The Gaia-ESO Survey: Catalogue of Hα Emission Stars?,??

Total Page:16

File Type:pdf, Size:1020Kb

The Gaia-ESO Survey: Catalogue of Hα Emission Stars?,?? A&A 581, A52 (2015) Astronomy DOI: 10.1051/0004-6361/201525857 & c ESO 2015 Astrophysics The Gaia-ESO Survey: Catalogue of Hα emission stars?;?? G. Traven1, T. Zwitter1, S. Van Eck2, A. Klutsch3, R. Bonito4;5, A. C. Lanzafame3;6, E. J. Alfaro7, A. Bayo8, A. Bragaglia9, M. T. Costado7, F. Damiani5, E. Flaccomio5, A. Frasca3, A. Hourihane10, F. Jimenez-Esteban11;12, C. Lardo13, L. Morbidelli14, E. Pancino9;15, L. Prisinzano5, G. G. Sacco14, and C. C. Worley10 1 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia e-mail: [email protected] 2 Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, Boulevard du Triomphe, CP 226, 1050 Bruxelles, Belgium 3 INAF–Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy 4 Dipartimento di Fisica e Chimica Universita’ di Palermo, 90128 Palermo, Italy 5 INAF–Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy 6 Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Universitá di Catania, via S. Sofia 78, 95123 Catania, Italy 7 Instituto de Astrofísica de Andalucía-CSIC, Apdo. 3004, 18080 Granada, Spain 8 Departamento de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, 5030 Casilla, Valparaíso, Chile 9 INAF–Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 11 Centro de Astrobiología (INTA-CSIC), Departamento de Astrofísica, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain 12 Suffolk University, Madrid Campus, C/ Valle de la Viña 3, 28003 Madrid, Spain 13 Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK 14 INAF–Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Florence, Italy 15 ASI Science Data Center, via del Politecnico SNC, 00133 Roma, Italy Received 10 February 2015 / Accepted 29 June 2015 ABSTRACT We discuss the properties of Hα emission stars across the sample of 22035 spectra from the Gaia-ESO Survey internal data release, observed with the GIRAFFE instrument and largely belonging to stars in young open clusters. Automated fits using two independent Gaussian profiles and a third component that accounts for the nebular emission allow us to discern distinct morphological types of Hα line profiles with the introduction of a simplified classification scheme. All in all, we find 3765 stars with intrinsic emission and sort their spectra into eight distinct morphological categories: single–component emission, emission blend, sharp emission peaks, double emission, P-Cygni, inverted P-Cygni, self–absorption, and emission in absorption. We have more than one observation for 1430 stars in our sample, thus allowing a quantitative discussion of the degree of variability of Hα emission profiles, which is expected for young, active objects. We present a catalogue of stars with properties of their Hα emission line profiles, morphological classification, analysis of variability with time and the supplementary information from the SIMBAD, VizieR, and ADS databases. The records in SIMBAD indicate the presence of Hα emission for roughly 25% of all stars in our catalogue, while at least 305 of them have already been more thoroughly investigated according to the references in ADS. The most frequently identified morphological categories in our sample of spectra are emission blend (23%), emission in absorption (22%), and self–absorption (16%). Objects with repeated observations demonstrate that our classification into discrete categories is generally stable through time, but categories P-Cygni and self–absorption seem less stable, which is the consequence of discrete classification rules, as well as of the fundamental change in profile shape. Such records of emission stars can be valuable for automatic pipelines in large surveys, where it may prove very useful for pinpointing outliers when calculating general stellar properties and elemental abundances. They can be used in studies of star formation processes, interacting binaries, and other fields of stellar physics. Key words. stars: emission-line, Be – stars: peculiar – open clusters and associations: general – line: profiles – catalogs – stars: activity 1. Introduction systematically covering all major components of the Milky Way, from halo to star forming regions (Gilmore et al. 2012; Randich The Gaia-ESO Survey (GES) is a large spectroscopic survey that 5 et al. 2013). With uniform mode of observation, well-defined targets more than 10 stars in a magnitude range 8 . V < 19, samples, based primarily on ESO-VISTA photometry for the ? field stars, and by a variety of photometric surveys of open clus- Based on data products from observations made with ESO ters, GES will quantify the kinematic-multielement abundance Telescopes at the La Silla Paranal Observatory under programme distribution functions of stellar components in the bulge, the ID 188.B-3002. thick and thin discs, and the halo, as well as a