From Bush Encroachment to Biome Shift: the Ecology of Thicket Pioneers

Total Page:16

File Type:pdf, Size:1020Kb

From Bush Encroachment to Biome Shift: the Ecology of Thicket Pioneers From bush encroachment to biome shift: the ecology of thicket pioneers Susi Vetter Botany Department Rhodes University Parr et al. (2012) distinguished between savanna thickening and thicket expansion Savanna Thicket encroachment Closed-canopy thicket Which spp? What is their effect on the grass layer? What are their traits? e.g. Parr et al. (2012) in Hluhluwe: “new thickets” characterized by Diospyros simii, Berchemia zeyheri Effect of woody composition and structure on herbaceous cover and composition • 3 Sites • Fine scale data (5m diameter circular plots) • Path analysis (SEM) Species associated with tall / dense woody cover Woody Woody structure composition (canopy area, (no. stems) height) Effect of particular species Effect of tall and dense on grass canopy on grasses Herbaceous basal cover and composition Data: Daisy Chiloane, Susi Vetter Eastern Cape Bhisho Thornveld; commercial cattle + game; MAP ~ 650 mm Brachylaena Canopy elliptica Vachellia area Grewia karroo occidentalis Canopy height Scutia Woody myrtina Woody 0.66 structure Maytenus composition R2 = 0.44 heterophylla -0.31 N = 235 -0.38 Karochloa Basal cover curva Herbaceous R2 = 0.40 Grass height Panicum maximum Digitaria eriantha Forb Sporobolus Themeda fimbriatus triandra Thicket pioneer spp. – what are their functional traits? Ability to colonize Ability to transform • Dispersal • Accumulation of deep canopies • Bud protection, bark thickness, growth rate • High LAI • Resprouting strategies • Adaptations to escape browse trap Bark thickness: 32 Savanna Canopy: Pioneer Recurved branches 10 Closed canopy Hedge-forming with browsing 3 Leaves: 1 Evergreen Total bark thickness (mm)thicknessbark Total 0.3 Simple Data from Eastern Cape and Buffelskloof* Horizontal angle 1 10 100 (cf. Nondlazi and Archibald, unpubl.) Stem diameter (mm) * Data: Julieta Rosell, Susi Vetter, Mark Olson, Michelle Greve Welverdiend: Lowveld granite catenas, communal livestock, MAP ~ 500 mm Dichrostachys Canopy Vachellia cinerea area exuvialis Canopy Terminalia height sericea Woody Woody 0.70 structure composition R2 = 0.48 -0.15 N = 102 -0.54 Tricholaena Herbaceous monachne R2 = 0.44 Basal cover Sporobolus nitens Aristida Grass height adscensionis Manyeleti: Lowveld granite catenas, game reserve, MAP ~ 500 mm Combretum Senegalia Canopy apiculatum nigrescens area Terminalia Canopy height sericea Woody Woody 0.81 structure Flueggea R2 = 0.65 virosa composition -0.09 N = 99 -0.83 Herbaceous R2 = 0.58 Panicum Basal cover maximum Urochloa Forb mossambicensis Impact on grazing Trees Grass e.g. our data from the Eastern Cape: 0.61 R2 = 0.37 Trees reduce grazing via their effect on grass (not directly e.g. landscape of fear) -0.03 N = 235 0.71 % Bitten R2 = 0.53 Impact on fire spread Eastern Cape – 5-year drought – no fire = no data yet! What can we generalize about the thicket encroachment process? From our data, not much yet! The species and their effects differ between vegetation types and land use. More work on where savanna thickening vs thicket expansion occurs, and why (MAP, soils?) vs..
