N=N` S N-Ch2-C-Hn J-Ch2-C-Hn S 11 N S-Ch2-C-Hn \\ / Ch-C-Hn H2

Total Page:16

File Type:pdf, Size:1020Kb

N=N` S N-Ch2-C-Hn J-Ch2-C-Hn S 11 N S-Ch2-C-Hn \\ / Ch-C-Hn H2 gnosts.and Ivtanagenment of Infectious I)iscases i CHAPTER 20 Cephalosporins COO- DAVID R. ANDES A WILLIAM A. CRAIG FIGURE 20-1 . Basic cephalosporin nucleus . Although the discovery of the cephalosporin antibiotic class was re- duced by gram-negative anaerobic and aerobic bacteria ." These com. ported in 1945, it took nearly two decades for this class to achieve pounds, however, have lower affinity for the penicillin-binding protein clinical utility. Giuseppe Brotzu is widely credited for discovery of the (PBP) target in gram-positive bacteria .' The cephamycin group is broad-spectrum inhibitory effects of sewage outflow in Sardinia, structurally related to the cephalosporins but originated as a metabo . Italy.' Professor Brotzu subsequently isolated the mold Cephalosporin lite from Streptomyces lactamdurans .b The basic building block of the B acremonium (now Acremonium chrysogenum) and demonstrated an- cephamycin group is cephamycin C . Hydrolysis of cephamycin C, timicrobial activity of culture filtrates against both gram-positive and however, produces the 7-ACA nucleus. gram-negative bacteria . He also demonstrated the in vivo activity of Many modifications of the acyl side chain have been undertaken . these culture filtrates in both animal infection models and several pa- The first compounds resulting from addition of a thienyl ring or a tients. The filtrate was used both locally by injection into skin ab- tetrazole structure at R1 included the first-generation cephalosporins, scesses and systemically for the therapy of brucella and typhoid fever . A decade after the initial discovery', the cephalosporin substances C were isolated and identified as fermentation products of the mold .' Investigators at Oxford, including Florey and Abraham, systematically Cefazolin studied the physical, chemical, and structural characteristics of N=N` S cephalosporins as they had those of the penicillin class a decade ear- N-CH2-C-HN N-N lier. Three substances, cephalosporins P, N, and C, were identified . S J_Cl~ Each of the products possessed antimicrobial activity. However, only CH2-S__~1 cephalosporin C demonstrated activity against both gram-negative and NmC-CH2 -positive bacteria . In addition, it had advantageous stability in the pres- A COOH ence of acid and penicillinases .2 Cephalosporin C became the founda- tion of subsequent drug development . - The first cephalosporin, cephalothin, was introduced for clinical use 0 in 1964 . There are more than 20 cephalosporin antibiotics in use today . J-CH2-C-HN S The cephalosporin class is among the most widely prescribed antimi- CH2-O-C-CH3 crobial classes because of its broad spectrum of activity, low toxicity, 11 B ease of administration, and favorable pharmacokinetic profile . COOH FlGUR G, Cefa< CHEMISTRY Cephapirin 0 Most of the available cephalosporins are semisynthetic derivatives of N S-CH2-C-HN . The basic structure of the cephem nucleus includes a 11 cephalosporin C \\ / II - 3-lactam ring fused to a six-member sulfur-containing dihydrothiazine 0 CH,-O-C CK cephalot stitution ring (Fig. 20-1). The cephem nucleus is chemically distinct from the C oral absi penicillin nucleus, which in contrast contains a five-member thiazoli- COOH clor, cef dine ring . Basic structure numbering of the cephalosporin ring system Cephradine . The starting lated on, begins within the dihydrothiazine ring at the sulfur moiety enhance material utilized as the nucleus for current cephalosporin development D CH-C-HN pivoxyl is 7-aminocephalosporanic acid (7-ACA) . Attempts to alter the physio- CH3 are curr chemical and biologic properties of the cephalosporins by chemical side The chain modifications were based upon similar success with structural velopm, .' changes at the 6-aminopenicillanic acid side chain of penicillin COOH are due Chemical modifications of the basic cephem structure by substitution of Cefadroxil changes constituents at positions 1, 3, and 7 have led to the various cephalosporin group tt E CH-C-HN compounds in use today.