondary vent, which was periodically erupted and deposited as fallout. The accumulation of exsolved gases beneath the dome pressurized the system. The release of this pressure resulted in the vulcanian eruption that produced U2c, and the second plinian eruption quickly ensued, depositing U3. With a body of eruptable magma at depth, which would later be deposited as U3, the erosion of the conduit was enough to prevent a continued eruption and force a hiatus. This has implications for hazard mitigation, where it is necessary to determine whether a cessation of eruptive activity marks the end of the eruptive event, or is merely a short hiatus prior to a subsequent eruption of substantial magnitude. iii ACKNOWLEDGEMENTS This project was primary funded by a National Science Foundation grant, with additional funding from the Friday Lunch Clubbe. Many individuals helped make this project possible. Firstly, I would like to thank my advisor Michael Ort for his assistance on this project, Kathy Cashman (University of Oregon) and Nancy Riggs for joining my committee and their valuable input: discussion was always lively, even if we didn‟t all agree! I am indebted to the rest of the research team, who not only made the field season possible but also immensely enjoyable. Huge thanks to Jorge Bustillos (Escuela Politecnica Nacional, Quito) for being my wingman and tackling those crazy mountain roads, to Patty Mothes (Escuela Politecnica Nacional, Quito) for sharing her knowledge of the area, to Andrea di Muro (Observatoire Volcanologique, Reunion) for his expertise and for making us laugh, and to Mauro Rosi (Universita di Pisa, Italy) for his legendary careful insight in the field. Once back from the Andes I had extensive support. Thanks to Minard (Pete) Hall (Escuela Politecnica Nacional, Quito) for ensuring first and foremost that I got to take my samples home. Thanks to John Donavan (University of Oregon) and Jim Wittke for training me on the SEM, to Caleb Schiff for getting me started on the Coulter Particle Size Analyser, to Dan Ruscitto (University of Oregon) and Colleen Donegan for their insight and training in the FTIR method, and to Isolde Belien (University of Oregon) for rescuing my samples! I owe a lot to many more people and here are a few of them. Many thanks to Susan Sabala-Foreman and Meredith Michele Poggi-Jenkins for their departmental iv support. You both work immensely hard, helped me navigate a multitude of obstacles, and are the glue that keeps the whole operation together. Thanks to my housemates, Megan Beach, Chris Kassel, and Keri Thornton for their patience with me at the end of each long day, and to my officemates Tenielle Gaither and Rob Ross for putting up with me during work hours! Many thanks to Matt Schmidt for getting me through that first semester, to Colleen Donegan for her wisdom and humour, to Mallory Zelawski for emergency coffees and innumerable rides home, and to the entire department for being my home for the last couple of years. My final thanks have to go to the cornerstone that is my family. Most live many miles away but they have always encouraged me for as long as I can remember. My greatest thanks to my brother Andrew who has greatly supported me throughout this endeavour, and to my Mum and Dad, two people whom I am very fortunate to have in my life. v TABLE OF CONTENTS ABSTRACT ...................................................................................................................... II ACKNOWLEDGEMENTS ........................................................................................... IV TABLE OF CONTENTS ............................................................................................... VI LIST OF TABLES .......................................................................................................... XI LIST OF FIGURES ...................................................................................................... XII CHAPTER 1 ...................................................................................................................... 1 INTRODUCTION AND BACKGROUND ................................................................................................. 1 INTRODUCTION ...................................................................................................................................... 1 GEOLOGIC SETTING .............................................................................................................................. 3 The Andes ............................................................................................................................................... 3 Quilotoa .................................................................................................................................................. 5 BACKGROUND: ERUPTION DYNAMICS ......................................................................................... 13 The conduit ........................................................................................................................................... 13 The vent ................................................................................................................................................ 13 Fragmentation ....................................................................................................................................... 16 The role of water................................................................................................................................... 17 BACKGROUND: TRANSPORT PROCESSES ..................................................................................... 19 The Plume: grain-size distribution ........................................................................................................ 19 Fine-grained deposits ....................................................................................................................... 22 The Plume: componentry ...................................................................................................................... 23 Depositional processes ......................................................................................................................... 23 THIS STUDY ........................................................................................................................................... 25 Outline .................................................................................................................................................. 25 Significance .......................................................................................................................................... 27 CHAPTER 2 .................................................................................................................... 29 METHODS .................................................................................................................................................