Recommended publications
  • Evolution of the Brazilian Phytogeography Classification Systems: Implications for Biodiversity Conservation
    Ciência e Cultura 51(5/6): 331-348, 1999. Evolution of the Brazilian phytogeography classification systems: implications for biodiversity conservation. JOLY, C.A.1; AIDAR, M.P.M.2;KLINK, C.A.3; McGRATH, D.G.4,5; MOREIRA, A. G.6; MOUTINHO, P.5; NEPSTAD, D.C.5,7; OLIVEIRA, A. A.8; POTT, A.9; RODAL, M.J.N.10 & SAMPAIO, E.V.S.B.11 1 Depto. Botânica, IB, UNICAMP, CP 6109, 13083-970, Campinas, SP (mailto:[email protected]) 2 Seção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica, CP 4005, 01061-970, São Paulo, SP ([email protected])([email protected]) 3 Depto. de Ecologia, Universidade de Brasilia, C.P. 04631, 70919-970, Brasilia, DF. ([email protected]) 4 Núcleo de Altos Estudos Amazônicos, UFPa, Campus Guamá, 66075-970, Belém, PA. 5 Instituto de Pesquisa Ambiental da Amazônia, Trav. Enéias Pinheiro, 1426, Marco, 66095-100 Belém, PA. ([email protected])([email protected]) 6The Woods Hole Research Center &Instituto de Pesquisa Ambiental da Amazônia, SCLN 210, bloco C, sala 209, 70865-530, Brasilia, DF ([email protected]) 7The Woods Hole Research Center, Woods Hole, MA 02543, USA. 8Universidade de São Paulo, USP, Instituto de Biociências, Ecologia. Rua Matão 321, trav. 14.05008-900. São Paulo, SP. 9Centro de Pesquisa Agropecuária do Pantanal, EMBRAPA, R. 21 de Setembro, 1880 , 79.320-900, Corumbá, MS (mailto:[email protected]) 10Departamento de Energia Nuclear, UFPE, Av. Prof. Luís Freire 1000, 50740-540, Recife, PE ([email protected]) 11Departamento de Biologia, UFRPE, R.
    [Show full text]
  • Patterns and Drivers of Recent Disturbances Across the Temperate Forest Biome
    ARTICLE DOI: 10.1038/s41467-018-06788-9 OPEN Patterns and drivers of recent disturbances across the temperate forest biome Andreas Sommerfeld 1, Cornelius Senf 1,2, Brian Buma 3, Anthony W. D’Amato 4, Tiphaine Després 5,6, Ignacio Díaz-Hormazábal7, Shawn Fraver8, Lee E. Frelich 9, Álvaro G. Gutiérrez 7, Sarah J. Hart10, Brian J. Harvey11, Hong S. He12, Tomáš Hlásny5, Andrés Holz 13, Thomas Kitzberger14, Dominik Kulakowski 15, David Lindenmayer 16, Akira S. Mori17, Jörg Müller18,19, Juan Paritsis 14, George L. W. Perry 20, Scott L. Stephens21, Miroslav Svoboda5, Monica G. Turner 22, Thomas T. Veblen23 & Rupert Seidl 1 1234567890():,; Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were con- sistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001–2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes. 1 University of Natural Resources and Life Sciences (BOKU) Vienna, Institute of Silviculture, Peter Jordan Straße 82, 1190 Wien, Austria.
    [Show full text]
  • Biome-Specific Scaling of Ocean Productivity, Temperature, and Carbon Export Efficiency
    UC Irvine UC Irvine Previously Published Works Title Biome-specific scaling of ocean productivity, temperature, and carbon export efficiency Permalink https://escholarship.org/uc/item/9vk7r4v9 Journal Geophysical Research Letters, 43(10) ISSN 0094-8276 Authors Britten, GL Primeau, FW Publication Date 2016 DOI 10.1002/2016GL068778 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Biome-specific scaling of ocean productivity, 10.1002/2016GL068778 temperature, and carbon export efficiency Key Points: Gregory L. Britten1 and François W. Primeau1 • Optimized models predict carbon fi export ef ciency from net primary 1Department of Earth System Science, University of California, Irvine, USA production and sea surface temperature • Biome-specific relationships impact global export inferred from Abstract Mass conservation and metabolic theory place constraints on how marine export production (EP) satellite-derived variables scales with net primary productivity (NPP) and sea surface temperature (SST); however, little is empirically • Individual biomes respond differently known about how these relationships vary across ecologically distinct ocean biomes. Here we compiled in to simulated net primary production fi and sea surface temperature changes situ observations of EP, NPP, and SST and used statistical model selection theory to demonstrate signi cant biome-specific scaling relationships among these variables. Multiple statistically similar models yield a À threefold variation in the globally integrated carbon flux (~4–12 Pg C yr 1) when applied to climatological Supporting Information: • Supporting Information S1 satellite-derived NPP and SST. Simulated NPP and SST input variables from a 4×CO2 climate model experiment • Data Set S1 further show that biome-specific scaling alters the predicted response of EP to simulated increases of • Data Set S2 atmospheric CO2.
