The Radio Spectrum of Supernova Remnants

Total Page:16

File Type:pdf, Size:1020Kb

The Radio Spectrum of Supernova Remnants THE RADIO SPECTRUM OF SUPERNOVA REMNANTS by D. E. Harris California Institute of Technology Radio Observatory Ovens Valley, California Abstract 960 Mc/s observations of thirteen galactic sources generally assumed to be supernova remnants, are coupled vith previous ob­ servations at other frequencies to derive spectral indices. Al­ though several values of spectral index are found in the neighbor­ hood of zero, arguments are presented that free-free transitions are not the primary cause of the radio emission. An interpretation of the relatively large range of spectral indices is suggested on the basis of an evolutionary sequence in vhich young, bright objects vith relatively steep spectra gradually evolve into old, faint objects vith flat or inverted spectra. I. Introduction The radio investigation of supernova remnants vas initiated in 1949 vhen Bolton and Stanley (1949) identified Taurus A vith the remains of the galactic supernova of 1054. Further radio vork on supernovae has been hampered by the inability of radio techniques to resolve individual features of the distant galaxies vhere most knovn supernovae have occurred. Therefore, radio observations have concentrated on the three knovn galactic supernovae, together vith an ever increasing number of extended galactic sources. The latter sources are non-thermal radio emitters vith optical features vhich often display a general expansion. Table 1 lists all such objects vith vhich ve are familiar. The present paper is based on part of the author's thesis and is a study of the first thirteen sources listed in Table 1. These thirteen sources, he~eafter assumed to be supernova remnants, vere observed at 960 Mc/s vith a 90' parabolic antenna at the Ovens Valley Radio Observatory. The receiver and the observing procedures have been described elsewhere (Harris and Roberts 1960; hereafter referred to as "CTA"). -2- Table 1 - Poaaible Supernova Reananta Object a 5 J_II Reterencea (1950) (1950) A) ObJect& atudied in the preaent paper. Caa A 3120±.150 23h21•11• +58°32' 111~7 -2':'1 Minkovaki (1959) Kepler'• SR 22± 3 17 27 40 -21 25 4.5 +6 . 9 Supernova obaerved Tycho '• SR 57± 3 00 22 46 +63 51 120.1 +l.IJ Supernova obaerved Puppia A l3U 12 08 21 20 -42 52 260.4 -3.3 Baade and Minkovaki (1954) II 1,4 211± 9 18 53 35 +01 15 34.6 -0.4 Lealie (1960) IC443 195± 2lo o6 14 16 +22 36 189.1 +3.1 Minkovaki (1959) Crab Rebula 1030± 45 05 31 30 +21 59 184.3 -6.2 Supernova obaerved 11»21 180± 60 20 .... 42 +50 32 89.0 +4.7 Minkovaki (1958) Cygnua Loop 265± 50 20 50 +30 30 74.1 -8.7 Minkoveki (1958) Vela X,Y,Z 1560 .. 08 32 48 -IJ5 37 263·9 -3 .2 Bolton (1960) 11»9 l60:t. 30 olo 57 30 +46 25 160.6 +2.8 Mintovati (1958) Sll,7 120± 60 05 36 +28 180.0 -1.7 Minkovaki (1958) CTAl 75± 18 00 02 35 +72 04 119.lo +9.8 Faint optical eaiaaion area B) Other radio aourcea ot aiailar type. RGC6888 20 10 55 +38 15 75.6 +2.3 Mintovati (1958) CTBl 56 .. 00 00 18 +62 11 117.3 +0.1 Vaa den Bergh (1960) Ci'Bl3 225 .. 04 21J +47 00 156.1, -1.2 Wilaon and Bolton (1960) 1128 240 .. 17 58 12 -23 22 6.6 -0.1 lleaterhout (1958) Galactic Spur 15 -20 3loO 33 Brown, Davie&, and Bazard (1960) Shtlovaky'e &election ot extended galactic object& (l960b) 1m3 02 16 +62 30 132.8 +1.6 BB7 03 23 30 +55 06 llo3 . 9 -1.1 Jm8 04 02 +IJ7 30 153.3 -3.1J Centaurua II 13 22 48 -59 2lo 307.3 +2.9 c) Optical object&. Mintovati'• aaall object&. (1958) 107 12 227.2 -1.0 Pe culiar double ring 522 01 27 28 ,-13+58 06 I 128.1 -4.1 07 26 15 +13 21 Van den Bergh'• tila111enta (1960) lro. 2 105 24 J+42 56 1166.2 +4.4 Lev denaity ring Ro. 6 18 02 -23 40 6 . 7 -1.1 S960 ia the flux denaity at 960 Me / a aeaaured in units ot lo-26 wa-2(c/•)-l. • CTB tlux denaity uaed (Wilaon and Bolton 1960) . - 3- The smaller supernova remnants have been studied previously by many workers and do not lend thems~lves to extensive investigation with the present equipment. Therefore, most of the observational effort has been spent on the larger objects. The Cygnus Loop is one of the strongest sources of this type at 960 Mc / s and has been examined previously in more detail than most other similar remnants. Furthermore, it is significantly resolved with beamwidths such as ours (098). For these reasons, the Cygnus Loop is presented in this paper as a prototype of the