Recommended publications
  • Dynamic Petrology and Rheology of Ascending Magma During Lava Dome Eruptions: Effusive–Explosive Activity
    Dynamic petrology and rheology of ascending magma during lava dome eruptions: Effusive–explosive activity Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy by Paul Anthony Wallace May 2019 Declaration of authorship I, Paul Anthony Wallace, declare that this thesis entitled “Dynamic petrology and rheology of ascending magma during lava dome eruptions: Effusive–explosive activity” and the work presented in it is my own. I confirm that: This thesis was completed as part of a research degree at the University of Liverpool; The material contained in this thesis has not been presented, nor is currently being presented, either wholly or in parts, for any other degree or qualifications; Where I have consulted published studies, this have been clearly referenced; Where the work was part of a collaborative effort, I have made clear what others have done and what I have contributed myself; Parts of this thesis have been published or in preparation for publication as: o Wallace, P.A., Kendrick, J.E., Ashworth, J.D., Miwa, T., Coats, R., De Angelis, S.H., Mariani, E., Utley, J.E.P., Biggin, A., Kendrick, R., Nakada, S., Matsushima, T., and Lavallée, Y. (published in Journal of Petrology). Petrological architecture of a magmatic shear zone: A multidisciplinary investigation of strain localisation during magma ascent at Unzen Volcano, Japan. o Wallace, P.A., De Angelis, S.H., Hornby, A.J., Kendrick, J.E., von Aulock, F.W., Clesham, S., Hughes, A., Utley, J.E.P., Hirose, T., Dingwell, D.B., and Lavallée, Y. (published in Geochimica et Cosmochimica Acta).
    [Show full text]
  • Rapid Magma Ascent and Generation of Th Excesses in the Lower Crust At
    Earth and Planetary Science Letters 255 (2007) 229–242 www.elsevier.com/locate/epsl Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue–Cordón Caulle, Southern Volcanic Zone, Chile ⁎ Brian R. Jicha a, , Brad S. Singer a, Brian L. Beard a, Clark M. Johnson a, Hugo Moreno-Roa b,c, José Antonio Naranjo b a Department of Geology and Geophysics, University of Wisconsin—Madison, 1215 West Dayton Street, Madison WI 53706, USA b Servicio Nacional de Geología y Minería (SERNAGEOMIN), Avenida Santa María, 0104 Santiago, Chile c Observatorio Volcanologico de los Andes del Sur (OVDAS), Cerro Ñielol-Sector Antenas, Temuco, Chile Received 28 July 2006; received in revised form 7 December 2006; accepted 8 December 2006 Available online 30 January 2007 Editor: R.W. Carlson Abstract Basaltic to rhyolitic lavas and tephras erupted over the last 70 kyr at the Puyehue–Cordón Caulle volcanic complex in the Andean Southern Volcanic Zone (SVZ) were analyzed for major and trace element, Sr isotope, and U–Th isotope compositions to constrain the timescales of magmatic processes and identify the subducted and crustal components involved in magma genesis. Internal U–Th mineral isochrons from five lavas and three tephra fall deposits are indistinguishable from their eruption ages, indicating a short period (b1000 yr) of crystal residence in the magma prior to eruption. The (230Th/232Th) ratios define a narrow range (0.80–0.83) compared to that of all SVZ lavas (0.72–0.97), suggesting that Puyehue basalt was derived from a relatively uniform mantle source. Dacites and rhyolites have the largest U excesses and likely evolved via fractional crystallization of a plagioclase-dominated mineral assemblage.