    [Show full text]
  • Shrub Thicket Establishment and Management
    HABITAT MANAGEMENT FACT SHEET Nebraska Pheasants Forever Shrub Thicket Establishment and Management January 2015 Establishing and Managing Shrub Thickets for Wildlife Shrubby cover is an essential part of weather. To accomplish this, the shrub the habitat planning process for bobwhite thicket should be a minimum size of quail, but can also be a useful addition for 1500 ft2 (30’ x 50’ block). To ensure the prairie grouse, pheasants, deer, or even thicket is dense enough to provide non-game species such as songbirds or adequate protection a 3’ x 3’ spacing is pollinators. Because of their small acre recommended. Avoid using multiple requirement, they are a minimal impact species within a thicket. Instead plant habitat addition that can find a place on multiple thickets each with a different The average shrub thicket planting is planted in any farm or ranch. species. a 30’ x 50’ block . Each shrub is planted on 3’x3’ spacing providing adequate density for escape Species Selection Location cover once established. Native shrubs such as American Consider locations in which you plum, chokecherry, elderberry, dogwood, could imagine a natural thicket sand cherry, silver buffaloberry, establishing: drainages, low areas and skunkbush sumac, common snowberry valleys are ideal. These lower areas tend and Wood’s rose are the most common to collect additional water and can help selections. Consider planting tall, keep thickets thriving during periods of suckering species (American plum, low rainfall. Avoid hilltops and potential chokecherry, etc.) for upland bird species lekking sites for prairie grouse. like ring-necked pheasants and northern Some species require more shrubby bobwhite quail.
    [Show full text]
  • A Classification of the Subtropical Transitional Thicket in the Eastern Cape, Based on Syntaxonomic and Structural Attributes
    S. Afr. J. Bot., 1987, 53(5): 329 - 340 329 A classification of the subtropical transitional thicket in the eastern Cape, based on syntaxonomic and structural attributes D.A. Everard Department of Plant Sciences, Rhodes University, Grahamstown, 6140 Republic of South Africa Accepted 11 June 1987 Subtropical transitional thicket, traditionally known as valley bushveld, covers a significant proportion of the eastern Cape. This paper attempts to classify the subtropical transitional thicket into syntaxonomic and structural units and relate it to other thicket types on a continental basis. Twelve sites along a rainfall gradient were sampled for floristic and structural attributes. The floristic data were classified using TWINSPAN. Results indicate that the class subtropical transitional thicket has at least two orders of vegetation, namely kaffrarian thicket and kaffrarian succulent thicket. Two forms of thicket were recognized for both these orders viz. mesic kaffrarian thicket and xeric kaffrarian thicket for the kaffrarian thicket and mesic succulent thicket and xeric succulent thicket for the kaffrarian succulent thicket. Ordination of site data by DECORANA grouped sites according to these vegetation categories and in a sequence along axis 1 to which the rainfall gradient can be clearly related. Variation within the mesic kaffrarian thicket was however greater than between some of the other thicket types, indicating that more data are required before these forms of thicket can be formalized. Composition, endemism, diversity and the environmental controls on the distribution of the thicket types are discussed. 'n Aansienlike gedeelte van die Oos-Kaap word beslaan deur subtropiese oorgangsruigte, wat tradisioneel as valleibosveld bekend is. Hierdie studie is 'n poging om subtropiese oorgangsruigte in sintaksonomiese en strukturele eenhede te klassifiseer en dit op 'n kontinentale basis in verband met ander ruigtetipes te bring.