larger super­ nova remnants. In Section II, 960 Mc/s flux densities are used in conjunction with measurements of various observers at other frequencies to de­ termine spectra relative to the standard source, M87. Since the de­ rived spectra of many large supernova remnants are characteristic of HII regions, calculation~ based on optical observations are made to determine the extent of radio emission from free-free transitions. These calculations, given in Section III, indicate that most of the radio emission must be non-thermal. Section IV presents evidence which suggests that the spectral index of any remnant varies with time. This hypothesis is based on empirical correlations found for the 13 objects studied in this paper. When the spectral indices of the various remnants are plotted against the appropriate value of linear diameter or radio surface brightness, it appears that an initially steep spectrum may flatten with age. II. Observations and Spectra a) Intensity Measurements of the Cygnus Loop The present observations of the Cygnus Loop consist of about 30 drift curves of 40 minutes each taken at one-half degree intervals between +27°30' and +33030'. These intensity records, obtained be­ tween April and November 1959, were normalized by a drift curve taken each night at 5 = +30000' . Figure 6 (Appendix III) shows the resul­ ting Cygnus Loop contours of antenna temperature where a linear sub­ traction for the galactic background has been made. The galactic correction was performed on the average drift curves by noting the slope of the record of antenna temperature as the galaxy left the antenna beam before the source was encountered. Following Mathewson, Large and Haslam (1961), hereafter referred to as "MLH'', the Loop was divided into three parts: A, B, and c. (The boundaries are indicated by the dotted lines in Figure 6.) Each part was integrated with a planimeter, in order to derive a value of intensity for the individual sections as well as for the complete source. The intensity published earlier (CTA) was based on a prelimi­ nary contour diagram and the value given here supercedes that. The maximum intensity occurred on the 5 = +30°00' records (Source A) and the average of 7 observations gives a value of 0 .104 ± 0.008 (p.e.) for the peak intensity relative to M87. The flux density from the entire source is then found to be 0.88 ± 0.17 times that of M87 -4- [{265 ±50) lo-26wm-2(c/s)-l if SM87 = 300·lo-26wm-2(c/s)-~. The error of ± 20~ consists of 12~ from the integration process and 8~ ~rom the scatter in the observed peak intensity. b) Spectrum of the Cygnus Loop Observations made at other frequencies are presented in Table 2. For the purpose of deriving a spectral index, published flux densities have been normalized to the standard source (M87) whenever possible. The secondary calibrators Cas A and 3C 295 were used to relate Westerhout's 400 Mc / s measurement and the MLH values, respectively, to M87. The adopted spectra are SM87 = 42,ooo f-0.72 CTA Seas A = 757,000 f-0.8 Whitfield, 1957 948 f-0.5 8 295 = CTA where S is i n 1o-26w m-2(c/s)-l and f is in Mc / s. This normalizing procedure should not be viewed as a correction of published flux den­ sities; rather it is a method of deriving the spectrum of the Cygnus Loop relative to that chosen for M87 . The adopted flux densities are plotted in Figure 1 . The inter­ pretation in terms of spectral index must rest on a subjective choice o~ which data to weight most heavily. MLH have suggested that Westerhout's flux density of the Cygnus Loop at 1390 Mc/s may be low if the weaker sections of the source were not seen. The same comment may be made of the 915 Mc / s value of Eaton and Kraus. Costain's measurement at 38 Mc / s employed a corner reflector with a 4oo beam to half power poi nts in decli nation. As HB21 is only 20° away, and the galaxy is even closer, his intensity measurement may suffer from con­ fusion. If the spectrum follows a simple power law as assumed in Figure 1, the spectral index is XCL = -0.10 ± 0 . 15. The error quoted for this value vas estimated by fitting lines of various slopes to the data of Figure 1, and is a probabl e error . The relative spectral i ndex of each part of the Cygnus Loop may be obtained by comparing the contour diagrams at 408 and 960 Mc/s. Fortuitously, our 960 Mc / s beamvidth i s almost identical to that of the 250' telescope at 408 Mc/s.
