Nanotechnology E.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Nanotechnology E.Pdf CONTENTS AIST’s Nanotechnology .......... 4 World Nanotech Projects .......... 7 Nanotechnology: A Breakthrough toward a Resource & Energy Compatible Society of the 21st Century .......... 8 Carbon Nanotube Industrial Applications .......... 10 A New Type of Nanotube Formed from Molecules .......... 12 The Impact of Nanotechnology in Electron Devices .......... 14 Managing Chemical Risks Using Environmental Nanotechnology .......... 16 Computational Sciences on the Frontiers of Nanotechnology .......... 18 The Nanotechnology Program Projects and NEDO's Project Management .......... 20 The Propagation Effect of Nanotechnology on the Economy .......... 22 The Nanoprocessing Partnership Program: AIST as Incubator for Nanotech Japan .......... 23 Nanotech Ventures .......... 23 The Future of Continuously Developing Nanocarbons .......... 24 AIST’s Nanotechnology Technical Development Outlook .......... 25 AIST Organization Chart .......... 26 Nanotechnology For New Industry Creation and Life-Style Innovation Kazuo IGARASHI Research Coordinator [email protected] What is Nanotechnology? Application to industrialization Nanotechnology is technology to manipulate and While nanotechnology is a comparatively new field control a substance at the nanometer (nm) level (1 nm of research, it has promising applications to a range of = one billionth of a meter. The nanometer level is the industrial fields. In the information technology area, level of atoms and molecules. See Figure 1), and create researchers are investigating the application of nano- new materials and devices with fascinating functions technology to the development of, for example, high- making the best use of the special properties of nano- density/efficiency memories, computer devices with sized substances. For example, today people need de- completely new operating principles, high-luminosity vices able to store information at high densities and high devices using nano-materials such as carbon nanotubes, speeds, using little energy. One way of realizing this is and high-speed optical network devices using photonic to make each component very small. However, as there crystals. In medical area, specialists are working on drug are limits to miniaturizing components with existing injections to certain organs using liposomes or nanoma- technology, we need technology that uses a different chines. And in the environmental and energy industries, (nanotechnology) approach to process components and it is thought that nanotechnology can be utilized in such systems with nanometer-level precision. Also, when the applications as environment remediation catalysts and size of the matter is at the level of several molecules hydrogen-loading materials. In this way, nanotechnol- or atoms, certain properties (the quantum effect or the ogy is creating new industries across a wide range of surface effect) are clarified, which are not particularly fields and attracting interest as a infrastructural technol- noticeable when a substance is a large mass. Therefore, ogy for enriching society. the downsizing to the nanometer level can provide us not only the miniatures but also completely new devices operated by such special properties. Japan’s approach to nanotechnology Metrology advancements have given Six government departments carry out nanotech- nanotechnology a big boost nology-related national projects in Japan. These are the Ministry of Education, Science, Sports and Culture The rapid development of nanotechnology research (MEXT), the Ministry of Economy, Trade and Industry in recent years is closely related to advances made in (METI), the Ministry of Public Management, Home metrology. For example, in the first half of the1980s, Affairs, Posts and Telecommunications, the Ministry the IBM Group invented the scanning tunneling micro- of Health, Labor and Welfare, the Ministry of Agricul- scope, which enabled researchers to observe and ma- ture, Forestry and Fisheries, and the Ministry of the nipulate a substance at the level of individual atoms and Environment. The total nanotechnology-related budget molecules. This opened the wey for creating and verify- for FY2003 is expected to be more than the last year’s ing various nano-structures. amount (¥81.6 billion). Of this amount, most was allo- The two methods of controlling the structure of cated to MEXT and METI (97.5% of the FY2001 budget matter at the nanometer level are the top-down and for nanotechnology-related projects). Both Ministries bottom-up methods. In the top-down approach, larger identify electronic device- and biotech-related nanotech masses are finely processed, as in lithography, with light projects as important research areas. Against this back- or electron beams. In the bottom-up approach, structures ground, the nanotechnology and materials R&D promo- are created by assembling atoms and molecules. Vari- tion project team (NTPT) of the Council for Science and ous different bottom-up approaches are being studied. Technology Policy are trying to strengthen links with In addition to the munipulation of individual atoms by a government departments and agencies for collaborative scanning tunneling microscop, methods using the self- projects that would result in more efficient R&D useful assembly of atoms and molecules (where atoms and for industrial advancement. molecules come together to form stable structures) are Through New Research Promotion Program (in- being researched as well as methods using the self-orga- cluding so-called CREST and ERATO projects) and nization of a substance (where nanoscale structures form Nanotechnology Support Projects, MEXT is currently