    [Show full text]
  • Grasslands 4/16/03 3:46 PM
    Ecoregion: Grasslands 4/16/03 3:46 PM Grasslands INTRODUCTION About 25% of Earth’s land surface is covered by temperate grassland. These large expanses of flat or hilly country cover much of North America, as well as large areas of Europe, Asia, and South America. Most grasslands are found in the interiors of continents, where there is too little rainfall for a forest but too much rain for a desert. Art Explosion Art Explosion Rolling hills covered with grasses and very few trees A few scattered trees are found on savannas, are typical of North American grassland prairies. tropical grasslands of Africa. Temperate grasslands have subtle differences and different names throughout the world. Prairies and plains of North America are grasslands with tall grasses, while the steppes of Russia are grasslands with short grasses. Veldts are found in South Africa, the puszta in Hungary, and the pampas in Argentina and Uruguay. Savannas are tropical grasslands that support scattered trees and shrubs. They often form a transitional biome file:///Ecoregion/grass/content.html Page 1 of 6 Ecoregion: Grasslands 4/16/03 3:46 PM between deserts and rain forests. Some temperate grasslands are also called savannas. The word savanna comes from the Spanish word zavanna, meaning “treeless plain.” Savannas cover almost half of Africa (mostly central Africa) and large areas of Australia and South America. ABIOTIC DATA The grassland climate is rather dry, averaging about 20 to 100 centimeters (8–40 inches) of precipitation a year. Summers are very hot and may reach 45°C (113°F). Winter temperatures often fall below freezing, which is 0°C (32°F).
    [Show full text]
  • PHYTOGEOGRAPHY of NAMIBIA: I.E. Geographical Distributions of Plants
    PHYTOGEOGRAPHY OF NAMIBIA: i.e. geographical distributions of plants. The world flora may be mapped in different ways depending on the botanical criteria used for defining mapping units. When spatial data are used without considering the precise criteria used to define such data, results may be confusing. Two research traditions in biogeography are generally recognized, namely ecological and historical biogeography (Rosen 1988), however there are approaches that fit neither of these traditions. Ecological phytogeography is based on growth form of plants regardless of their taxonomic identity, e.g. biomes; or based on growth form and/or floristic composition, regardless of distribution ranges of taxa. Historical phytogeography is based on the total geographical range of taxa, regardless of their growth forms, e.g. the flora (the constituent plant taxa of an area, usually global); or phytogeographic region (an area with its own distinctive complement of species). It is a taxon-centred approach focussed on species, genera and/or families. The follow maps show the various ways in which the vegetation and flora of Namibia have been interpreted and mapped. Biomes Vegetation Vegetation structure structure Biomes Endemism Diversity Endemism Diversity Mendelsohn et al. 2002. Atlas of Namibia. David Phillip Publishers, Cape Town. White (1983)’s divisions in Namibia 22 Dry deciduous forest & secondary grassland 28 Mopane woodland & scrub woodland 35 Transition:woodland to Acacia deciduous bushland & wooded grassland. 36 Transition: mopane scrub woodland to Karoo-Namib shrubland 44 Kalahari Acacia wooded grassland & deciduous bushland 47 Brachystegia thicket && edaphic grassland 51 Bushy Karoo-Namib shrubland 56 Kalahari/Karoo-Namib transition 74 The Namib desert (Namib) 75 Herbabeous swamp & aquatic 76 Halophytic vegetation Kaokoveld Gariep Centres of plant diversity and endemism (Van Wyk & Smith 2000 ) The Greater Cape Floristic Region (GCFR) Is it only south of the border? Or in Namibia? (Born, J., Linder, H.P.
    [Show full text]
  • The Impact of Beech Thickets on Biodiversity
    Biol Invasions (2013) 15:699–706 DOI 10.1007/s10530-012-0319-5 ORIGINAL PAPER The impact of beech thickets on biodiversity Jonathan A. Cale • Stacy A. McNulty • Stephen A. Teale • John D. Castello Received: 14 December 2011 / Accepted: 21 August 2012 / Published online: 1 September 2012 Ó Springer Science+Business Media B.V. 2012 Abstract Beech bark disease has dramatically at two sites in the Adirondack Mountains of New York altered hardwood forest structure and composition State. Groundcover plants, terrestrial craneflies, across northeastern North America. Extensive over- amphibians and small mammals were sampled on story mortality has resulted in prolific root-sprouting twenty paired plots. Discriminant analysis showed a in some stands leading to the development of under- significant difference between thicket and non-thicket story thickets of clonal small-stemmed beech. Beech (control) areas; significant variables in plot type thickets may impact local forest biodiversity, but this separation were beech sapling abundance, leaf litter has not been adequately evaluated. We hypothesized depth, and coarse woody debris volume. Groundcover significant differences in diversity of groundcover plant cover, richness, and diversity were significantly flora, craneflies, amphibians, and small mammals lower in thicket compared to non-thicket plots, while between plots with and without beech thickets. Paired beech sapling density explained 17–38 % in ground- plots were established in uneven-aged northern hard- cover plant species diversity. There were no signifi- wood forest stands with no recent management history cant differences between the diversity of cranefly, amphibian and small mammal communities of each plot type. Beech thickets are important determinants Electronic supplementary material The online version of of local biodiversity.