Recommended publications
  • BRAS Newsletter August 2013
    www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell
    [Show full text]
  • Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop
    Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop 2 3 S Satoru Katsuda" Hiroshi Tsunemi , Koji Mori , Hiroyuki Uchida" Robert Petre , Shin'ya 1 Yamada , and Thru Tamagawa' ABSTRACT We report on a discovery of a diffuse nebula containing a pointlike source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the pointlike source are well represented by an absorbed power-law model with photon indices of 2.2±0.1 and 1.6±0.2, respectively. The photon indices as well as the flux ratio of F nebula/ F po;.,li" ~ 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5- 8 keY luminosity of the nebula is computed to be 2.1xlo"' (d/MOpc)2ergss-" where d is the distance to the Loop. This implies a spin-down loss-energy E ~ 2.6 X 1035 (d/MOpc)2ergss-'. The location of the neutron star candidate, ~2° away from the geometric center of the Loop, implies a high transverse velocity of ~ 1850(8/2D ) (d/540pc) (t/lOkyr)- ' kms-" assuming the currently accepted age of the Cygnus Loop. Subject headings: ISM: individual objects (Cygnus Loop) - ISM: supernova remnants - pulsars: general - stars: neutron - stars: winds, outflows - X-rays: ISM 'RlKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Sailama 351-0198 2Department of EaTth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Thyonaka, Osaka, 60-0043, Japan SDepartment of Applied Physics, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Klbana-dai Nishi, Miyazaki, 889-2192, Japan ' Department of PhysiCS, Kyoto University, Kitashirakawa-oiwake-clto, Sakyo, Kyoto 606-8502, J apan 'NASA Goddard Space Flight Center, Code 662, Greenbelt MD 20771 - 2 - 1.
    [Show full text]
  • XMM-Newton Observation of the Northeastern Limb of the Cygnus Loop Supernova Remnant
    XMM-Newton Observation of the Northeastern Limb of the Cygnus Loop Supernova Remnant Norbert Nemes Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan 04 February 2005 Osaka University Abstract We have observed the northeastern limb of the Cygnus Loop supernova remnant with the XMM-Newton observatory, as part of a 7-pointing campaign to map the remnant across its diameter. We performed medium sensitivity spatially resolved X-ray spectroscopy on the data in the 0.3-3.0 keV energy range, and for the first time we have detected C emission lines in our spectra. The background subtracted spectra were fitted with a single temperature absorbed non-equilibrium (VNEI) model. We created color maps and plotted the radial variation of the different parameters. We found that the heavy element abundances were depleted, but increase toward the edge of the remnant, exhibiting a jump structure near the northeastern edge of the field of view. The depletion suggests that the plasma in this region represents the shock heated ISM rather than the ejecta, while the radial increase of the elemental abundances seems to support the cavity explosion origin. The temperature decreases in the radial direction from 0:3keV to about 0:2keV , however, this ∼ ∼ decrease is not monotonic. There is a low temperature region in the part of the field of view closest to the center of the remnant, which is characterized by low abundances and high NH values. Another low temperature region characterized by low NH values but where the heavy element abundances suddenly jump to high values was found at the northeastern edge of the field of view.