    [Show full text]
  • The Volcanic Ash Soils of Chile
    ' I EXPANDED PROGRAM OF TECHNICAL ASSISTANCE No. 2017 Report to the Government of CHILE THE VOLCANIC ASH SOILS OF CHILE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROMEM965 -"'^ .Y--~ - -V^^-.. -r~ ' y Report No. 2017 Report CHT/TE/LA Scanned from original by ISRIC - World Soil Information, as ICSU World Data Centre for Soils. The purpose is to make a safe depository for endangered documents and to make the accrued information available for consultation, following Fair Use Guidelines. Every effort is taken to respect Copyright of the materials within the archives where the identification of the Copyright holder is clear and, where feasible, to contact the originators. For questions please contact [email protected] indicating the item reference number concerned. REPORT TO THE GOVERNMENT OP CHILE on THE VOLCANIC ASH SOILS OP CHILE Charles A. Wright POOL ANL AGRICULTURE ORGANIZATION OP THE UNITEL NATIONS ROME, 1965 266I7/C 51 iß - iii - TABLE OP CONTENTS Page INTRODUCTION 1 ACKNOWLEDGEMENTS 1 RECOMMENDATIONS 1 BACKGROUND INFORMATION 3 The nature and composition of volcanic landscapes 3 Vbloanio ash as a soil forming parent material 5 The distribution of voloanic ash soils in Chile 7 Nomenclature used in this report 11 A. ANDOSOLS OF CHILE» GENERAL CHARACTERISTICS, FORMATIVE ENVIRONMENT, AND MAIN KINDS OF SOIL 11 1. TRUMAO SOILS 11 General characteristics 11 The formative environment 13 ÈS (i) Climate 13 (ii) Topography 13 (iii) Parent materials 13 (iv) Natural plant cover 14 (o) The main kinds of trumao soils ' 14 2. NADI SOILS 16 General characteristics 16 The formative environment 16 tö (i) Climat* 16 (ii) Topograph? and parent materials 17 (iii) Natural plant cover 18 B.
    [Show full text]
  • Chilean Notes, 1962-1963
    CHILEAN NOTES ' CHILEAN NOTES, 1962-1963 BY EVELIO ECHEVARRfA C. (Three illustrations: nos. 2I-23) HE mountaineering seasons of I 962 and I 963 have seen an increase in expeditionary activity beyond the well-trodden Central Andes of Chile. This activity is expected to increase in the next years, particularly in Bolivia and Patagonia. In the Central Andes, \vhere most of the mountaineering is concen­ trated, the following first ascents were reported for the summer months of I962: San Augusto, I2,o6o ft., by M. Acufia, R. Biehl; Champafiat, I3,I90 ft., by A. Diaz, A. Figueroa, G. and P. de Pablo; Camanchaca (no height given), by G. Fuchloger, R. Lamilla, C. Sepulveda; Los Equivo­ cados, I3,616 ft., by A. Ducci, E. Eglington; Puente Alto, I4,764 ft., by F. Roulies, H. Vasquez; unnamed, I4,935 ft., by R. Biehl, E. Hill, IVI. V ergara; and another unnamed peak, I 5,402 ft., by M. Acufia, R. Biehl. Besides the first ascent of the unofficially named peak U niversidad de Humboldt by the East German Expedition, previously reported by Mr. T. Crombie, there should be added to the credit of the same party the second ascent of Cerro Bello, I7,o6o ft. (K. Nickel, F. Rudolph, M. Zielinsky, and the Chilean J. Arevalo ), and also an attempt on the un­ climbed North-west face of Marmolejo, 20,0I3 ft., frustrated by adverse weather and technical conditions of the ice. In the same area two new routes were opened: Yeguas Heladas, I5,7I5 ft., direct by the southern glacier, by G.
