Extragalactic Astronomy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distances to Local Group Galaxies
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Distances to Local Group Galaxies Alistair R. Walker Cerro Tololo Inter-American Observatory, NOAO, Casilla 603, la Serena, Chile Abstract. Distances to galaxies in the Local Group are reviewed. In particular, the distance to the Large Magellanic Cloud is found to be (m M)0 =18:52 0:10, cor- − ± responding to 50; 600 2; 400 pc. The importance of M31 as an analog of the galaxies observed at greater distances± is stressed, while the variety of star formation and chem- ical enrichment histories displayed by Local Group galaxies allows critical evaluation of the calibrations of the various distance indicators in a variety of environments. 1 Introduction The Local Group (hereafter LG) of galaxies has been comprehensively described in the monograph by Sidney van den Berg [1], with update in [2]. The zero- velocity surface has radius of a little more than 1 Mpc, therefore the small sub-group of galaxies consisting of NGC 3109, Antlia, Sextans A and Sextans B lie outside the the LG by this definition, as do galaxies in the direction of the nearby Sculptor and IC342/Maffei groups. Thus the LG consists of two large spirals (the Galaxy and M31) each with their entourage of 11 and 10 smaller galaxies respectively, the dwarf spiral M33, and 13 other galaxies classified as either irregular or spherical. We have here included NGC 147 and NGC 185 as members of the M31 sub-group [60], whether they are actually bound to M31 is not proven. -
Publications for Geraint Lewis 2021 2020
Publications for Geraint Lewis 2021 R., Horner, J., Wright, D., Carter, B., Morton, T., Spina, L., Li, T., Koposov, S., Erkal, D., Ji, A., Shipp, N., Hilmi, T., Bland-Hawthorn, J., Hayden, M., Lewis, G., Sharma, S., Kuehn, K., Pace, A., Lewis, G., Mackey, D., Wan, Z., Bland- Simpson, J., et al (2021). The GALAH Survey: Using galactic Hawthorn, J., Sharma, S., et al (2021). Broken into pieces: archaeology to refine our knowledge of TESS target stars. ATLAS and Aliqa Uma as one single stream. The Astrophysical Monthly Notices of the Royal Astronomical Society, 504(4), Journal, 911(2), 149. <a href="http://dx.doi.org/10.3847/1538- 4968-4989. <a 4357/abeb18">[More Information]</a> href="http://dx.doi.org/10.1093/mnras/stab1052">[More Information]</a> Sharma, S., Hayden, M., Bland-Hawthorn, J., Stello, D., Buder, S., Zinn, J., Kallinger, T., Asplund, M., De Silva, G., D'Orazi, Oliver, W., Elahi, P., Lewis, G., Power, C. (2021). The V., Kos, J., Lewis, G., Lin, J., Zucker, D., Chen, B., Huber, D., hierarchical structure of galactic haloes: Classification and Kafle, P., Khanna, S., et al (2021). Fundamental relations for characterization with halo-optics. Monthly Notices of the Royal the velocity dispersion of stars in the Milky Way. Monthly Astronomical Society, 501(3), 4420-4437. <a Notices of the Royal Astronomical Society, 506(2), 1761-1776. href="http://dx.doi.org/10.1093/mnras/staa3879">[More <a href="http://dx.doi.org/10.1093/mnras/stab1086">[More Information]</a> Information]</a> Arentsen, A., Starkenburg, E., Aguado, D., Martin, N., Placco, Wiseman, P., Sullivan, M., Smith, M., Frohmaier, C., Vincenzi, V., Carlberg, R., Gonz�lez Hern�ndez, J., Hill, V., M., Graur, O., Popovic, B., Armstrong, P., Brout, D., Davis, T., Jablonka, P., Kordopatis, G., Lewis, G., Wan, Z., et al (2021). -
Grant Proposals, 1991-1999