°s Alterations in positions C7 and C3 are also HO chain a commonly referred to as RI and R2, respectively. In general, changes at CH3 of impT RI affect the microbial spectrum of activity. These modifications often the q-c affect the stability of the compound to enzymatic destruction by (3-lac- COOH The se . tamases or the affinity of the compound for the drug target . Modification Cephalexin additio at R2 often alters the pharmacology of the compound . Changes in the ring at R2 constituent may influence the ability of the compound to reach cer- CH-C-HN tain infection sites such as the central nervous system or may simply F many CH prolong the elimination half-life of the drug . 0 and 2( The predominant changes at RI (position 7) include the addition of H2 Puoft an acyl side chain and the substitution of the hydrogen with a methoxy COOH group .' This RI methoxy substitution led to the development of the FIGURE 20-2. First-generation cephalosporins. A, Cefaz4 cephamycin group of compounds, such as cefoxitin, cefmetazole, and B, Cephalothin . C, Cephapirin. D, Cephradine . E, Cefadro cefotetan . This alteration enhanced resistance to (3-lactamase pro- F, Cephalexin . Cefotetan 0 Cefamandole I OCH3 S II 2 __1 N-N 1 CH-C- N I'll II CH-C-N N-N HO-C~~S CH2-S-~ N I I N CH2-S II OH N 0 COON CH3 E COOH CH3 Cefoxitin Cefonicid 0 I OCH3 ese corn. CH2 - C-N 0 g protein II I N-N group is CH-C-N I I CH2-0-C-NH2 metabo- CH2 -S N F ck of the OH k COOH nycin C, COOH CH2SO3H Cefaclor dertaken . Cefuroxime ring or a CH-C-HN osporins, II I 0 -C- N I II CI II NH2 O CH2-O-C-NH2 N COON I OCH3 COON Cefprozil CH3 -N HO CH-C- HN Cefmetazole I 1 11 CH=CH J_CH3 II I OCH3 H NH2 0 5 N-N N-C-CH2-S -CH2- C-N COON CH2-S-~, N HO O/f Loracarbef D C=O CH3 CH-C-HN I II I H NH2 O CI COOH FIGURE 20-3 . Second-generation cephalosporins . A, Cefamandole . B, Cefonicid . C, Cefuroxime . D, Cefmetazole . E, Cefotetan . F, Cefoxitin . G, Cefaclor. H, Cefprozil . I, Loracarbef. 0 II -C-C cephalothin, cephaloridine, and cefazolin (Fig . 20-2). The simple sub- reduces activity against staphylococci . Two other modifications that stitution of an aminobenzyl group in the 7 position is important for have resulted in compounds with increased activity against P aerugi- oral absorption of the cephalosporins .5 Cephalexin, cephradine, cefa- nosa are an ureido-2,3-dioxopiperazine group and a carboxyl group on clor, cefprozil, and loracarbef all have this structure or a closely re- the a-carbon with cefoperazone and moxalactam, respectively .' These lated one (Fig . 20-3). Absorption of later generation cephalosporins is changes are similar to those with piperacillin and carbenicillin. enhanced by the production of ester formulations . Axetil, proxetil, or Numerous modifications at R2 or the 3 position have also played a pivoxyl esters of cefuroxime, ceftamet, cefpodoxime, and cefditoren significant role in the development of the current cephalosporins . An 3 are currently available. acetoxy side chain is present in cephalothin, cephapirin, and cefo- The majority of the chemical modifications in cephalosporin de- taxime.5 Cephalosporins with this structure can be metabolized in both velopment, which have resulted in changes in microbiologic spectrum, the serum and liver to a less active desacetyl derivative . Such drugs are due to alterations at the a-carbon of the acyl side chain .' These also tend to have a short half-life . A chloride substitution at R2 en- changes have ranged from the relatively simple addition of a hydroxyl hanced the gram-negative spectrum of activity and led to the develop- group to the addition of large synthetic moieties . Each of the acyl side ment of cefaclor, an early second-generation cephalosporin. The chain alterations has led to enhanced gram-negative potency because unique pharmacology of ceftriaxone results from an R2 modification . 