spontaneously under certain conditions), as manifested funding research themes that promote nanotechnology in living organisms. Currently, there is considerable in- basic research (including providing nanotechnology- terest in combining top-down and bottom-up approaches related facilities and constructing nanotechnology net- to develop technologies for assembling and operating works). Table 1 shows the Ministry’s principal nano- complex components and systems. technology-related project proposals for FY2003. The 4 AIST’s Nanotechnology A B A B C C D D Figure 1. Various sizes of matter Table 1. Principal nanotechnology-related project Table 2. Principal nanotechnology-related project proposals of the Ministry of Education, proposals of the Ministry of Economy, Trade Science, Sports and Culture (FY2003) and Industry (FY2003) ● Development of devices with novel principle using nanotechnology ● Ultrafine structured advanced funtional materials ● Development of advanced semiconductor manufacturing technology ● Microfabrication of semiconductors and novel semiconducting including the EUV light sources materials ● Development of artificial internal organs and sense organs using ● Semiconductor application chips nanotechnology ● Upgrading of telecommunication systems ● Next-generation fuel cells ● Advanced display ● Project for terahertz photonics ● Post-genome ● Development of equipments for measurements, analyses and ● Amalgamation of nanotechnology and biotechnology evaluations ● Nanobiotechnology ● Project for medical treatment according to individual's gene ● Development of lightweight materials and heat release technology ● Project for regenerative medicine ● Development of next generation fuel cells ● Simulation for cells and organisms ● R&D of biofunction measurement technology by photonics ● Incubation of new industries for sugar chain biotechnology ● "Protein 3000" project 5 AIST’s Nanotechnology AIST’s Nanotechnology total funding sought in MEXT’s nanotechnology budget tial for applying nanotechnology to industry, and stan- is around ¥50.5 billion. dard nano-materials that give greater reliability. The METI, on the other hand, focuses on nanotech- From 1992 to 2002, the National Institute of Ad- nology industrialization. It aims, for example, to estab- vanced Interdisciplinary Research (NAIR) (a research lish the nanotechnology business promotion council in institute of the Agency of Industrial Science and Tech- September 2003 to promote links among industry, gov- nology, the forerunner of today’s AIST) carried out the ernment bodies, and universities. The Ministry’s nano- Atom Technology Project on the ultimate technology for technology-related projects also seek to quickly develop manipulating of atoms and molecules. This was a world- practical and industrial applications for nanotechnology. leading project, which gathered together researchers Table 2 shows the Ministry’s principal nanotechnology- from industry, government, and universities in Tsukuba related project proposals for FY2003. The total funding to break new ground in nanotechnology research. AIST sought is around ¥62.4 billion. also leads such projects as the Nanotechnology Program (of the New Energy and Industrial Technology Develop- ment Organization or NEDO) and the Semiconductor AIST’s world-leading approach MIRAI Project (NEDO), seeking to strengthen Japan’s to nanotechnology international competitiveness and create new industries (Figure 2). This feature introduces some nanotechnology-relat- Some of AIST’s staff also act as project lead- ed research topics pursued by AIST. AIST, the National ers in a number of New Research Promotion Program Institute of Advanced Industrial Science and Technol- (MEXT). In addition, AIST provides various resources ogy, is an integrated research institution that employs for the Nanoprocessing Partnership Program (a MEXT around 2,400 (full-time) researchers
Recommended publications
  • Nanowire-Based Light-Emitting Diodes: a New Path Towards High-Speed Visible Light Communication." (2017)
    University of New Mexico UNM Digital Repository Physics & Astronomy ETDs Electronic Theses and Dissertations Fall 9-30-2017 NANOWIRE-BASED LIGHT-EMITTING DIODES: A NEW PATH TOWARDS HIGH- SPEED VISIBLE LIGHT COMMUNICATION Mohsen Nami University of New Mexico Follow this and additional works at: https://digitalrepository.unm.edu/phyc_etds Part of the Astrophysics and Astronomy Commons, Electromagnetics and Photonics Commons, Nanoscience and Nanotechnology Commons, Nanotechnology Fabrication Commons, Physics Commons, and the Semiconductor and Optical Materials Commons Recommended Citation Nami, Mohsen. "NANOWIRE-BASED LIGHT-EMITTING DIODES: A NEW PATH TOWARDS HIGH-SPEED VISIBLE LIGHT COMMUNICATION." (2017). https://digitalrepository.unm.edu/phyc_etds/168 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Physics & Astronomy ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Mohsen Nami Candidate Physics and Astronomy Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Professor: Daniel. F. Feezell, Chairperson Professor: Steven. R. J. Brueck Professor: Igal Brener Professor: Sang. M. Han i NANOWIRE-BASED LIGHT-EMITTING DIODES: A NEW PATH TOWARDS HIGH-SPEED VISIBLE LIGHT COMMUNICATION by MOHSEN NAMI B.S., Physics, University of Zanjan, Zanjan, Iran, 2003 M. Sc., Photonics, Shahid Beheshti University, Tehran, Iran, 2006 M.S., Optical Science Engineering, University of New Mexico, Albuquerque, USA, 2012 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Engineering The University of New Mexico Albuquerque, New Mexico December, 2017 ii ©2017, Mohsen Nami iii Dedication To my parents, my wife, and my daughter for their endless love, support, and encouragement.