    [Show full text]
  • Terrestrial Fauna Impact Assessment
    July 2014 ENVIRONMENTAL IMPACT ASSESSMENT FOR SASOL PSA AND LPG PROJECT TERRESTRIAL FAUNA IMPACT ASSESSMENT Specialist Report 10 OOD OF MARK WOOD CONSULTANTS SSOCIADOS MOZAMBIQUE LDA PREPARED BY Author: AR Deacon Submitted to: EIA CONDUCTED BY GOLDER A WITH EIA LEADERSHIP BY MARK W SASOL Petroleum Mozambique Limitada & Sasol Petroleum Temane Limitada Report Number: 1302793 - 10712 - 20 (Eng) TERRESTRIAL FAUNA NON TECHNICAL SUMMARY Introduction Sasol Petroleum Mozambique (SPM) and Sasol Petroleum Temane (SPT) are proposing to develop the PSA Development and Liquefied Petroleum Gas (LPG) Project, situated near Inhassoro in the Inhambane Province of Mozambique. The project is an expansion of the existing Sasol Natural Gas Project in this area. Proposed new infrastructure includes 19 wells (oil and gas), associated flowlines and a new Manifold Station (8.8 ha), from which the oil flowlines will be combined into a single pipeline routed to the new Integrated PSA Liquids and LPG Plant (9.5 ha), constructed adjacent to the Central Processing Facility (CPF). This Study This study presents the findings of an assessment of the impact of the project on Terrestrial Fauna. It is one of a series of studies prepared for the Environmental Impact Assessment for the project. The study takes into account Mozambique laws and regulations, regional conventions and protocols and importantly, the Performance Standards of the International Finance Corporation, in particular Performance Standard 6, Biodiversity Conservation and Sustainable Management of Living Natural Resources, as the underpinning of the assessment and the recommendations made in the report. Methodology The survey made use of habitat availability in the different vegetation types, while the presence of observed species was used as an indicator of habitat integrity.
    [Show full text]
  • The Riparian Zone
    Land-Water Interactions: The Riparian Zone F J. Swanson, S. V Gregory, J. R. Sedell,and A. G.Campbell INTRODUCTION The interface between aquatic and terrestrial environments in coniferous structure, composition, and function of the riparian zone had received little consideration in ecosystem level research, because this zone forms the interface between scientific disci- plines as well as ecosystem components. In some climate-vegetation zones particular aspects of riparian zones have received much study. ñparinpiant communities in arid lands have been studied extensive!y, primar- ily in terms o TdfeTbiiatJohnson and Jones 1977 Thomas et al 1979) Research on riparian 'egetation along major rivers has dealt mainly with forest composition and dynamics (for example, Lindsey et al. 1961; Sigafoos 1964; Bell 1974; Johnson et al. 1976). Riparian vegetation research has been largely neglected in forested mountain land, where it tends to have smaller areal extent and economic value than upslope vegetation. yre!pian zone is an integral part of the forest/stream ecosystem complex. This chapter synthesizes general concepts about the riparian zone in north- west coniferous forests and the results of coniferous forest biome research on: (1) structure and composition of riparian vegetation and its variation in time and space; and (2) functional aspects of the riparian zone in terms of physical, biological, and chemical terrestrial/aquatic interactions. We emphasize condi- tions observed in mountain streams and small rivers. The riparian zone may be defined in a variety of ways, based on factors such as vegetation type, groundwater and surface water hydrology, topogra- phy, and ecosystem function. These factors have so many complex interactions that defining the riparian zone in one sense integrates elements of the other factors.