significant sam- ?? Full Tables D.1–D.3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via ple of ∼100 open clusters, covering a wide range of ages, stellar http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A52 masses, metallicities, and distances from the Galactic centre. Article published by EDP Sciences A52, page 1 of 16 A&A 581, A52 (2015) Within the GES, the analysis of different types of stars is di- this would require customised treatment when identifying and vided into different working groups (WGs). WG10 is in charge analysing the very diverse physical conditions purely from ob- of the analysis of FGK-type GIRAFFE spectra (Recio-Blanco served line profiles. Instead, we try to be impartial towards dis- et al. 2014) and WG11 of FGK-type UVES spectra (Smiljanic tinct physical characteristics and treat all available spectra in a et al. 2014). WG12 focuses on sources in the field of young uniform manner. In this way, we are able to review and mor- clusters (Lanzafame et al. 2015) and WG13 on OBA-type stars phologically classify several thousand objects without particular (Blomme et al. 2015). WG14 is in charge of non-standard ob- assumptions and model dependent parameters. jects, or objects for which standard analyses produce uncertain We approach the problem first with the detection of Hα emis- or no results because of unusual spectroscopic features that are sion in spectra and secondly, we introduce a simple morpholog- not properly accounted for by automatic pipelines. ical scheme for their classification. This classification scheme, The Hα emission, indicative of accretion and outflow activ- together with supplementary information about detected objects, ity in young stars, is one of these outstanding features. Indeed, like their classification from the literature where available, might when not properly recognised, it can endanger the parameter or prove useful to those who deal with the aforementioned types of abundance determination analysis, for example because it affects active objects and could serve as a uniform and unbiased treat- the local continuum placement or the radial velocity determina- ment of largely diverse emission profiles. tion. It was therefore decided, as part of the WG14 attributions, In Sect. 2 we present the data used in this study and the to systematically detect and characterise Hα emission. methods of reduction. The results of classification and tempo- This paper presents a catalogue of 4459 Hα emission stars ral variability of objects are presented in Sect. 3. Discussion and and their 8846 spectra across the sample of 22 035 spectra of conclusions follow in Sect. 4. 12 392 stars observed with GIRAFFE instrument from the GES internal data release (first 22 months of observations). Special care is taken to distinguish intrinsic stellar emission from the 2. Data and reduction overview nebular one. Altogether, we find 7698 spectra with intrinsic emission that belong to 3765 stars. Such stars are often found in The GES employs the VLT-UT2 FLAMES high-resolution mul- stellar nurseries and nebular environments of young open clus- tiobject spectrograph (Pasquini et al. 2002). FLAMES has two ters and can therefore serve as a proxy for stellar ages. Another instruments, the higher-resolution UVES, fed by 8 fibres, and possibility is that they belong to the field and can be so far un- GIRAFFE, with about 130 fibres. In the present paper we con- recognised interacting binaries, like symbiotic stars and cata- centrate on the much more numerous GIRAFFE spectra to thor- clysmic variables. In this case GES provides a unique census oughly test our classification scheme; a similar analysis of the of interacting binaries at all Galactic latitudes, thereby helping UVES spectra will follow later. to sample the faint luminosity tail of their distribution that is We use only spectra obtained in the wavelength range with under-represented in existing catalogues. Hα line – HR15N setting (6470−6790 Å, R = 17 000), for which The Hα emission profiles display a variety of shapes de- the majority of targets selected by GES are open cluster stars. pending on the physical mechanism responsible for the emis- Along with ongoing GES observations, we also use all relevant sion and on the geometry of the source. The simplest profiles are ESO archive data, which are included to be analysed as part of symmetric with a Gaussian-like appearance and are presumably GES. Individual spectra can therefore be dated up to nine years originated in one distinct source, but other more complex line before the start of the survey. For objects with more than one profiles are frequently observed. We refer the readers to Bonito spectrum from either new or archival data, the timespan of re- et al.(2013) and Reipurth et al.(1996) for a discussion of the ex- peated observations ranges from two days up to one year, which pected Hα profile features and their physical origin.