    [Show full text]
  • Pos(MULTIF15)020 Al
    Suzaku Highlights of Supernova Remnants PoS(MULTIF15)020 Satoru Katsuda∗† Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210, Japan E-mail: [email protected] Hiroshi Tsunemi Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan E-mail: [email protected] Suzaku was the Japanese 5th X-ray astronomy satellite operated from 2005 July 10 to 2015 Au- gust 26. Its key features are high-sensitivity wide-band X-ray spectroscopy available with both the X-ray imaging CCD cameras and the non-imaging collimated hard X-ray detector. A number of interesting scientific discoveries have been achieved in various fields. Among them, I will focus on results on supernova remnants. The topics in this paper include (1) revealing distributions of supernova ejecta, (2) establishing over-ionized plasmas by discoveries of radiative-recombination continua, (3) constraining progenitors of Type Ia SNRs from Mn/Cr and Ni/Fe line ratios, and (4) searching for X-ray counterparts from unidentified HESS sources. These results are of high sci- entific importance in physics of supernova explosions, non-equilibrium plasmas, and cosmic-ray acceleration. XI Multifrequency Behaviour of High Energy Cosmic Sources Workshop, 25-30 May 2015 Palermo, Italy ∗Speaker. †A footnote may follow. © c CopyrightCopyright owned owned by the author(s) under the terms of the Creative Creative Commons License Attribution-NonCommercial 4.0 International. http://pos.sissa.it/ Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
    [Show full text]
  • Hubble Revisits the Veil Nebula 2 April 2021
    Image: Hubble revisits the Veil Nebula 2 April 2021 this stellar violence, the shockwaves and debris from the supernova sculpted the Veil Nebula's delicate tracery of ionized gas—creating a scene of surprising astronomical beauty. The Veil Nebula is also featured in Hubble's Caldwell Catalog, a collection of astronomical objects that have been imaged by Hubble and are visible to amateur astronomers in the night sky. Provided by NASA Credit: ESA/Hubble & NASA, Z. Levay This image taken by the NASA/ESA Hubble Space Telescope revisits the Veil Nebula, which was featured in a previous Hubble image release. In this image, new processing techniques have been applied, bringing out fine details of the nebula's delicate threads and filaments of ionized gas. To create this colorful image, observations were taken by Hubble's Wide Field Camera 3 instrument using five different filters. The new post-processing methods have further enhanced details of emissions from doubly ionized oxygen (seen here in blues), ionized hydrogen, and ionized nitrogen (seen here in reds). The Veil Nebula lies around 2,100 light-years from Earth in the constellation of Cygnus (the Swan), making it a relatively close neighbor in astronomical terms. Only a small portion of the nebula was captured in this image. The Veil Nebula is the visible portion of the nearby Cygnus Loop, a supernova remnant formed roughly 10,000 years ago by the death of a massive star. That star—which was 20 times the mass of the Sun—lived fast and died young, ending its life in a cataclysmic release of energy.