3 of improved (3-lactamase stability. The addition of a hydroxyl group at Substitution of a heterocyclic thiomethyl group at the 3 position in- the 01-carbon led to the second-generation cephalosporin cefamandole . creases its biliary secretion and remarkably prolongs the elimination The second-generation cephalosporin cefuroxime resulted from the half-life of the compound because of protein binding .'," The addition addition of a methoxyimino group in the a position along with a furyl of positively charged quaternary ammonium moieties in the 3 position nng at the P-acyl side chain . Addition of a 2-aminothiazol group to the contributed to the development of the fourth-generation cephalo- 7- Q-acyl side chain and a methoxyimino group to the a-carbon led to sporins cefepime and cefpirome .9 The chemical modification produces 3 many of the third- and fourth-generation cephalosporins (Figs . 20-4 a zwitterion, which enhances the ability of the compound to penetrate and 20-5)."9 Cefotaxime, ceftizoxime, ceftriaxone, cefepime, cef- the outer membrane of gram-negative organisms . Not all modifica- p>rome, and cefpodoxime all have a similar structure at the 7 position . tions have led to desired effects . The placement of a thiomethyl tetra- CeftaZidime ;efazolin . differs from these drugs by replacing the methoxyimino zole ring (MTT) at the R2 position not only enhanced antibacterial efadroxil- group with a dimethylacetic acid moiety attached to the imino group .' activity but also resulted in two important adverse effects that have s alteration enhances activity against Pseudomonas aeruginosa but limited use of these compounds ."," Cefamandole, cefotetan, and
Recommended publications
  • Medical Review(S) Clinical Review
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 200327 MEDICAL REVIEW(S) CLINICAL REVIEW Application Type NDA Application Number(s) 200327 Priority or Standard Standard Submit Date(s) December 29, 2009 Received Date(s) December 30, 2009 PDUFA Goal Date October 30, 2010 Division / Office Division of Anti-Infective and Ophthalmology Products Office of Antimicrobial Products Reviewer Name(s) Ariel Ramirez Porcalla, MD, MPH Neil Rellosa, MD Review Completion October 29, 2010 Date Established Name Ceftaroline fosamil for injection (Proposed) Trade Name Teflaro Therapeutic Class Cephalosporin; ß-lactams Applicant Cerexa, Inc. Forest Laboratories, Inc. Formulation(s) 400 mg/vial and 600 mg/vial Intravenous Dosing Regimen 600 mg every 12 hours by IV infusion Indication(s) Acute Bacterial Skin and Skin Structure Infection (ABSSSI); Community-acquired Bacterial Pneumonia (CABP) Intended Population(s) Adults ≥ 18 years of age Template Version: March 6, 2009 Reference ID: 2857265 Clinical Review Ariel Ramirez Porcalla, MD, MPH Neil Rellosa, MD NDA 200327: Teflaro (ceftaroline fosamil) Table of Contents 1 RECOMMENDATIONS/RISK BENEFIT ASSESSMENT ......................................... 9 1.1 Recommendation on Regulatory Action ........................................................... 10 1.2 Risk Benefit Assessment.................................................................................. 10 1.3 Recommendations for Postmarketing Risk Evaluation and Mitigation Strategies ........................................................................................................................