Recommended publications
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Extragalactic Astronomy
    Astrophysics and Space Science Library 435 Mauro D’Onofrio Roberto Rampazzo Simone Zaggia Editors From the Realm of the Nebulae to Populations of Galaxies Dialogues on a Century of Research From the Realm of the Nebulae to Populations of Galaxies Astrophysics and Space Science Library EDITORIAL BOARD Chairman W. B. BURTON, National Radio Astronomy Observatory, Charlottesville, Virginia, U.S.A. ([email protected]); University of Leiden, The Netherlands ([email protected]) F. BERTOLA, University of Padua, Italy C. J. CESARSKY, Commission for Atomic Energy, Saclay, France P. EHRENFREUND, Leiden University, The Netherlands O. ENGVOLD, University of Oslo, Norway A. HECK, Strasbourg Astronomical Observatory, France E. P. J. VAN DEN HEUVEL, University of Amsterdam, The Netherlands V. M. KASPI, McGill University, Montreal, Canada J. M. E. KUIJPERS, University of Nijmegen, The Netherlands H. VAN DER LAAN, University of Utrecht, The Netherlands P. G. MURDIN, Institute of Astronomy, Cambridge, UK B. V. SO M OV, Astronomical Institute, Moscow State University, Russia R. A. SUNYAEV, Space Research Institute, Moscow, Russia More information about this series at http://www.springer.com/series/5664 Mauro D’Onofrio • Roberto Rampazzo • Simone Zaggia Editors From the Realm of the Nebulae to Populations of Galaxies Dialogues on a Century of Research 123 Editors Mauro D’Onofrio Roberto Rampazzo Department of Physics and Astronomy INAF–Osservatorio Astronomico University of Padova di Padova Italy Padova, Italy Simone Zaggia INAF–Osservatorio Astronomico di Padova Padova, Italy ISSN 0067-0057 ISSN 2214-7985 (electronic) Astrophysics and Space Science Library ISBN 978-3-319-31004-6 ISBN 978-3-319-31006-0 (eBook) DOI 10.1007/978-3-319-31006-0 Library of Congress Control Number: 2016946611 © Springer International Publishing Switzerland 2016 This work is subject to copyright.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • NGC 2580 and NGC 2588
    A&A 417, 961–972 (2004) Astronomy DOI: 10.1051/0004-6361:20034427 & c ESO 2004 Astrophysics NGC 2580 and NGC 2588 Two open clusters in the Third Galactic Quadrant, G. Baume1,2,A.Moitinho3,E.E.Giorgi2, G. Carraro1,, and R. A. V´azquez2 1 Dipartimento di Astronomia, Universit`a di Padova, Vicolo Osservatorio 2, 35122 Padova, Italy 2 Facultad de Ciencias Astron´omicas y Geof´ısicas de la UNLP, IALP-CONICET, Paseo del Bosque s/n, La Plata, Argentina 3 CAAUL, Observat´orio Astron´omico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa, Portugal Received 2 October 2003 / Accepted 21 December 2003 Abstract. We present CCD broad band photometric observations in the fields of the Third Galactic Quadrant open clusters NGC 2580 and NGC 2588 (V(I)C and UBV(RI)C respectively). From the analysis of our data we found that NGC 2580 is located at a distance of about 4 kpc and its age is close to 160 Myr. As for NGC 2588, it is placed at about 5 kpc from the Sun and is 450 Myr old. This means that NGC 2588 belongs to the extension of the Perseus arm, whereas NGC 2580 is closer to the local arm structure. The luminosity functions (LFs) have been constructed for both clusters down to V ∼ 20 together with their initial mass functions (IMFs) for stars with masses above M ∼ 1–1.5 M. The IMF slopes for the most massive bins yielded values of x ≈ 1.3 for NGC 2580 and x ≈ 2 for NGC 2588. In the case of this latter cluster we found evidence of a core-corona structure produced probably by dynamical effect.