    [Show full text]
  • Monthly Observer's Challenge
    MONTHLY OBSERVER'S CHALLENGE Compiled by: Roger Ivester, North Carolina & Sue French, New York September 2020 Report #140 The Veil Nebula in Cygnus Sharing Observations and Bringing Amateur Astronomers Together Introduction The purpose of the Observer's Challenge is to encourage the pursuit of visual observing. It's open to everyone who's interested, and if you're able to contribute notes, and/or drawings, we’ll be happy to include them in our monthly summary. Visual astronomy depends on what's seen through the eyepiece. Not only does it satisfy an innate curiosity, but it allows the visual observer to discover the beauty and the wonderment of the night sky. Before photography, all observations depended on what astronomers saw in the eyepiece, and how they recorded their observations. This was done through notes and drawings, and that's the tradition we're stressing in the Observer's Challenge. And for folks with an interest in astrophotography, your digital images and notes are just as welcome. The hope is that you'll read through these reports and become inspired to take more time at the eyepiece, study each object, and look for those subtle details that you might never have noticed before. This month's target The Veil Nebula has long been modeled as the remnant of a supernova explosion that occurred within an interstellar cavity created by the progenitor star. However, a recent study by Fesen, Weil, and Cisneros (2018MNRAS.481.1786F ) using multi-wavelength emission maps indicates that the large-scale structure of the Veil Nebula is due to interaction of the remnant with local interstellar clouds.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • JRASC December 2011, Low Resolution (PDF)
    The Journal of The Royal Astronomical Society of Canada PROMOTING ASTRONOMY IN CANADA December/décembre 2011 Volume/volume 105 Le Journal de la Société royale d’astronomie du Canada Number/numéro 6 [751] Inside this issue: Since When Was the Sun a Typical Star? A Midsummer Night The Starmus Experience Hubble and Shapley— Two Early Giants of Observational Cosmology A Vintage Star Atlas Night-Sky Poetry from Jasper Students David Levy and his Observing Logs Gigantic Elephant Trunk—IC 1396 FREE SHIPPING To Anywhere in Canada, All Products, Always KILLER VIEWS OF PLANETS CT102 NEW FROM CANADIAN TELESCOPES 102mm f:11 Air Spaced Doublet Achromatic Fraunhoufer Design CanadianTelescopes.Com Largest Collection of Telescopes and Accessories from Major Brands VIXEN ANTARES MEADE EXPLORE SCIENTIFIC CELESTRON CANADIAN TELESCOPES TELEGIZMOS IOPTRON LUNT STARLIGHT INSTRUMENTS OPTEC SBIG TELRAD HOTECH FARPOINT THOUSAND OAKS BAADER PLANETARIUM ASTRO TRAK ASTRODON RASC LOSMANDY CORONADO BORG QSI TELEVUE SKY WATCHER . and more to come December/décembre 2011 | Vol. 105, No. 6 | Whole Number 751 contents / table des matières Feature Articles / Articles de fond 273 Astrocryptic Answers by Curt Nason 232 Since When Was the Sun a Typical Star? 273 It’s Not All Sirius —Cartoon by Martin Beech by Ted Dunphy 238 A Midsummer Night 274 Society News by Robert Dick by James Edgar 240 The Starmus Experience 274 Index to Volume 105, 2011 by Paul and Kathryn Gray 245 Hubble and Shapley—Two Early Giants Columns / Rubriques of Observational Cosmology by Sidney van den Bergh
    [Show full text]
  • Popular Names of Deep Sky (Galaxies,Nebulae and Clusters) Viciana’S List
    POPULAR NAMES OF DEEP SKY (GALAXIES,NEBULAE AND CLUSTERS) VICIANA’S LIST 2ª version August 2014 There isn’t any astronomical guide or star chart without a list of popular names of deep sky objects. Given the huge amount of celestial bodies labeled only with a number, the popular names given to them serve as a friendly anchor in a broad and complicated science such as Astronomy The origin of these names is varied. Some of them come from mythology (Pleiades); others from their discoverer; some describe their shape or singularities; (for instance, a rotten egg, because of its odor); and others belong to a constellation (Great Orion Nebula); etc. The real popular names of celestial bodies are those that for some special characteristic, have been inspired by the imagination of astronomers and amateurs. The most complete list is proposed by SEDS (Students for the Exploration and Development of Space). Other sources that have been used to produce this illustrated dictionary are AstroSurf, Wikipedia, Astronomy Picture of the Day, Skymap computer program, Cartes du ciel and a large bibliography of THE NAMES OF THE UNIVERSE. If you know other name of popular deep sky objects and you think it is important to include them in the popular names’ list, please send it to [email protected] with at least three references from different websites. If you have a good photo of some of the deep sky objects, please send it with standard technical specifications and an optional comment. It will be published in the names of the Universe blog. It could also be included in the ILLUSTRATED DICTIONARY OF POPULAR NAMES OF DEEP SKY.