    [Show full text]
  • “Ceftriaxone– Sulbactam–EDTA” and Various Antibiotics Against Gram
    ORIGINAL ARTICLE A Comparative In Vitro Sensitivity Study of “Ceftriaxone– Sulbactam–EDTA” and Various Antibiotics against Gram- negative Bacterial Isolates from Intensive Care Unit Sweta Singh1, Chinmoy Sahu2, Sangram Singh Patel3, Abhay Singh4, Nidhi Yaduvanshi5 ABSTRACT Introduction: A rapid increase in multidrug-resistant (MDR) strains is being seen across the globe especially in the Southeast Asian region, including India. Carbapenems and colistin form the mainstay of treatment against gram-negative pathogens, especially extended-spectrum beta-lactamase (ESBL)- and metallo-beta-lactamse (MBL)-producing isolates. However, due to increased resistance to carbapenems and toxicity of colistin, especially in intensive care units (ICUs), carbapenem-sparing antibiotics like ceftriaxone–sulbactam–EDTA (CSE) combination needs to be evaluated. Materials and methods: Bacterial isolates cultured from various clinical samples from all ICUs for a period of 9 months were evaluated. Bacterial identification was performed by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and antibiotic susceptibility testing were performed by disk diffusion and E test method. Antibiogram of various antibiotics was noted. Extended-spectrum beta-lactamase- and MBL-producing bacteria were identified by phenotypic methods. Antibiotic sensitivity results of CSE were compared with the comparator drugs like colistin, carbapenems, and tigecycline in Enterobacteriaceae, Acinetobacter spp., and Pseudomonas spp. along with ESBL and MBL producers. Results: A total of 2,760 samples of blood, cerebrospinal fluid (CSF), respiratory samples, tissue, and pus were collected from ICUs with maximum isolates from pus (37%) followed by respiratory samples (31%) and blood (27%). Escherichia coli and Klebsiella pneumoniae were the predominant gram-negative pathogens accounting for 56% of the isolates followed by Acinetobacter spp.
    [Show full text]
  • Surgical Decolonization and Prophylaxis
    Surgical Decolonization and Prophylaxis SurgicalSurgical Decolonization Decolonization and Prophylaxis and Prophylaxis DECOLONIZATION DECOLONIZATION Nasal Screening Result Recommended Intervention Nasal Screening Result Recommended Intervention MRSA Negative • No decolonization required MSSAMRSA NegativeNegative • No decolonization required MSSA PositiveNegative • Intranasal mupirocin twice daily x 5 days MSSA Positive • Intranasal mupirocin twice daily x 5 days MRSA Positive • Intranasal mupirocin twice daily x 5 days, MRSA Positive AND• Intranasal mupirocin twice daily x 5 days, •ANDChlorhexidine bathing one day prior to surgery ANTIMICROBIAL• ChlorhexidinePROPHYLAXISbathing one day prior to surgery ANTIMICROBIAL PROPHYLAXIS CLINICAL CONSIDERATIONS • Preoperative dose-timing CLINICAL CONSIDERATIONS • PreoperativeWithin 60 minutesdose-timing of surgical incision WithinExceptions: 60 minutes vancomycin of surgicaland fluoroquinolones incision within 120 minutes of surgical incisionExceptions: vancomycin and fluoroquinolones within 120 minutes of surgical • Weightincision-based dosing • WeightCefazolin-based: 2 gm dosingfor patients <120 kg, and 3 gm for patients ≥120 kg Vancomycin:Cefazolin: 2 gm usefor ABW patients <120 kg, and 3 gm for patients ≥120 kg Gentamicin:Vancomycin: use use ABW ABW unless ABW is >120% of their IBW, in which case use AdjBWGentamicin:(see below use ABW for equation)unless ABW is >120% of their IBW, in which case use • DurationAdjBW of(see prophylaxis below for equation) • DurationA single of dose, prophylaxis