    [Show full text]
  • The Gaia-ESO Survey: the Inner Disk Intermediate-Age Open Cluster NGC 6802
    LJMU Research Online Tang, B, Geisler, D, Friel, E, Villanova, S, Smiljanic, R, Casey, AR, Randich, S, Magrini, L, Roman, IS, Muñoz, C, Cohen, RE, Mauro, F, Bragaglia, A, Donati, P, Tautvaišienė, G, Drazdauskas, A, Ženovienė, R, Snaith, O, Sousa, S, Adibekyan, V, Costado, MT, Blanco-Cuaresma, S, Jiménez-Esteban, F, Carraro, G, Zwitter, T, François, P, Jofrè, P, Sordo, R, Gilmore, G, Flaccomio, E, Koposov, S, Korn, AJ, Lanzafame, AC, Pancino, E, Bayo, A, Damiani, F, Franciosini, E, Hourihane, A, Lardo, C, Lewis, J, Monaco, L, Morbidelli, L, Prisinzano, L, Sacco, G, Worley, CC and Zaggia, S The Gaia-ESO Survey: the inner disk intermediate-age open cluster NGC 6802 http://researchonline.ljmu.ac.uk/id/eprint/5550/ Article Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work) Tang, B, Geisler, D, Friel, E, Villanova, S, Smiljanic, R, Casey, AR, Randich, S, Magrini, L, Roman, IS, Muñoz, C, Cohen, RE, Mauro, F, Bragaglia, A, Donati, P, Tautvaišienė, G, Drazdauskas, A, Ženovienė, R, Snaith, O, Sousa, S, Adibekyan, V, Costado, MT, Blanco-Cuaresma, S, Jiménez-Esteban, F, LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.
    [Show full text]
  • ESO Staff Papers 04/2014 Papers Added Recently to the ESO Telescope Bibliography, Maintained by the Library Subscribe to the ESO Telbib RSS Feed
    ESO staff papers 04/2014 Papers added recently to the ESO Telescope Bibliography, maintained by the library Subscribe to the ESO telbib RSS feed Cosmology | Galaxies and Galactic Nuclei | Interstellar Medium, Star Formation and Planetary Systems | Stellar Evolution | Miscellaneous | Papers without ESO data Cosmology | Galaxies and Galactic Nuclei | Interstellar Medium, Star Formation and Planetary Systems | Stellar Evolution | Miscellaneous: ESO authors + ESO observational data Cosmology VLT/X-shooter spectroscopy of the GRB 120327A afterglow D'Elia, V., Fynbo, J.P.U., Goldoni, P., Covino, S., de Ugarte Postigo, A., Ledoux, C., Calura, F., Gorosabel, J., Malesani, D., Matteucci, F., Sánchez-Ramírez, R., Savaglio, S., Castro-Tirado, A.J., Hartoog, O.E., Kaper, L., Muñoz-Darias, T., Pian, E., Piranomonte, S., Tagliaferri, G., Tanvir, N., Vergani, S.D., Watson, D.J., & Xu, D., 2014, A&A, 564, 38 [ADS] Instruments: XSHOOTER A study of low-metallicity DLAs at high redshift and C II* as a probe of their physical conditions Dutta, R., Srianand, R., Rahmani, H., Petitjean, P., Noterdaeme, P., & Ledoux, C., 2014, MNRAS, 440, 307 [ADS] Instruments: UVES, UVES Steadily Increasing Star Formation Rates in Galaxies Observed at 3 <~ z <~ 5 in the CANDELS/GOODS- S Field Lee, S.-K., Ferguson, H.C., Somerville, R.S., Giavalisco, M., & Wiklind, T., Dahlen, T., 2014, ApJ, 783, 81 [ADS] Instruments: ISAAC, ISAAC, ISAAC, ISAAC, VIMOS The zCOSMOS redshift survey: evolution of the light in bulges and discs since z ~ 0.8 Tasca, L.A.M., Tresse, L., Le Fèvre, O.,
    [Show full text]
  • CNO Abundances in the Open Clusters Trumpler 20, NGC 4815, and NGC 6705
    The Gaia-ESO Survey: CNO abundances in the open clusters Trumpler 20, NGC 4815, and NGC 6705 Tautvaisiene, G.; Drazdauskas, A.; Mikolaitis, S.; Barisevicius, G.; Puzeras, E.; Stonkute, E.; Chorniy, Y.; Magrini, L.; Romano, D.; Smiljanic, R.; Bragaglia, A.; Carraro, G.; Friel, E.; Morel, T.; Pancino, E.; Donati, P.; Jimenez-Esteban, F.; Gilmore, G.; Randich, S.; Jeffries, R. D.; Vallenari, A.; Bensby, Thomas; Flaccomio, E.; Recio-Blanco, A.; Costado, M. T.; Hill, V.; Jofre, P.; Lardo, C.; de laverny, P.; Masseron, T.; Moribelli, L.; Sousa, S. G.; Zaggia, S. Published in: Astronomy & Astrophysics DOI: 10.1051/0004-6361/201424989 2015 Link to publication Citation for published version (APA): Tautvaisiene, G., Drazdauskas, A., Mikolaitis, S., Barisevicius, G., Puzeras, E., Stonkute, E., Chorniy, Y., Magrini, L., Romano, D., Smiljanic, R., Bragaglia, A., Carraro, G., Friel, E., Morel, T., Pancino, E., Donati, P., Jimenez-Esteban, F., Gilmore, G., Randich, S., ... Zaggia, S. (2015). The Gaia-ESO Survey: CNO abundances in the open clusters Trumpler 20, NGC 4815, and NGC 6705. Astronomy & Astrophysics, 573, [A55]. https://doi.org/10.1051/0004-6361/201424989 Total number of authors: 33 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]
  • Luminosity and Mass Function of Galactic Open Clusters I. NGC 4815?