    [Show full text]
  • A Database of Plant Traits Spanning the Tundra Biome
    Received: 15 November 2017 | Revised: 11 July 2018 | Accepted: 20 July 2018 DOI: 10.1111/geb.12821 DATA PAPER Tundra Trait Team: A database of plant traits spanning the tundra biome Anne D. Bjorkman1,2,3 | Isla H. Myers‐Smith1 | Sarah C. Elmendorf4,5,6 | Signe Normand2,7,8 | Haydn J. D. Thomas1 | Juha M. Alatalo9 | Heather Alexander10 | Alba Anadon‐Rosell11,12,13 | Sandra Angers‐Blondin1 | Yang Bai14 | Gaurav Baruah15 | Mariska te Beest16,17 | Logan Berner18 | Robert G. Björk19,20 | Daan Blok21 | Helge Bruelheide22,23 | Agata Buchwal24,25 | Allan Buras26 | Michele Carbognani27 | Katherine Christie28 | Laura S. Collier29 | Elisabeth J. Cooper30 | J. Hans C. Cornelissen31 | Katharine J. M. Dickinson32 | Stefan Dullinger33 | Bo Elberling34 | Anu Eskelinen35,23,36 | Bruce C. Forbes37 | Esther R. Frei38,39 | Maitane Iturrate‐Garcia15 | Megan K. Good40 | Oriol Grau41,42 | Peter Green43 | Michelle Greve44 | Paul Grogan45 | Sylvia Haider22,23 | Tomáš Hájek46,47 | Martin Hallinger48 | Konsta Happonen49 | Karen A. Harper50 | Monique M. P. D. Heijmans51 | Gregory H. R. Henry39 | Luise Hermanutz29 | Rebecca E. Hewitt52 | Robert D. Hollister53 | James Hudson54 | Karl Hülber33 | Colleen M. Iversen55 | Francesca Jaroszynska56,57 | Borja Jiménez‐Alfaro58 | Jill Johnstone59 | Rasmus Halfdan Jorgesen60 | Elina Kaarlejärvi14,61 | Rebecca Klady62 | Jitka Klimešová46 | Annika Korsten32 | Sara Kuleza59 | Aino Kulonen57 | Laurent J. Lamarque63 | Trevor Lantz64 | Amanda Lavalle65 | Jonas J. Lembrechts66 | Esther Lévesque63 | Chelsea J. Little15,67 | Miska Luoto49 | Petr Macek47 | Michelle C. Mack52 | Rabia Mathakutha44 | Anders Michelsen34,68 | Ann Milbau69 | Ulf Molau70 | John W. Morgan43 | Martin Alfons Mörsdorf30 | Jacob Nabe‐Nielsen71 | Sigrid Schøler Nielsen2 | Josep M. Ninot11,12 | Steven F. Oberbauer72 | Johan Olofsson16 | Vladimir G. Onipchenko73 | Alessandro Petraglia27 | Catherine Pickering74 | Janet S.
    [Show full text]
  • The Historical Phytogeography of Cirsium Arvense, an Invasive Species in Pennsylvania
    University of Pennsylvania ScholarlyCommons Internship Program Reports Education and Visitor Experience 2018 The Historical Phytogeography of Cirsium arvense, An Invasive Species in Pennsylvania Janet K. Mansaray University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/morrisarboretum_internreports Part of the Botany Commons Recommended Citation Mansaray, Janet K., "The Historical Phytogeography of Cirsium arvense, An Invasive Species in Pennsylvania" (2018). Internship Program Reports. 6. https://repository.upenn.edu/morrisarboretum_internreports/6 An independent study project report by The Eli Kirk Price Endowed Flora of Pennsylvania Intern (2017-2018) This paper is posted at ScholarlyCommons. https://repository.upenn.edu/morrisarboretum_internreports/6 For more information, please contact [email protected]. The Historical Phytogeography of Cirsium arvense, An Invasive Species in Pennsylvania Abstract According to the Department of Conservation and Natural Resources, Cirsium arvense (Asteraceae family) is currently an invasive plant in the state of Pennsylvania. Invasive species pose a problem as they are detrimental to natural ecosystems and very costly to manage and eradicate. In this study, distribution of C. arvense in Pennsylvania was reconstructed using only herbarium records. Through detailed methodology, it was determined that there were no shifts in habit preference over time. With the data being specific ot Pennsylvania, the objective was to determine if the distribution and habitat preference would align with the current literature on what is known about C. arvense. The data seemed to support the current literature in that C. arvense appeared to be widespread and prefers dry, disturbed areas like roadsides. However, with further analysis, the data was found to reflect trends in field collecting as opposed to the distribution of the species.
    [Show full text]