I. Solubility and Blend Studies of Nitrocellulose It
Total Page:16
File Type:pdf, Size:1020Kb
I. SOLUBILITY AND BLEND STUDIES OF NITROCELLULOSE IT. RELAXATION PROPERTIES OF THIN FILM COATINGS: THE ROLE OF SURFACE TOPOGRAPHY by Eduardo Baleens Thesis submitted to the Faculty of the Virginia Polytechnic Institite and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Chemistry APPROVED: T.C. Ward, Chairman J.D. Graybeal J.P. Wightman July, 1988 Blacksburg, Virginia I. SOLUBILITY AND BLEND STUDIES OF NITROCELLULOSE II. RELAXATION PROPERTIES OF THIN ALM COATINGS: THE ROLE OF SURFACE TOPOGRAPHY by Eduardo Balcells Committee Chainnan: T. C. Ward Chemistry (ABSTRACT) In the first part of this two part thesis, interaction parameters of nitrocellulose with various solvent systems were investigated by Inverse Gas Chromatography. From these data, the solubility parameters of nitrocellulose were detennined at a series of nitration levels which were used to guide the selection of suitable plasticizers for nitrocellulose films. Subsequent dynamic mechanical experiments were then used to evaluate the effectiveness of the blend fonnulations in broadening the glass transition dispersion of the nitrocellulose blended films; in addition, stress-strain experiments were done in order to evaluate the tensile modulus of the nitrocellulose blends. In the second part of this thesis, both dynamic mechanical thermal analysis and dielectric thermal analysis were used to evaluate the relaxation properties of thin film polysulfone coatings and the effect of substrate surface topography on these properties. Both dynamic mechanical and dielectric thermal analysis revealed that the topographical nature of the substrate influenced the linear viscoelastic properties of the thin film coatings and that the extent of this influence was dependent on the coating thickness. ACKNOWLEDGEMENTS The completion of this graduate coursework was made possible by the encouragement and assistance of several friends and family members. Those who have my sincere gratitude and esteem are: Dr. Thomas C. Ward, my graduate advisor, who not only gave me the opportunity and guidance for my graduate studies, but who more importantly served and will continue to serve as a role model for character both as a professional and fellow human being; Dr. James P. Wightman and Dr. Jack D. Graybeal for serving on my committee and providing guidance in my research; Mia Siochi, for her friendship and whose generous assistance in typing this thesis will not be forgotten; Chan Ko, for his collaboration in parts of the research presented and for his expertise on surface analysis; Erick Grumblatt, for his friendship and support, and for always being there when I needed a BREAK; and my family, especially: My beautiful wife Giuliana C. Balcells, who has shared my entire experience and made the good times better and the difficult times bearable; Mi madre Cecilia, por su amor, prayers, support, que siempre a estado foremost en qualquer endeavor que he hecho. iii TABLE OF CONTENTS 1.0 INTRODUCTION ..................................................................................... 1 2.0 SOLUBILITY PARAMETERS OF NITROCELLULOSE ....................................... 5 2.1 Literature Review .............................................................................. 5 2.1.1 Hildebrand Solubility Parameter ...................................................5 2.1.1.1 Concept ..................................................................... 5 2.1.1.2 Applications of the Solubility Parameter ................................7 2.1.2 Inverse Gas Chromatography ...................................................... 9 2.1.2.1 Theory ...................................................................... 9 2.1.2.2 IGC and Flory-Huggins Thermodynamics ............................ .13 2.1.2.2.1 The Flory - Huggins Chi Parameter from IGC ............ 13 2.1.2.2.2 The Hildebrand Solubility Parameter.. ..................... .15 2.2 Experimental .................................................................................... 15 2.2.1 Materials .............................................................................. .15 2.2.1.1 Probes ....................................................................... 15 2.2.1.2 Columns .................................................................... 17 2.2.2 Instrumentation .......................................................................17 2.2.3 Data reduction ........................................................................ 18 2.3 Results and Discussion ....... ~ ................................................................ 19 2.3.1 Experimentally Determined x12 Values for Nitrocellulose ..................... 19 2.3.2 Experimentally Determined Qi Values for Nitrocellulose ....................... 19 2.3.3 Temperature Dependence ofx12 and 02 ..........................................29 2.3.4 Method of Group Contributions for 82 ........................................... 33 2.4 Summary ........................................................................................ .35 2.5 Appendix ........................................................................................ .38 2.5.1 Theory of Gas Liquid Partition Chromatography ................................ 38 2.5.2 Thermodynamics of Polymer Solutions: The Flory-Huggins Theory ........ 40 2.5.3 The Hildebrand-Scatchard Theory of Regular Solutions ....................... .42 2.5.4 Estimation Methods for Chemical Properties .................................... 45 2.5.4.1 Estimation of P1 o .......................................................... 45 2.5.4.2 Estimation of V 1L ......................................................... 45 2.5.4.3 Estimation of 81 at 100 °c ............................................... 46 iv 2.5.5 Method of Group Contribution by Fedors for Calculation of Oi ...............47 References .............................................................................................49 3.0 NITROCELLULOSE BLENDS ..................................................................... 51 3.1 Background ..................................................................................... 51 3.2 Introduction ..................................................................................... 54 3.3 Experimental .................................................................................... 54 3.3.1 Sample Preparation .................................................................. 54 3.3.2 Dynamic Mechanical Analysis ..................................................... 56 PL-D. M. T. A. Technique ........................................................ 56 3.3.3 Stress-Strain Experiments .......................................................... 58 3.4 Results and Discussions ....................................................................... 58 3.4.1 Dynamic Mechanical Analysis ..................................................... 58 3.4.2 Stress-Strain Experiments .......................................................... 62 3.5 Summary and Conclusions .................................................................... 66 References .............................................................................................67 4.0 RELAXATION PROPERTIES OFTHINFILM COATINGS: THE ROLE OF SURFACE TOPOGRAPHY .......................................................................... 68 4.1 Background ..................................................................................... 68 4.1.1 Surface Topography ................................................................. 68 4.1.2 Interphase Region ................................................................... 71 4.1.3 Material Property Gradients .........................................................73 4.1.4 Importance of Sample History ..................................................... 75 4.2 Introduction ..................................................................................... 16 4.2.1 Dynamic Experiments of Polymers ................................................76 4.2.2 Dynamic Experiments in Adhesion ................................................ 79 4.3 Experimental .................................................................................... 84 4.3.1 Sample Preparation .................................................................. 84 4.3.1.1 Preparation of Neat Polysulfone Films ................................. 84 4.3.1.2 Preparation of Polysulfone Coatings .................................... 84 4.3.1.2.1 Substrate Preparation .......................................... 84 4.3.1.2.2 Coating Preparation ........................................... 84 4.3.2 Characterization of Coating Thicknesses .......................................... 85 4.3.2.1 Ellipsometry ................................................................ 85 4.3.2.2 Scanning Electron Microscopy (SEM) .................................. 85 v 4.3.3 Characterization of Substrate Surface Topography by High Resolution Scanning Electron Microscopy (HSEM) .......................................... 85 4.3.4 Characterization of Polysulfone Coatings and Neat Films ..................... 87 4.3.4.1 X-ray Photoelectron Spectroscopy (XPS) ............................. 87 4.3.4.2 Dynamic Mechanical Thennal Analysis (D.M. T. A.) ................ 87 4.3.4.3 Dielectric Thennal Analysis (D. E. T. A.) .............................. 87 PL D. E. T. A. Operating Principles .................................... 88 4.4 Results and Discussion .......................................................................