    [Show full text]
  • Multiple Sources for Tephra from AD 1259 Volcanic Signal in Antarctic Ice
    Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino To cite this version: Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino. Mul- tiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, Elsevier, 2019, 210, pp.164-174. 10.1016/j.quascirev.2019.03.005. hal-02350371 HAL Id: hal-02350371 https://hal.archives-ouvertes.fr/hal-02350371 Submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Details Manuscript number JQSR_2019_21 Title MULTIPLE SOURCES FOR TEPHRA FROM AD 1259 VOLCANIC SIGNAL IN ANTARCTIC ICE CORES Abstract Strong volcanic signals simultaneously recorded in polar ice sheets are commonly assigned to major low-latitude eruptions that dispersed large quantities of aerosols in the global atmosphere with the potential of inducing climate perturbations. Parent eruptions responsible for specific events are typically deduced from matching to a known volcanic eruption having coincidental date. However, more robust source linkage can be achieved only through geochemical characterisation of the airborne volcanic glass products (tephra) sometimes preserved in the polar strata.
    [Show full text]
  • Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: the Indonesian Example
    geosciences Review Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example Mukhamad N. Malawani 1,2, Franck Lavigne 1,3,* , Christopher Gomez 2,4 , Bachtiar W. Mutaqin 2 and Danang S. Hadmoko 2 1 Laboratoire de Géographie Physique, Université Paris 1 Panthéon-Sorbonne, UMR 8591, 92195 Meudon, France; [email protected] 2 Disaster and Risk Management Research Group, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; [email protected] (C.G.); [email protected] (B.W.M.); [email protected] (D.S.H.) 3 Institut Universitaire de France, 75005 Paris, France 4 Laboratory of Sediment Hazards and Disaster Risk, Kobe University, Kobe City 658-0022, Japan * Correspondence: [email protected] Abstract: This paper discusses the relations between the impacts of volcanic eruptions at multiple- scales and the related-issues of disaster-risk reduction (DRR). The review is structured around local and global impacts of volcanic eruptions, which have not been widely discussed in the literature, in terms of DRR issues. We classify the impacts at local scale on four different geographical features: impacts on the drainage system, on the structural morphology, on the water bodies, and the impact Citation: Malawani, M.N.; on societies and the environment. It has been demonstrated that information on local impacts can Lavigne, F.; Gomez, C.; be integrated into four phases of the DRR, i.e., monitoring, mapping, emergency, and recovery. In Mutaqin, B.W.; Hadmoko, D.S. contrast, information on the global impacts (e.g., global disruption on climate and air traffic) only fits Review of Local and Global Impacts the first DRR phase.
    [Show full text]
  • Lesson Plans Villarrica Volcano Eruption
    My NASA Data - Lesson Plans Villarrica Volcano Eruption Purpose Students use scale to determine the area of volcanic deposits following the March 3, 2015 eruption of Chile's Mount Villarrica stratovolcano, one of the country's most active volcanoes. Learning Objectives Students use a scale to calculate a map area. Students determine the area of volcanic deposits. Students explain the time scale involved in the measured change. Why Does NASA Study This Phenomenon? Landsat 8 Launched on February 11, 2013, Landsat 8 (formerly the Landsat Data Continuity Mission, LDCM) is the most recently launched Landsat satellite. It is collecting valuable data and imagery used in 1 / 8 agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth’s surface on a global basis. The data from Landsat spacecraft constitute the longest record of the Earth’s continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Essential Questions How quickly did volcanic debris from Mount Villarricia's eruption cover the area? How much of thea area was covered? Materials Required Rulers Colored printouts of images Technology Requirements Standalone Lesson (no technology required) Teacher Background Information Glacier-clad Villarrica is one of Chile's most active volcanoes. It rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera.