Grant Proposals, 1991-1999 Finding aid prepared by Smithsonian Institution Archives Smithsonian Institution Archives Washington, D.C. Contact us at [email protected] Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Descriptive Entry.............................................................................................................. 1 Names and Subjects ...................................................................................................... 1 Container Listing ............................................................................................................. 2 Grant Proposals https://siarchives.si.edu/collections/siris_arc_251859 Collection Overview Repository: Smithsonian Institution Archives, Washington, D.C., [email protected] Title: Grant Proposals Identifier: Accession 99-171 Date: 1991-1999 Extent: 17 cu. ft. (17 record storage boxes) Creator:: Smithsonian Astrophysical Observatory. Contracts and Procurement Office Language: English Administrative Information Prefered Citation Smithsonian Institution Archives, Accession 99-171, Smithsonian Astrophysical Observatory, Contracts and Procurement Office, Grant Proposals Descriptive Entry This accession consists of records documenting Smithsonian Astrophysical Observatory projects and activities. Materials include proposals, correspondence, progress -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
And Ecclesiastical Cosmology
GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc. -
Una Aproximación Física Al Universo Local De Nebadon
4 1 0 2 local Nebadon de Santiago RodríguezSantiago Hernández Una aproximación física al universo (160.1) 14:5.11 La curiosidad — el espíritu de investigación, el estímulo del descubrimiento, el impulso a la exploración — forma parte de la dotación innata y divina de las criaturas evolutivas del espacio. Tabla de contenido 1.-Descripción científica de nuestro entorno cósmico. ............................................................................. 3 1.1 Lo que nuestros ojos ven. ................................................................................................................ 3 1.2 Lo que la ciencia establece ............................................................................................................... 4 2.-Descripción del LU de nuestro entorno cósmico. ................................................................................ 10 2.1 Universo Maestro ........................................................................................................................... 10 2.2 Gran Universo. Nivel Espacial Superunivesal ................................................................................. 13 2.3 Orvonton. El Séptimo Superuniverso. ............................................................................................ 14 2.4 En el interior de Orvonton. En la Vía Láctea. ................................................................................. 18 2.5 En el interior de Orvonton. Splandon el 5º Sector Mayor ............................................................ 19 -
School of Physics Publications 2007
School of Physics Publications 2007 Books Karnutsch, C 2007, Low threshold organic thin-film laser devices, Göttingen, 1 Ostrikov, K, Xu, S 2007, Plasma-Aided Nanofabrication: From Plasma Sources to Nanoassembly, Weinheim, Germany Book Chapters Beck, R, Gaensler, B M, Feretti, L 2007, SKA and the Magnetic Universe, Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century, Springer-Verlag Berlin Heidelberg, Berlin Heidelberg, 103-108 Bilek, M, Powles, R C, McKenzie, D R 2007, Treatment of polymeric biomaterials by ion implantation, Biomaterials and Surface Modification, Research Signpost, India, 205-248 Britton, S C, New, P B, Roberts, A L, Sharma, M D 