    [Show full text]
  • 28912 Oxoid FDA Cartridge Tables:1
    * Adapted in part from CLSI document M100-S23 (M02-A11) : “Disc diffusion supplemental tablesʼʼ Performance standards for antimicrobial susceptibility testing. The complete standard may be obtained from the Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, PA 19807. Test Cultures (zone diameters in mm) Antimicrobial Agent Disc Code Potency Resistant Intermediate Susceptible Amikacin AK 30 μg EnterobacteriaceaeK, P. aeruginosa, Acinetobacter spp., and Staphylococcus spp. ≤14 15-16 ≥17 Amoxycillin - Clavulanic Acid AMC 20/10 μg EnterobacteriaceaeE ≤13 14-17 ≥18 Staphylococcus spp.A,Q ≤19 — ≥20 Haemophilus spp.A,Y ≤19 — ≥20 AmpicillinC,n AMP 10 μg EnterobacteriaceaeE and Vibrio choleraef ≤13 14-16 ≥17 Staphylococcus spp.A,Q ≤28 — ≥29 Enterococcus spp.A,V,W,k,m ≤16 — ≥17 Haemophilus spp.Y ≤18 19-21 ≥22 Streptococcus spp. ß-Hemolytic GroupA,d — — ≥24 Ampicillin – Sulbactam SAM 10/10 μg EnterobacteriaceaeE, Acinetobacter spp., and Staphylococcus spp. ≤11 12-14 ≥15 Haemophilus spp.A,Y ≤19 — ≥20 Azithromycin AZM 15 μg Staphylococcus spp., Streptococcus spp Viridans Groupn, ß-Hemolytic Group, and S. pneumoniae) ≤13 14-17 ≥18 Neisseria meningitidisA,i — — ≥20 Haemophilus spp.A — — ≥12 Aztreonam ATM 30 μg EnterobacteriaceaeE ≤17 18-20 ≤21 P. aeruginosa ≤15 16-21 ≥22 Haemophilus spp.A — — ≥26 CAR 100 μg Carbenicillin Enterobacteriaceae ≤19 20-22 ≥23 Pseudomonas aeruginosaP ≤13 14-16 ≥17 CEC 30 μg Cefaclor Enterobacteriaceae and Staphylococcus spp. ≤14 15-17 ≥18 Haemophilus spp.Y ≤16 17-19 ≥20 MA 30 μg Cefamandole EnterobacteriaceaeD,E and Staphylococcus spp. ≤14 15-17 ≥18 CefazolinG KZ 30 μg Staphylococcus spp.
    [Show full text]
  • Structure of a Penicillin Binding Protein Complexed with a Cephalosporin-Peptidoglycan Mimic M.A
    Structure of a Penicillin Binding Protein Complexed with a Cephalosporin-Peptidoglycan Mimic M.A. McDonough1, W. Lee2, N.R. Silvaggi1, L.P. Kotra 2, Z-H. Li2, Y. Takeda2, S .O. Mobashery2, and J.A. Kelly1 1Department of Molecular and Cell Biology and Institute for Materials Science, Univ. of Connecticut, Storrs, CT 2Institute for Drug Design and the Department of Chemistry, Wayne State Univ., Detroit, MI Many bacteria that are responsible for causing dis- lactams. Also, one questions why ß-lactamases hydro- eases in humans are rapidly developing mutant strains lyze ß-lactams and release them rapidly but they do resistant to existing antibiotics. Proliferation of these not react with peptide substrates. mutant strains is likely to be a serious health-care prob- To help answer these questions, structural studies lem of increasing proportions. Almost sixty percent of of the Streptomyces sp. R61 D-Ala-D-Ala-peptidase all clinically used antibiotics are beta-lactams, which have been undertaken to investigate how the enzyme stop the growth of bacteria by interfering with their cell- wall biosynthesis. The cell walls are made of glycan chains that polymerize to form a structure that gives strength and shape to the bacteria. An understanding of the process how the cell wall is synthesized may help in designing more potent antibiotics. D-Ala-D-Ala-carboxypeptidase/transpeptidases (DD-peptidases) are penicillin-binding proteins (PBPs), the targets of ß-lactam antibiotics such as penicillins and cephalosporins (Figure 1A). These enzymes cata- lyze the final cross-linking step of bacterial cell wall bio- synthesis. In vivo inhibition of PBPs by ß-lactams re- sults in the cessation of bacterial growth.