    [Show full text]
  • Preliminary Volcano-Hazard Assessment for Augustine Volcano, Alaska
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Preliminary Volcano-Hazard Assessment for Augustine Volcano, Alaska by Christopher F. Waythomas and Richard B. Waitt Open-File Report 98-106 This report is preliminary and subject to revision as new data become available. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey Alaska Volcano Observatory Anchorage, Alaska 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Thomas J. Casadevall, Acting Director For additional information: Copies of this report may be purchased from: U.S. Geological Survey U.S. Geological Survey Alaska Volcano Observatory Branch of Information Services 4200 University Drive Box 25286 Anchorage, AK 99508 Denver, CO 80225-0286 CONTENTS Summary of hazards at Augustine Volcano....................................... 1 Introduction ............................................................... 3 Purposeandscope ...................................................... 3 Physical setting of Augustine Volcano ...................................... 4 Relation to previous studies on Augustine hazards ............................. 5 Prehistoric eruptive history ................................................... 5 Historical eruptions ......................................................... 8 Hazardous phenomena at Augustine Volcano ..................................... 8 Volcanic hazards ....................................................... 12 Volcanicashclouds
    [Show full text]
  • COV4 Meeting Schedule Monday, 23 January, 2006
    COV4 Meeting Schedule Monday, 23 January, 2006 Sala 1 (large)† 8H15 Welcoming Statements 8H30 Invited Speaker M. Hall: LIVING WITH VOLCANOES 9H00 - 9H30 Invited Speaker A. Lavell: SOCIETY AND RISK: RISK MANAGEMENT AND VOLCANIC HAZARDS 9H30 - 10H00 Plenary Symposium IV-B: Monitoring Volcanoes J. EWERT: ASSESSING VOLCANIC THREAT AND PRIORITIZING VOLCANO MONITORING IN THE UNITED STATES 10H00 - Plenary Symposium II: Ash Falls and Aerosols 10H30 W. Rose: ASH-FALL AND AEROSOLS, AN OVERVIEW 10H30 - 11H00 Coffee Break Sala 1 (large) Sala 2 (medium) IV-B: Monitoring Volcanoes II: Ash Falls and Aerosols Chairs: J. Ewert, A. García, H. Kumagai & J. Chairs: J.-L. Le Pennec, C. Connor, T. Johnson Casadevall, D. Johnston & D. Schneider 11H00 - S. Carn: MONITORING GLOBAL VOLCANIC A. Neri: ASSESSING ASH FALL HAZARD 11H20 DEGASSING WITH OMI FROM WEAK EXPLOSIVE PLUMES 11H20 - C. Oppenheimer: NEW DEVELOPMENTS IN C. Bonadonna: PROBABILISTIC MODELLING 11H40 VOLCANIC GAS SURVEILLANCE OF TEPHRA DISPERSON 11H40 - B. Galle: DEVELOPMENT OF OPTICAL B. Houghton: PROXIMAL TEPHRA HAZARDS: 12H00 REMOTE SENSING INSTRUMENTS FOR RECENT ERUPTION STUDIES APPLIED TO VOLCANOLOGICAL APPLICATIONS VOLCANIC RISK IN THE AUCKLAND VOLCANIC FIELD, NEW ZEALAND 12H00-12H20 F. Donnadieu: ERUPTION DYNAMICS OF P. Baxter: GRAIN SIZE ANALYSIS OF ARENAL VOLCANO, COSTA RICA: INSIGHTS VOLCANIC ASH FOR THE ASSESSMENT OF FROM DOPPLER RADAR AND SEISMIC HEALTH HAZARD MEASUREMENTS 12H20 - 14H00 Lunch in the Centro Cultural Metropolitano- Plaza Grande IV-B: Monitoring-Cont. II: Ash- Cont. 14H00- A. Gerst: REAL-TIME 4D MONITORING OF D. Andronico: ASH EMISSIONS AT THE 14H20 ERUPTIVE PROCESSES WITH DOPPLER SUMMIT OF ETNA DURING THE 2004-05 RADARS- A NEW TOOL FOR HAZARDS FLANK ERUPTION MITIGATION AND VOLCANO SCIENCE 14H20-14H40 M.