    [Show full text]
  • Radio Observations of Tev and Gev Emitting Supernova Remnants
    Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline • Overview of supernova remnants • using HI absorption spectra to obtain distances • HI spectra and images (radio, X-ray) of specific gamma-ray emitting SNR • distance and derived properties • summary radius ~1- 20 pc (1 pc~ 3x10 16 m) Shock speeds 100km/s- 5000km/s Supernova Remnants (left to right, top to bottom): Cygnus Loop (~10000yr old) ROSAT X-ray, Tycho's SN (AD1572) Chandra X- ray, Crab nebula (AD1054) HST /Chandra, Cas A (AD1681+-19) Chandra X- ray, Kepler's SN (AD1604) Chandra X -ray Supernova remnants • 2 physical types of supernova (SN): • Core collapse of a massive star (gravitational energy) ~10 53 erg mostly in neutrinos, ~10 51 erg in kinetic energy • Thermonuclear explosion of a white dwarf: ~10 51 erg in total / kinetic energy • 2 observational types of SN: • Type I: no H lines in SN spectrum • Type II: with strong H lines in SN spectrum • Supernova remnants (SNR): remains of SN explosion • Number of known SNR in our Galaxy: approximately 280 • Large volume of the interstellar medium (~1 to 20pc in radius), filled with hot (10 6 K) plasma, heated by the shock wave of the explosion • The shock wave via Fermi acceleration, produces high energy protons and electrons, up to ~10 15 eV • SNR emit X-rays (from the hot plasma), radio (from the relativistic electrons), infrared (from heated dust) and optical radiation (from recombining dense gas). • Shock accelerated particles also emit X-rays and GeV & TeV gamma-rays.
    [Show full text]
  • Supernova Remnants and the Life Cycle of Interstellar Dust
    Design Reference Mission Case Study Stratospheric Observatory for Infrared Astronomy Science Steering Committee Supernova Remnants and the Life Cycle of Interstellar Dust Program contacts: Eli Dwek, Richard Arendt, Jesse Bregman, Sean Colgan, Harriet Dinerstein, Robert Gehrz, Harvey Moseley Scientific category: INTERSTELLAR MEDIUM Instruments: EXES, FLITECAM/CAM, FORCAST, FIFI-LS, HAWC, SAFIRE Hours of observation: 110 Abstract We propose to use the unique instrumental capabilities of SOFIA to conduct imaging and spectroscopic studies of supernovae (SNe), of young supernova remnants (SNRs) for which the ejecta have not yet fully mixed with the ISM, and select regions in older remnants which are interacting with the ambient ISM. These observations will address key issues within NASA’s Visions for Science quest for discovering the origin, structure, evolution and destiny of the universe: What is the origin of dust in early universe? How efficient are supernovae in producing interstellar dust? How efficient are their blast waves in destroying, processing, or even forming dust as they expand into the circumstellar and interstellar medium? How do interstellar shocks facilitate chemical reaction on the surfaces of dust grains? The answers to these questions are crucial for understanding the evolutionary cycle of interstellar dust, the role of dust in the processing of starlight and in determining the thermal balance and chemistry of the ISM, and its role in the formation of protoplanetary objects. Our proposed observations will explore crucial stages of this evolutionary cycle, most readily observed at wavelengths between ∼ 5 − 300 µm with spectral resolution from ∼ 30 − 3 × 104, and at spatial resolution of a few arcseconds, requiring therefore the unique capabilities of the different SOFIA instruments.
    [Show full text]
  • Supernova Remnants: the X-Ray Perspective
    Supernova remnants: the X-ray perspective Jacco Vink Abstract Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects. And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. Since X-ray synchrotron radiation requires 10-100 TeV electrons, which lose their energies rapidly, the study of X-ray synchrotron radiation has revealed those regions where active and rapid particle acceleration is taking place. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of su- pernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and X-ray spectroscopy of the hot plasmas they contain. This in- cludes hydrodynamics, shock heating, thermal conduction, radiation processes, non-equilibrium ionization, He-like ion triplet lines, and cosmic ray acceleration. The second half offers a review of the advances made in field of X-ray spectroscopy of supernova remnants during the last 15 year. This period coincides with the availability of X-ray imaging spectrometers. In addition, I discuss the results of high resolution X-ray spectroscopy with the Chandra and XMM-Newton gratings.
    [Show full text]