    [Show full text]
  • Fundamentals of Nanoelectronics (Fone)
    ESF EUROCORES Programme Fundamentals of NanoElectronics (FoNE) Highlights European Science Foundation (ESF) Physical and Engineering Sciences (PESC) The European Science Foundation (ESF) is an The Physical and Engineering Sciences are key drivers independent, non-governmental organisation, the for research and innovation, providing fundamental members of which are 78 national funding agencies, insights and creating new applications for mankind. research performing agencies, academies and learned The goal of the ESF Standing Committee for Physical societies from 30 countries. and Engineering Sciences (PESC) is to become the The strength of ESF lies in its influential membership pan-European platform for innovative research and and in its ability to bring together the different domains competitive new ideas while addressing societal of European science in order to meet the challenges of issues in a more effective and sustainable manner. the future. The Committee is a unique cross-disciplinary Since its establishment in 1974, ESF, which has its group, with networking activities comprising a good headquarters in Strasbourg with offices in Brussels mix of experimental and theoretical approaches. and Ostend, has assembled a host of organisations It distinguishes itself by focusing on fundamental that span all disciplines of science, to create a research and engineering. PESC covers the following common platform for cross-border cooperation in broad spectrum of fields: chemistry, mathematics, Europe. informatics and the computer sciences, physics, ESF is dedicated to promoting collaboration in fundamental engineering sciences and materials scientific research, funding of research and science sciences. policy across Europe. Through its activities and instruments ESF has made major contributions to science in a global context.
    [Show full text]
  • Nanowire Sensors for Medicine and the Life Sciences
    For reprint orders, please contact: EVIEW [email protected] R Nanowire sensors for medicine and the life sciences Fernando Patolsky, The interface between nanosystems and biosystems is emerging as one of the broadest and Gengfeng Zheng & most dynamic areas of science and technology, bringing together biology, chemistry, Charles M Lieber† physics and many areas of engineering, biotechnology and medicine. The combination of †Author for correspondence Harvard University, these diverse areas of research promises to yield revolutionary advances in healthcare, Department of Chemistry and medicine and the life sciences through, for example, the creation of new and powerful Chemical Biology, and tools that enable direct, sensitive and rapid analysis of biological and chemical species, Division of Engineering and Applied Sciences, 12 Oxford ranging from the diagnosis and treatment of disease to the discovery and screening of new Street, Cambridge, drug molecules. Devices based on nanowires are emerging as a powerful and general MA 02138, USA platform for ultrasensitive, direct electrical detection of biological and chemical species. Tel.: +1 617 496 3169; Here, representative examples where these new sensors have been used for detection of a Fax: +1 617 496 5442; E-mail: cml@ wide-range of biological and chemical species, from proteins and DNA to drug molecules cmliris.harvard.edu and viruses, down to the ultimate level of a single molecule, are discussed. Moreover, how advances in the integration of nanoelectronic devices enable multiplexed
    [Show full text]
  • Pros and Cons of Nanowire Fabrication Techniques for Sensor Arrays
    NANOFUNCTION Beyond CMOS Nanodevices for Adding Functionalities to CMOS Network of Excellence Nanosensing with Si based nanowires Deliverable D1.1: Pros and cons of nanowire fabrication techniques for sensor arrays Main Author(s): T. Baron, P.-E. Hellström, L. Latu-Romain, M. Mongillo, L. Montès, M. Mouis,L. Poupinet, J.-P. Raskin, B. Salem and M. Schmidt. Due date of deliverable: 31 August 2011 Actual submission date: 1 September 2011 Project funded by the European Commission under grant agreement n°257375 NANOFUNCTION D1.1 Date of submission: 01/09/2011 NANOFUNCTION D1.1 Date of submission: 01/09/2011 LIST OF CONTRIBUTORS Part. Nr. Acronym Organisation name Name of contact 2 INP Grenoble Institute Polytechnique de Grenoble M. Mouis 5 KTH Kungliga Tekniska Hoegskolan P.-E. Hellström 8 UCL Université catholique de Louvain J.-P. Raskin 14 AMO-GMBH Gesellschaft fuer angewandte mikro- M. Schmidt und optoelektronik mit beschrankter haftung 15 CEA Commissariat à l‟Energie Atomique L. Poupinet 3 NANOFUNCTION D1.1 Date of submission: 01/09/2011 TABLE OF CONTENTS Deliverable summary ............................................................................................................. 5 1. Introduction .................................................................................................................... 6 2. Fabrication techniques ................................................................................................... 6 2.1 Bottom-up fabrication .............................................................................................