    [Show full text]
  • Sr–Pb Isotopes Signature of Lascar Volcano (Chile): Insight Into Contamination of Arc Magmas Ascending Through a Thick Continental Crust N
    Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera To cite this version: N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera. Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust. Journal of South American Earth Sciences, Elsevier, 2020, 101, pp.102599. 10.1016/j.jsames.2020.102599. hal-03004128 HAL Id: hal-03004128 https://hal.uca.fr/hal-03004128 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Manuscript File Sr-Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust 1N. Sainlot, 1I. Vlastélic, 1F. Nauret, 1,2 S. Moune, 3,4,5 F. Aguilera 1 Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France 2 Observatoire volcanologique et sismologique de la Guadeloupe, Institut de Physique du Globe, Sorbonne Paris-Cité, CNRS UMR 7154, Université Paris Diderot, Paris, France 3 Núcleo de Investigación en Riesgo Volcánico - Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 5 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title Assessment of high enthalpy geothermal resources and promising areas of Chile Permalink https://escholarship.org/uc/item/9s55q609 Authors Aravena, D Muñoz, M Morata, D et al. Publication Date 2016 DOI 10.1016/j.geothermics.2015.09.001 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Assessment of high enthalpy geothermal resources and promising areas of Chile Author links open overlay panel DiegoAravena ab MauricioMuñoz ab DiegoMorata ab AlfredoLahsen ab Miguel ÁngelParada ab PatrickDobson c Show more https://doi.org/10.1016/j.geothermics.2015.09.001 Get rights and content Highlights • We ranked geothermal prospects into measured, Indicated and Inferred resources. • We assess a comparative power potential in high-enthalpy geothermal areas. • Total Indicated and Inferred resource reaches 659 ± 439 MWe divided among 9 areas. • Data from eight additional prospects suggest they are highly favorable targets. • 57 geothermal areas are proposed as likely future development targets. Abstract This work aims to assess geothermal power potential in identified high enthalpy geothermal areas in the Chilean Andes, based on reservoir temperature and volume. In addition, we present a set of highly favorable geothermal areas, but without enough data in order to quantify the resource. Information regarding geothermal systems was gathered and ranked to assess Indicated or Inferred resources, depending on the degree of confidence that a resource may exist as indicated by the geoscientific information available to review. Resources were estimated through the USGS Heat in Place method. A Monte Carlo approach is used to quantify variability in boundary conditions.
    [Show full text]
  • Seasonal Patterns of Atmospheric Mercury in Tropical South America As Inferred by a Continuous Total Gaseous Mercury Record at Chacaltaya Station (5240 M) in Bolivia
    Atmos. Chem. Phys., 21, 3447–3472, 2021 https://doi.org/10.5194/acp-21-3447-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia Alkuin Maximilian Koenig1, Olivier Magand1, Paolo Laj1, Marcos Andrade2,7, Isabel Moreno2, Fernando Velarde2, Grover Salvatierra2, René Gutierrez2, Luis Blacutt2, Diego Aliaga3, Thomas Reichler4, Karine Sellegri5, Olivier Laurent6, Michel Ramonet6, and Aurélien Dommergue1 1Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France 2Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia 3Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland 4Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA 5Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, Clermont-Ferrand, France 6Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France 7Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD 20742, USA Correspondence: Alkuin Maximilian Koenig ([email protected]) Received: 22 September 2020 – Discussion started: 28 October 2020 Revised: 20 January 2021 – Accepted: 21 January 2021 – Published: 5 March 2021 Abstract. High-quality atmospheric mercury (Hg) data are concentrations were linked to either westerly Altiplanic air rare for South America, especially for its tropical region. As a masses or those originating from the lowlands to the south- consequence, mercury dynamics are still highly uncertain in east of CHC.
    [Show full text]