    A&A 369, 851–861 (2001) Astronomy DOI: 10.1051/0004-6361:20010202 & c ESO 2001 Astrophysics Luminosity and mass function of galactic open clusters I. NGC 4815? L. Prisinzano1,2, G. Carraro2,G.Piotto2, A. F. Seleznev3,P.B.Stetson4, and I. Saviane5 1 Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134, Palermo, Italy 2 Dipartimento di Astronomia, Universit`a di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 3 Astronomical Observatory, Ural State University, pr. Lenina 51, Ekaterinburg, 620083 Russia 4 Dominion Astrophisical Observatory, Herzberg Institute of Astrophysics, National Res earch Council of Canada, 5071 West Saanich Road, Victoria, British Columbia V8X 4M6, Canada 5 UCLA/ Department of Physics and Astronomy, Los Angeles, CA 90095-1562, USA Received 30 June 2000 / Accepted 23 January 2001 Abstract. We present deep V and I photometry for the open cluster NGC 4815 and four surrounding Galactic fields down to a limiting magnitude V ∼ 25. These data are used to study cluster spatial extension by means of star counts, and to derive the luminosity (LF) and mass function (MF). The radius turns out to be 3.60.3 arcmin at V =19.0, whereas the mass is 880 230 m down to V =20.8. From the color-magnitude diagram, we obtain the LFs in the V and I bands, using both the standard histogram and an adaptive kernel. After correction for incompleteness and field star contamination, the LFs were transformed into the present day mass functions (PDMF). The PDMFs from the V and I photometry can be represented as a power-law with a slope α =3.10.3 and α =2.9 0.3 (the (Salpeter 1955) MF in this notation has a slope α =2.35) respectively, in the mass range ≤ m ≤ 2.5 m 0.8.
    [Show full text]
  • The Spatial Distribution and Luminosity Function of the Open Cluster NGC 4815
    A&A manuscript no. (will be inserted by hand later) ASTRONOMY AND Your thesaurus codes are: ASTROPHYSICS 10.15.2: NGC 4815;08.06.03;08.12.3;10.19.2;03.13.6 27.8.2018 The spatial distribution and luminosity function of the open cluster NGC 4815 B. Chen1, G. Carraro2,3, J. Torra1, and C. Jordi1 1 Departament d’Astronomia i Meteorologia, Universitat de Barcelona, Avda. Diagonal 647, E08028, Barcelona, Spain 2 Department of Astronomy, Padova University, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy 3 SISSA/ISAS, via Beirut 2, I-34013, Trieste, Italy Received August 22; Accepted November 28, 1997 Abstract. NGC 4815 is a distant and populous open clus- photometry of open clusters. This is particularly impor- ter, which lies in the galactic plane in a region of strong tant for distant clusters or clusters located at low galac- absorption. As a consequence, its membership, spatial dis- tic latitudes and highly contaminated by foreground stars tribution and luminosity function are not well determined. (Carraro & Patat 1995). This is the case for NGC 4815 (l In this paper, we present an algorithm which uses both po- = 303o, b=-2o), a distant open cluster lying in the galactic sitional and photometric data simultaneously to search for plane, in a region of strong absorption. open cluster members. The contribution of the field stars is The first photometric observations of NGC 4815 were estimated by our Galaxy model software. The method has carried out by Moffat & Vogt (1973), who measured only been developed for deep CCD photometric observations, 9 stars and did not recognize any sequence.