    [Show full text]
  • Silver Nanowire Purification and Separation by Size and Shape Using Multi-Pass Filtration
    This is a repository copy of Silver nanowire purification and separation by size and shape using multi-pass filtration. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/89569/ Version: Accepted Version Article: Jarrett, R and Crook, R (2016) Silver nanowire purification and separation by size and shape using multi-pass filtration. Materials Research Innovations, 20 (2). pp. 86-91. ISSN 1432-8917 https://doi.org/10.1179/1433075X15Y.0000000016 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Silver nanowire purification and separation by size and shape using multi-pass filtration. R. Jarretta*, R. Crooka a: Energy Research Institute, University of Leeds, Leeds, LS2 9JT. *Corresponding author: [email protected], +447860850687 Abstract Silver Nanowire (AgNW) meshes produced by soft solution polyol synthesis offer a low-cost low-temperature solution deposited alternative to indium tin oxide transparent conductors for use in solar cells.
    [Show full text]
  • Nanoarchitectonics of Nanoporous Carbon Materials in Supercapacitors Applications
    nanomaterials Review Nanoarchitectonics of Nanoporous Carbon Materials in Supercapacitors Applications Rekha Goswami Shrestha 1,*, Subrata Maji 1, Lok Kumar Shrestha 1 and Katsuhiko Ariga 1,2,* 1 International Center for Materials Nanoarchitectonics (WPI MANA), National Institute for Materials − Science (NIMS), 1 1 Namiki, Tsukuba 305 0044, Japan; [email protected] (S.M.); − − [email protected] (L.K.S.) 2 Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277 8561, Japan − * Correspondence: [email protected] (R.G.S.); [email protected] (K.A.); Tel.: +81-029-860-4597 (K.A.) Received: 5 March 2020; Accepted: 26 March 2020; Published: 29 March 2020 Abstract: High surface area and large pore volume carbon materials having hierarchical nanoporous structure are required in high performance supercapacitors. Such nanoporous carbon materials can be fabricated from organic precursors with high carbon content, such as synthetic biomass or agricultural wastes containing cellulose, hemicellulose, and lignin. Using recently developed unique concept of materials nanoarchitectonics, high performance porous carbons with controllable surface area, pore size distribution, and hierarchy in nanoporous structure can be fabricated. In this review, we will overview the recent trends and advancements on the synthetic methods for the production of hierarchical porous carbons with one- to three-dimensional network structure with superior performance in supercapacitors applications. We highlight the promising scope of accessing nanoporous graphitic carbon materials from: (i) direct conversion of single crystalline self-assembled fullerene nanomaterials and metal organic frameworks, (ii) hard- and soft-templating routes, and (iii) the direct carbonization and/or activation of biomass or agricultural wastes as non-templating routes.