    [Show full text]
  • 12. What's Really New in Antibiotic Therapy Print
    What’s really new in antibiotic therapy? Martin J. Hug Freiburg University Medical Center EAHP Academy Seminars 20-21 September 2019 Newsweek, May 24-31 2019 Disclosures There are no conflicts of interest to declare EAHP Academy Seminars 20-21 September 2019 Antiinfectives and Resistance EAHP Academy Seminars 20-21 September 2019 Resistance of Klebsiella pneumoniae to Pip.-Taz. olates) EAHP Academy Seminars 20-21 September 2019 https://resistancemap.cddep.org/AntibioticResistance.php Multiresistant Pseudomonas Aeruginosa Combined resistance against at least three different types of antibiotics, 2017 EAHP Academy Seminars 20-21 September 2019 https://atlas.ecdc.europa.eu/public/index.aspx Distribution of ESBL producing Enterobacteriaceae EAHP Academy Seminars 20-21 September 2019 Rossolini GM. Global threat of Gram-negative antimicrobial resistance. 27th ECCMID, Vienna, 2017, IS07 Priority Pathogens Defined by the World Health Organisation Critical Priority High Priority Medium Priority Acinetobacter baumanii Enterococcus faecium Streptococcus pneumoniae carbapenem-resistant vancomycin-resistant penicillin-non-susceptible Pseudomonas aeruginosa Helicobacter pylori Haemophilus influenzae carbapenem-resistant clarithromycin-resistant ampicillin-resistant Enterobacteriaceae Salmonella species Shigella species carbapenem-resistant fluoroquinolone-resistant fluoroquinolone-resistant Staphylococcus aureus vancomycin or methicillin -resistant Campylobacter species fluoroquinolone-resistant Neisseria gonorrhoae 3rd gen. cephalosporin-resistant
    [Show full text]
  • Comparative Effects of Cefpirome (Hr 810) and Other Cephalosporins on Experimentally Induced Pneumonia in Mice
    VOL. XXXIX NO. 7 THE JOURNAL OF ANTIBIOTICS 971 COMPARATIVE EFFECTS OF CEFPIROME (HR 810) AND OTHER CEPHALOSPORINS ON EXPERIMENTALLY INDUCED PNEUMONIA IN MICE N. KLESEL, D. ISERT, M. LIMBERT, G. SEIBERT, I. WINKLER and E. SCHRINNER Hoechst Aktiengesellschaft, Dept. of Chemotherapy, 6230 Frankfurt a. M. 80, FRG (Received for publication March 24, 1986) The chemotherapeutic efficacy of cefpirome (HR 810), a new polar aminothiazolyl- cephalosporin and that of ceftazidime, cefotaxime, cefoperazone, latamoxef and cefodizime were examined against experimental pneumonia caused by Klebsiella pneammlliae DT-S in mice. When compared in terms of MIC values against the infecting organism and the phar- macokinetic pattern, cefpirome showed equal activity and a similar pharmacokinetic behavior to ceftazidime and cefotaxime in mice. Trials to assess the bactericidial activity in vhro, however, showed that cefpirome displayed a more marked bactericidal effect in pneumonic mice than the other cephalosporins tested. Only cefodizime, a cephalosporin with extremely high and prolonged blood and tissue levels in experimental animals exerted chemotherapeutic effects similar to cefpirome. After cefpirome or cefodizime medication (50 mg/kg), the viable counts in the lungs of experimental animals fell steadily to 1/10,000 of the pretreatment level and, in contrast to the reference compounds, no regrowth of the challenge organisms could be observed with both drugs. Moreover, with ED.-,,,,sranging from 1.1 to 59.1 mg/kg in treatment studies, cefpirome as well as cefodizime were two to ten times more effective than ceftazidime and cefotaxime, whereas cefoperazone and latamoxef were considerably less effective. Cefpirome (3-((2,3-cyclopenteno-I-pyridium)methyl)-7-(2-syn-methoximino-2-(2-aminothiazol-4- yl)acetamido)ceph-3-em-4-carboxylate, HR 810) is a new semi-synthetic parenteral cephalosporin antibiotic with a broad spectrum of antibacterial activity in vitro and in rivo.