2007, Investigating students' ability totransfer mathematics, Transforming a university: the scholarship of teaching and learning in practice, University of Sydney Press, NSW, Australia, 127-140 Dey, C J, Berger, C, Foran, B, Foran, M, Joske, R, Lenzen, M, Wood, R J 2007, Household environmental pressure from consumption: an Australian environmental atlas, Water Wind Art and Debate -How environmental concerns impacton disciplinary research, Sydney University Press, Sydney, 1, 280-314 Eggleton, B J, Slusher, R 2007, Nonlinear pulse propagation in one-dimensional photonic bandgap structures, Nonlinear photonic bandgap materials, Springer Khoukhi, M, Maruyama, S, Bosi, S G, Komiya, A 2007, A Simple Approach for Calculating the Optical Constants of a Clear Glass Window from 0.19 to 5 um, Recent Developments in Solar Energy, Nova Science Publishers, Inc, New York, 289-297 -
Arxiv:1508.03622V2 [Astro-Ph.GA] 6 Nov 2015 – 2 –
Eight Ultra-faint Galaxy Candidates Discovered in Year Two of the Dark Energy Survey 1; 2;3; 4;5 6;7 6;7 8;4;5 A. Drlica-Wagner ∗, K. Bechtol y, E. S. Rykoff , E. Luque , A. Queiroz , Y.-Y. Mao , R. H. Wechsler8;4;5, J. D. Simon9, B. Santiago6;7, B. Yanny1, E. Balbinot10;7, S. Dodelson1;11, A. Fausti Neto7, D. J. James12, T. S. Li13, M. A. G. Maia7;14, J. L. Marshall13, A. Pieres6;7, K. Stringer13, A. R. Walker12, T. M. C. Abbott12, F. B. Abdalla15;16, S. Allam1, A. Benoit-L´evy15, G. M. Bernstein17, E. Bertin18;19, D. Brooks15, E. Buckley-Geer1, D. L. Burke4;5, A. Carnero Rosell7;14, M. Carrasco Kind20;21, J. Carretero22;23, M. Crocce22, L. N. da Costa7;14, S. Desai24;25, H. T. Diehl1, J. P. Dietrich24;25, P. Doel15, T. F. Eifler17;26, A. E. Evrard27;28, D. A. Finley1, B. Flaugher1, P. Fosalba22, J. Frieman1;11, E. Gaztanaga22, D. W. Gerdes28, D. Gruen29;30, R. A. Gruendl20;21, G. Gutierrez1, K. Honscheid31;32, K. Kuehn33, N. Kuropatkin1, O. Lahav15, P. Martini31;34, R. Miquel35;23, B. Nord1, R. Ogando7;14, A. A. Plazas26, K. Reil5, A. Roodman4;5, M. Sako17, E. Sanchez36, V. Scarpine1, M. Schubnell28, I. Sevilla-Noarbe36;20, R. C. Smith12, M. Soares-Santos1, F. Sobreira1;7, E. Suchyta31;32, M. E. C. Swanson21, G. Tarle28, D. Tucker1, V. Vikram37, W. Wester1, Y. Zhang28, J. Zuntz38 (The DES Collaboration) arXiv:1508.03622v2 [astro-ph.GA] 6 Nov 2015 { 2 { *[email protected] [email protected] 1Fermi National Accelerator Laboratory, P. -
The Hubble Catalog of Variables (HCV)? A
Astronomy & Astrophysics manuscript no. hcv c ESO 2019 September 25, 2019 The Hubble Catalog of Variables (HCV)? A. Z. Bonanos1, M. Yang1, K. V. Sokolovsky1; 2; 3, P. Gavras4; 1, D. Hatzidimitriou1; 5, I. Bellas-Velidis1, G. Kakaletris6, D. J. Lennon7; 8, A. Nota9, R. L. White9, B. C. Whitmore9, K. A. Anastasiou5, M. Arévalo4, C. Arviset8, D. Baines10, T. Budavari11, V. Charmandaris12; 13; 1, C. Chatzichristodoulou5, E. Dimas5, J. Durán4, I. Georgantopoulos1, A. Karampelas14; 1, N. Laskaris15; 6, S. Lianou1, A. Livanis5, S. Lubow9, G. Manouras5, M. I. Moretti16; 1, E. Paraskeva1; 5, E. Pouliasis1; 5, A. Rest9; 11, J. Salgado10, P. Sonnentrucker9, Z. T. Spetsieri1; 5, P. Taylor9, and K. Tsinganos5; 1 1 IAASARS, National Observatory of Athens, Penteli 15236, Greece e-mail: [email protected] 2 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 3 Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119992 Moscow, Russia 4 RHEA Group for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 5 Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos 15784, Greece 6 Athena Research and Innovation Center, Marousi 15125, Greece 7 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain 8 ESA, European Space Astronomy Centre, Villanueva de la Canada, 28692 Madrid, Spain 9 Space Telescope Science Institute, Baltimore, MD 21218, USA 10 Quasar Science Resources for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 11 The Johns Hopkins University, Baltimore, MD 21218, USA 12 Institute of Astrophysics, FORTH, Heraklion 71110, Greece 13 Department of Physics, Univ. -