    [Show full text]
  • Recent Advances in Vertically Aligned Nanowires for Photonics Applications
    micromachines Review Recent Advances in Vertically Aligned Nanowires for Photonics Applications Sehui Chang, Gil Ju Lee and Young Min Song * School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; [email protected] (S.C.); [email protected] (G.J.L.) * Correspondence: [email protected]; Tel.: +82-62-715-2655 Received: 29 June 2020; Accepted: 25 July 2020; Published: 26 July 2020 Abstract: Over the past few decades, nanowires have arisen as a centerpiece in various fields of application from electronics to photonics, and, recently, even in bio-devices. Vertically aligned nanowires are a particularly decent example of commercially manufacturable nanostructures with regard to its packing fraction and matured fabrication techniques, which is promising for mass-production and low fabrication cost. Here, we track recent advances in vertically aligned nanowires focused in the area of photonics applications. Begin with the core optical properties in nanowires, this review mainly highlights the photonics applications such as light-emitting diodes, lasers, spectral filters, structural coloration and artificial retina using vertically aligned nanowires with the essential fabrication methods based on top-down and bottom-up approaches. Finally, the remaining challenges will be briefly discussed to provide future directions. Keywords: nanowires; photonics; LED; nanowire laser; spectral filter; coloration; artificial retina 1. Introduction In recent years, nanowires originated from a wide variety of materials have arisen as a centerpiece for optoelectronic applications such as sensors, solar cells, optical filters, displays, light-emitting diodes and photodetectors [1–12]. Tractable but outstanding, optical features of nanowire arrays achieved by modulating its physical properties (e.g., diameter, height and pitch) allow to confine and absorb the incident light considerably, albeit its compact configuration.
    [Show full text]
  • Engineered Carbon Nanotubes and Graphene for Nanoelectronics And
    Engineered Carbon Nanotubes and Graphene for Nanoelectronics and Nanomechanics E. H. Yang Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, USA, 07030 ABSTRACT We are exploring nanoelectronic engineering areas based on low dimensional materials, including carbon nanotubes and graphene. Our primary research focus is investigating carbon nanotube and graphene architectures for field emission applications, energy harvesting and sensing. In a second effort, we are developing a high-throughput desktop nanolithography process. Lastly, we are studying nanomechanical actuators and associated nanoscale measurement techniques for re-configurable arrayed nanostructures with applications in antennas, remote detectors, and biomedical nanorobots. The devices we fabricate, assemble, manipulate, and characterize potentially have a wide range of applications including those that emerge as sensors, detectors, system-on-a-chip, system-in-a-package, programmable logic controls, energy storage systems, and all-electronic systems. INTRODUCTION A key attribute of modern warfare is the use of advanced electronics and information technologies. The ability to process, analyze, distribute and act upon information from sensors and other data at very high- speeds has given the US military unparalleled technological superiority and agility in the battlefield. While recent advances in materials and processing methods have led to the development of faster processors and high-speed devices, it is anticipated that future technological breakthroughs in these areas will increasingly be driven by advances in nanoelectronics. A vital enabler in generating significant improvements in nanoelectronics is graphene, a recently discovered nanoelectronic material. The outstanding electrical properties of both carbon nanotubes (CNTs) [1] and graphene [2] make them exceptional candidates for the development of novel electronic devices.
    [Show full text]
  • Designing a Nanoelectronic Circuit to Control a Millimeter-Scale Walking Robot
    Designing a Nanoelectronic Circuit to Control a Millimeter-scale Walking Robot Alexander J. Gates November 2004 MP 04W0000312 McLean, Virginia Designing a Nanoelectronic Circuit to Control a Millimeter-scale Walking Robot Alexander J. Gates November 2004 MP 04W0000312 MITRE Nanosystems Group e-mail: [email protected] WWW: http://www.mitre.org/tech/nanotech Sponsor MITRE MSR Program Project No. 51MSR89G Dept. W809 Approved for public release; distribution unlimited. Copyright © 2004 by The MITRE Corporation. All rights reserved. Gates, Alexander Abstract A novel nanoelectronic digital logic circuit was designed to control a millimeter-scale walking robot using a nanowire circuit architecture. This nanoelectronic circuit has a number of benefits, including extremely small size and relatively low power consumption. These make it ideal for controlling microelectromechnical systems (MEMS), such as a millirobot. Simulations were performed using a SPICE circuit simulator, and unique device models were constructed in this research to assess the function and integrity of the nanoelectronic circuit’s output. It was determined that the output signals predicted for the nanocircuit by these simulations meet the requirements of the design, although there was a minor signal stability issue. A proposal is made to ameliorate this potential problem. Based on this proposal and the results of the simulations, the nanoelectronic circuit designed in this research could be used to begin to address the broader issue of further miniaturizing circuit-micromachine systems. i Gates, Alexander I. Introduction The purpose of this paper is to describe the novel nanoelectronic digital logic circuit shown in Figure 1, which has been designed by this author to control a millimeter-scale walking robot.