    [Show full text]
  • Product Monograph
    Product Monograph PrORB-CEFUROXIME Cefuroxime Axetil Tablets, USP 250 mg and 500 mg cefuroxime/tablet Antibiotic Orbus Pharma Inc. Date of Preparation: February 25, 2009 20 Konrad Crescent Markham, Ontario Control #: 117041 L3R8T4 1 Product Monograph PrORB-CEFUROXIME Cefuroxime Axetil Tablets, USP 250 mg and 500 mg cefuroxime/tablet Antibiotic Actions and Clinical Pharmacology Cefuroxime axetil is an orally active prodrug of cefuroxime. After oral administration, cefuroxime axetil is absorbed from the gastrointestinal tract and rapidly hydrolyzed by nonspecific esterases in the intestinal mucosa and blood to release cefuroxime into the blood stream. Conversion to cefuroxime, the microbiologically active form, occurs rapidly. The inherent properties of cefuroxime are unaltered after its administration as cefuroxime axetil. Cefuroxime exerts its bactericidal effect by binding to an enzyme or enzymes referred to as penicillin-binding proteins (PBPs) involved in bacterial cell wall synthesis. This binding results in inhibition of bacterial cell wall synthesis and subsequent cell death. Specifically, cefuroxime shows high affinity for PBP 3, a primary target for cefuroxime in gram- negative organisms such as E. coli. Comparative Bioavailability Studies A two-way crossover, randomized, blinded, single-dose bioequivalence study was performed on 22 normal, healthy, non-smoking male subjects under fasting conditions. The rate and extent of absorption of cefuroxime axetil was measured and compared following a single oral dose (1 x 500 mg tablet)
    [Show full text]
  • The Efficacy of Cefmetazole Against Pyelonephritis Caused by Extended
    International Journal of Infectious Diseases 17 (2013) e159–e163 Contents lists available at SciVerse ScienceDirect International Journal of Infectious Diseases jou rnal homepage: www.elsevier.com/locate/ijid The efficacy of cefmetazole against pyelonephritis caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae a, b c d a,e Asako Doi *, Toshihiko Shimada , Sohei Harada , Kentaro Iwata , Toru Kamiya a Department of Infectious Diseases, Rakuwakai Otowa Hospital, Otowachinji-cho 2, Yamashina-ku, Kyoto, Japan b Department of General Internal Medicine, Nara City Hospital, Nara, Japan c Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Ota-ku, Tokyo, Japan d Division of Infectious Diseases, Kobe University Hospital, Chuo-ku, Kobe, Hyogo, Japan e Department of General Internal Medicine, Rakuwakai Otowa Hospital, Otowachinji-cho 2, Yamashina-ku, Kyoto, Japan A R T I C L E I N F O S U M M A R Y Article history: Objectives: Urinary tract infections (UTIs) caused by extended-spectrum beta-lactamase (ESBL)- Received 3 April 2012 producing Enterobacteriaceae are on the increase. Although cefmetazole is stable in vitro against the Accepted 26 September 2012 hydrolyzing activity of ESBLs, no clinical study has ever evaluated its role in infections caused by these Corresponding Editor: William Cameron, organisms. We therefore evaluated the efficacy of cefmetazole compared to carbapenems against Ottawa, Canada pyelonephritis caused by ESBL-producing Enterobacteriaceae. Methods: A retrospective chart review was conducted at a tertiary care hospital from August 2008 to July Keywords: 2010. Chart reviews were done for patients with ESBL-producing organisms in urine identified in the Extended-spectrum beta-lactamase (ESBL) microbiology database.
    [Show full text]
  • Antimicrobial Stewardship Guidance
    Antimicrobial Stewardship Guidance Federal Bureau of Prisons Clinical Practice Guidelines March 2013 Clinical guidelines are made available to the public for informational purposes only. The Federal Bureau of Prisons (BOP) does not warrant these guidelines for any other purpose, and assumes no responsibility for any injury or damage resulting from the reliance thereof. Proper medical practice necessitates that all cases are evaluated on an individual basis and that treatment decisions are patient-specific. Consult the BOP Clinical Practice Guidelines Web page to determine the date of the most recent update to this document: http://www.bop.gov/news/medresources.jsp Federal Bureau of Prisons Antimicrobial Stewardship Guidance Clinical Practice Guidelines March 2013 Table of Contents 1. Purpose ............................................................................................................................................. 3 2. Introduction ...................................................................................................................................... 3 3. Antimicrobial Stewardship in the BOP............................................................................................ 4 4. General Guidance for Diagnosis and Identifying Infection ............................................................. 5 Diagnosis of Specific Infections ........................................................................................................ 6 Upper Respiratory Infections (not otherwise specified) ..............................................................................