Biennial Report 2006 2007 Published in Spain by the Isaac Newton Group of Telescopes (ING) ISSN 1575–8966 Legal License: TF–1142 /99
I SAAC N EWTON G ROUP OF T ELESCOPES Biennial Report 2006 2007 Published in Spain by the Isaac Newton Group of Telescopes (ING) ISSN 1575–8966 Legal license: TF–1142 /99 Apartado de correos, 321 E-38700 Santa Cruz de La Palma; Canary Islands; Spain Tel: +34 922 425 400 Fax: +34 922 425 401 URL: http://www.ing.iac.es/ Editor and designer: Javier Méndez ([email protected]) Printing: Gráficas Sabater. Tel: +34 922 623 555 Front cover: The Milky Way from the site of the William Herschel Telescope. Credit: Nik Szymanek. Inset: Photograph of the WHT at sunset. Credit: Nik Szymanek. Other picture credits: Nik Szymanek (WHT, p. 4; INT, p. 4; JKT, p. 4; ING, p. 5); Jens Moser (WHT, back; INT, back); Nik Szymanek (JKT, back). The ING Biennial Report is available online at http://www.ing.iac.es/PR/AR/. ISAAC NEWTON GROUP OF TELESCOPES Biennial Report of the STFC-NWO-IAC ING Board 2006 – 2007 ISAAC NEWTON GROUP William Herschel Telescope Isaac Newton Telescope Jacobus Kapteyn Telescope 4 • ING BIENNIAL R EPORT 2006–2007 OF TELESCOPES The Isaac Newton Group of Telescopes (ING) consists of the 4.2- metre William Herschel Telescope (WHT), the 2.5-metre Isaac Newton Telescope (INT) and the 1.0-metre Jacobus Kapteyn Telescope (JKT). The ING is located 2350 metres above sea level at the Observatorio del Roque de los Muchachos (ORM) on the island of La Palma, Canary Islands, Spain. The WHT is the largest telescope of its kind in Western Europe. The construction, operation, and development of the ING telescopes are the result of a collaboration between the United Kingdom, The Netherlands and Spain. -
A 'Catchers Tale' the 'Leviathan Lord'
The ‘Leviathan Lord’ of Birr Castle The ‘Leviathan Lord’ of Birr Castle William Parsons, 3rd Earl of Rosse A ‘Catchers Tale’ Featuring Featuringthe Forgotten the Forgotten LivesLives of theof Men the and Men Women and who FirstWomen who First PhotographedPhotographed the Heavens the Heavens Stefan Hughes Contents 1. The ‘Catchers Tales’ 1 1.1 Introduction 2 1.2 Birr Castle Today 4 1.3 The ‘Great Telescope Builder’ 5 2. The Life and Work of William Parsons 6 2.1 ‘Great Telescopes’ 7 2.2 Lord Oxmantown 8 2.3 Mary Field of Heaton Hall 10 2.4 Parsonstown 17 2.5 Mirror, Mirror on the Estate... 23 2.6 The ‘Leviathan’ 30 2.7 ‘The Problem of the Nebulae’ 36 2.8 ‘Spirals’ 44 2.9 Photography at Birr 50 2.10 Homage 54 2.11 After... 58 3. Appendices 64 A: William Parsons: Family Pedigree 65 B: Mary Field: Family Pedigree 69 C: Glossary of Terms & Personalities 73 4. End Piece 80 Notes & Bibliography 81 Acknowledgements 91 Index 92 The Author 97 i 1. The ‘Catchers Tales’ Catchers of the Light William Parsons 3rd Earl of Rosse The Forgotten Lives of the Men and Women who First Photographed the Heavens Their True Tales of Adventure, Adversity & Triumph Stefan Hughes1 1.1 Introduction The ‘Catchers Tales’, each feature a single life of one of the men and women who first photographed the heavens. Their lives are ones full of adventure, adversity and triumph - which would test the abilities of even the best author or screenwriter to recreate as a work of fiction. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39