    [Show full text]
  • 1. INTRODUCTION Geometric Structure
    1. INTRODUCTION Clusters, in general, are aggregates of atoms that are too large compared to atoms and molecules and too small compared to small pieces of crystals (bulk materials). Generally, clusters does not have the same structure or atomic arrangements as a bulk solid and can change its structure with the addition of just one or few atoms. As the number of atoms in the cluster increase, the bulk structure is established and the addition of atoms has no more effect on the structure. Of course there will be some rearrangement of the atoms on the surface of this bulk structure, but since the surface to volume ratio is very low in bulk material it can be neglected with a good approximation. However, in case of clusters, most of the atoms lie on the surface (extremely high surface to volume ratio) and such rearrangement produce a drastic effect. Owning to their high surface to volume ratio, the surface science from both chemical and physical point of view has become crucial in order to collect data and information about such systems. The ways to study such small cluster is nearly the same as the way they have been fabricated. With Bottom-up approach (chemical point of view) these clusters are formed from atoms and/or molecules by assembling it together to form the cluster, and there were many calculation based on this view point. Also these clusters can be fabricated, starting from the bulk material by reducing its dimension somehow, which is the Top-down approach. Geometric structure Usually the crystal structure of a large nanocluster is the same as the bulk structure of the material, with somewhat different lattice parameters (in general clusters are slightly contracted as compared to bulk).
    [Show full text]
  • Layer-By-Layer Nanoarchitectonics: Invention, Innovation, and Evolution
    CL-130987 Received: October 23, 2013 | Accepted: November 6, 2013 | Web Released: November 13, 2013 Highlight Review Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution Katsuhiko Ariga,*1,2 Yusuke Yamauchi,*1,3,4 Gaulthier Rydzek,1 QingminJi,1 Yusuke Yonamine,1,2 Kevin C.-W. Wu,5 and Jonathan P. Hill1,2 1World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for MaterialsScience (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 2Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 3Precursory Research for EmbryonicScience and Technology (PRESTO), Japan Science and Technology Agency (JST), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 4Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 5Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (E-mail: [email protected], [email protected]) Katsuhiko Ariga is the Director of Supermolecules Group and Principal Investigator of World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA) at the National Institute for MaterialsScience (NIMS). He was born in 1962, and received his B.Eng., M.Eng., and Ph.D. Degrees from the Tokyo Institute of Technology (TIT). He was an Assistant Professor at TIT, worked as a postdoctoralfellow at the University of Texas at Austin, USA, and then served as a group leader in the Supermolecules Project at Japan Science and Technology (JST) agency. Thereafter, he worked as an Associate Professor at the Nara Institute of Science and Technology and then got involved with the ERATO Nanospace Project at JST.
    [Show full text]
  • Nanoelectronics
    Highlights from the Nanoelectronics for 2020 and Beyond (Nanoelectronics) NSI April 2017 The semiconductor industry will continue to be a significant driver in the modern global economy as society becomes increasingly dependent on mobile devices, the Internet of Things (IoT) emerges, massive quantities of data generated need to be stored and analyzed, and high-performance computing develops to support vital national interests in science, medicine, engineering, technology, and industry. These applications will be enabled, in part, with ever-increasing miniaturization of semiconductor-based information processing and memory devices. Continuing to shrink device dimensions is important in order to further improve chip and system performance and reduce manufacturing cost per bit. As the physical length scales of devices approach atomic dimensions, continued miniaturization is limited by the fundamental physics of current approaches. Innovation in nanoelectronics will carry complementary metal-oxide semiconductor (CMOS) technology to its physical limits and provide new methods and architectures to store and manipulate information into the future. The Nanoelectronics Nanotechnology Signature Initiative (NSI) was launched in July 2010 to accelerate the discovery and use of novel nanoscale fabrication processes and innovative concepts to produce revolutionary materials, devices, systems, and architectures to advance the field of nanoelectronics. The Nanoelectronics NSI white paper1 describes five thrust areas that focus the efforts of the six participating agencies2 on cooperative, interdependent R&D: 1. Exploring new or alternative state variables for computing. 2. Merging nanophotonics with nanoelectronics. 3. Exploring carbon-based nanoelectronics. 4. Exploiting nanoscale processes and phenomena for quantum information science. 5. Expanding the national nanoelectronics research and manufacturing infrastructure network.
    [Show full text]