    [Show full text]
  • B-Lactams: Chemical Structure, Mode of Action and Mechanisms of Resistance
    b-Lactams: chemical structure, mode of action and mechanisms of resistance Ru´ben Fernandes, Paula Amador and Cristina Prudeˆncio This synopsis summarizes the key chemical and bacteriological characteristics of b-lactams, penicillins, cephalosporins, carbanpenems, monobactams and others. Particular notice is given to first-generation to fifth-generation cephalosporins. This review also summarizes the main resistance mechanism to antibiotics, focusing particular attention to those conferring resistance to broad-spectrum cephalosporins by means of production of emerging cephalosporinases (extended-spectrum b-lactamases and AmpC b-lactamases), target alteration (penicillin-binding proteins from methicillin-resistant Staphylococcus aureus) and membrane transporters that pump b-lactams out of the bacterial cell. Keywords: b-lactams, chemical structure, mechanisms of resistance, mode of action Historical perspective Alexander Fleming first noticed the antibacterial nature of penicillin in 1928. When working with Antimicrobials must be understood as any kind of agent another bacteriological problem, Fleming observed with inhibitory or killing properties to a microorganism. a contaminated culture of Staphylococcus aureus with Antibiotic is a more restrictive term, which implies the the mold Penicillium notatum. Fleming remarkably saw natural source of the antimicrobial agent. Similarly, under- the potential of this unfortunate event. He dis- lying the term chemotherapeutic is the artificial origin of continued the work that he was dealing with and was an antimicrobial agent by chemical synthesis [1]. Initially, able to describe the compound around the mold antibiotics were considered as small molecular weight and isolates it. He named it penicillin and published organic molecules or metabolites used in response of his findings along with some applications of penicillin some microorganisms against others that inhabit the same [4].
    [Show full text]
  • 595 PART 441—PENEM ANTIBIOTIC DRUGS Subpart A—Bulk Drugs
    Food and Drug Administration, HHS § 441.20a (6) pH. Proceed as directed in § 436.202 imipenem per milliliter at 25 °C is ¶85° of this chapter, using an aqueous solu- to ¶95° on an anhydrous basis. tion containing 60 milligrams per mil- (vi) It gives a positive identity test. liliter. (vii) It is crystalline. (7) Penicillin G content. Proceed as di- (2) Labeling. It shall be labeled in ac- rected in § 436.316 of this chapter. cordance with the requirements of (8) Crystallinity. Proceed as directed § 432.5 of this chapter. in § 436.203(a) of this chapter. (3) Requests for certification; samples. (9) Heat stability. Proceed as directed In addition to complying with the re- in § 436.214 of this chapter. quirements of § 431.1 of this chapter, [42 FR 59873, Nov. 22, 1977; 43 FR 2393, Jan. 17, each such request shall contain: 1978, as amended at 45 FR 22922, Apr. 4, 1980; (i) Results of tests and assays on the 50 FR 19918, 19919, May 13, 1985] batch for potency, sterility, pyrogens, loss on drying, specific rotation, iden- PART 441ÐPENEM ANTIBIOTIC tity, and crystallinity. DRUGS (ii) Samples, if required by the Direc- tor, Center for Drug Evaluation and Subpart AÐBulk Drugs Research: (a) For all tests except sterility: 10 Sec. 441.20a Sterile imipenem monohydrate. packages, each containing approxi- mately 500 milligrams. Subpart BÐ[Reserved] (b) For sterility testing: 20 packages, each containing equal portions of ap- Subpart CÐInjectable Dosage Forms proximately 300 milligrams. 441.220 Imipenem monohydrate-cilastatin (b) Tests and methods of assayÐ(1) Po- sodium injectable dosage forms.
    [Show full text]