    [Show full text]
  • Gaia-ESO Survey: Properties of the Intermediate Age Open Cluster NGC 4815
    A&A 563, A117 (2014) Astronomy DOI: 10.1051/0004-6361/201323215 & c ESO 2014 Astrophysics Gaia-ESO Survey: Properties of the intermediate age open cluster NGC 4815 E. D. Friel1,,P.Donati2,3, A. Bragaglia3, H. R. Jacobson4,L.Magrini5, L. Prisinzano6,S.Randich5,M.Tosi2, T. Cantat-Gaudin7,8, A. Vallenari8, R. Smiljanic9,10, G. Carraro10, R. Sordo8, E. Maiorca5, G. Tautvaišiene˙11, P. Sestito12, S. Zaggia8,F.M.Jiménez-Esteban13,14 ,G.Gilmore15,R.D.Jeffries16,E.Alfaro17, T. Bensby18, S. E. Koposov15,19,A.J.Korn20,E.Pancino3,21, A. Recio-Blanco22, E. Franciosini5, V. Hill22, R. J. Jackson16, P. de Laverny 22, L. Morbidelli5, G. G. Sacco5,C.C.Worley15, A. Hourihane15,M.T.Costado17, P. Jofré15, and K. Lind15 (Affiliations can be found after the references) Received 7 December 2013 / Accepted 9 February 2014 ABSTRACT Context. NGC 4815 is a populous ∼500 Myr open cluster at Rgc ∼ 7 kpc observed in the first six months of the Gaia-ESO Survey. Located in the inner Galactic disk, NGC 4815 is an important potential tracer of the abundance gradient, where relatively few intermediate age open clusters are found. Aims. The Gaia-ESO Survey data can provide an improved characterization of the cluster properties, such as age, distance, reddening, and abundance profile. Methods. We use the survey derived radial velocities, stellar atmospheric parameters, metallicity, and elemental abundances for stars targeted as potential members of this cluster to carry out an analysis of cluster properties. The radial velocity distribution of stars in the cluster field is used to define the cluster systemic velocity and derive likely cluster membership for stars observed by the Gaia-ESO Survey.
    [Show full text]
  • Annual Report 2014
    ESO European Organisation for Astronomical Research in the Southern Hemisphere Annual Report 2014 ESO European Organisation for Astronomical Research in the Southern Hemisphere Annual Report 2014 Presented to the Council by the Director General Prof. Tim de Zeeuw The European Southern Observatory ESO, the European Southern Obser- vatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 16 countries: Austria, Belgium, Brazil1, the Czech Republic, Denmark, France, Finland, Germany, Italy, 1 the Netherlands, Poland , Portugal, Spain, ESO/B. Tafreshi (twanight.org) Sweden, Switzerland and the United Kingdom. Several other countries have expressed an interest in membership. Created in 1962, ESO carries out an ambi- tious programme focused on the design, construction and operation of powerful ground-based observing facilities ena- bling astronomers to make important ­scientific­discoveries.­ESO­also­plays­a­ leading role in promoting and organising cooperation in astronomical research. ESO operates three world-class observ- ing sites in the Atacama Desert region Paranal Observatory is one of the best places on of Chile: La Silla, Paranal and Chajnantor. Earth to take in the night sky. A mix of colours sweeps across the sky in this image. ESO’s­first­site­is­at­La­Silla,­2400­metres­ above sea level, and 600 kilometres north of Santiago de Chile. It is equipped with Antofagasta in Chile, and 12 kilometres magnitude 30 have been obtained in several optical telescopes with mirror inland­from­the­Pacific­coast­in­one­of­the­ a one-hour exposure. This corresponds diameters of up to 3.6 metres. driest­areas­in­the­world.­Scientific­opera- to seeing objects that are four billion tions began in 1999 and have resulted times fainter than those seen with the The 3.58-metre New Technology Tele- in many extremely successful research naked eye.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]