Organisms As Ecosystem Engineers Author(S): Clive G

Total Page:16

File Type:pdf, Size:1020Kb

Organisms As Ecosystem Engineers Author(S): Clive G Nordic Society Oikos Organisms as Ecosystem Engineers Author(s): Clive G. Jones, John H. Lawton and Moshe Shachak Reviewed work(s): Source: Oikos, Vol. 69, No. 3 (Apr., 1994), pp. 373-386 Published by: Wiley on behalf of Nordic Society Oikos Stable URL: http://www.jstor.org/stable/3545850 . Accessed: 11/02/2013 12:21 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Wiley and Nordic Society Oikos are collaborating with JSTOR to digitize, preserve and extend access to Oikos. http://www.jstor.org This content downloaded on Mon, 11 Feb 2013 12:21:08 PM All use subject to JSTOR Terms and Conditions OIKOS 69: 373-386.Copenhagen 1994 Organismsas ecosystemengineers Clive G. Jones,John H. Lawton and Moshe Shachak Jones,C. G.,Lawton, J. H. andShachak, M. 1994.Organisms as ecosystemengineers. - Oikos 69: 373-386. Ecosystemengineers are organisms that directly or indirectly modulate the availability of resourcesto otherspecies, by causingphysical state changes in bioticor abiotic materials.In so doingthey modify, maintain and create habitats. Autogenic engineers (e.g. corals,or trees)change the environment via theirown physical structures (i.e. theirliving and dead tissues). Allogenic engineers (e.g. woodpeckers, beavers) change theenvironment bytransforming living or non-living materials from one physical state to another,via mechanicalor othermeans. The directprovision of resources to other species,in theform of livingor dead tissuesis notengineering. Organisms act as engineerswhen they modulate the supplyof a resourceor resourcesother than themselves.We recognise and define five types of engineering and provide examples. Humansare allogenicengineers par excellence,and also mimicthe behaviour of autogenicengineers, for example by constructingglasshouses. We explorerelated conceptsincluding the notions of extendedphenotypes and keystone species. Some (but not all) productsof ecosystemengineering are extendedphenotypes. Many (perhapsmost) impacts of keystone species include not only trophic effects, but also engineersand engineering. Engineers differ in theirimpacts. The biggesteffects are attributabletospecies with large per capita impacts, living at high densities, over large areasfor a long time,giving rise to structuresthat persist for millennia and that modulatemany resource flows (e.g. mimamounds created by fossorial rodents). The ephemeralnests constructed by small,passerine birds lie at theopposite end of this continuum.We provide a tentativeresearch agenda for an explorationof the phenom- enonof organismsas ecosystemengineers, and suggestthat all habitatson earth support,and are influenced by, ecosystem engineers. Jones,C. G., Inst.of Ecosystem Studies (IES), BoxAB, Millbrook,NY 12545, USA. - J. H. Lawton,NERC Centrefor Population Biology,Imperial College, Silwood Park, Ascot,Berks, UK, SL5 7PY,and IES. - M. Shachak,Mitrani Centerfor Desert Ecology, Blaustein Inst. for Desert Research, Ben-Gurion Univ. of the Negev, Sede Boqer 84900, Israel, and IES. Interactionsbetween organisms are a majordeterminant common. The ecological literature is rich in examplesof of the distributionand abundanceof species.Ecology habitatmodification by organisms,some of whichhave textbooks(e.g. Ricklefs1984, Krebs 1985, Begon et al. beenextensively studied (e.g. Thayer 1979, Naiman et al. 1990) summarisethese important interactions as intra- 1988).However, in general,population and community and inter-specificcompetition for abiotic and bioticre- ecologyhave neitherdefined nor systematically identi- sources,predation, parasitism and mutualism.Conspic- fiedand studied the role of organisms in thecreation and uouslylacking from the list of key processes in most text maintenanceof habitats.There is noteven a word,or booksis therole that many organisms play in thecre- words,in commonuse to describethe process. We will ation,modification and maintenanceof habitats.These call the process EcosystemEngineering and the orga- activitiesdo notinvolve direct trophic interactions be- nismsresponsible Ecosystem Engineers. tweenspecies, but they are neverthelessimportant and Beaver(Castor canadensis) are familiarexamples of Accepted21 September1993 Copyright(? OIKOS 1994 ISSN 0030-1299 Printedin Denmark- all rightsreserved OIKOS 69:3 (1994) 373 This content downloaded on Mon, 11 Feb 2013 12:21:08 PM All use subject to JSTOR Terms and Conditions organismsacting as ecosystemengineers. By cutting impactsof engineerson communitiesand ecosystems. treesand using them to construct dams they alter hydrol- We areinterested solely in discoveringproperties that all ogy,creating wetlands that may persistfor centuries. engineershave in common.We addressthe scale and "Theseactivities retain sediments and organic matter in magnitudeof theireffects later. the channel,... modifynutrient cycling and decomposi- tiondynamics, modify the structure and dynamics of the riparianzone, influence the character of water and mate- rials transporteddownstream, and ultimatelyinfluence plantand animal community composition and diversity" Classificationof organisms as engineers (Naimanet al. 1988). Table1 summarisesexamples of organisms as ecosystem However,beaver are by no meansthe only ecosystem engineers.The table is illustrative,not exhaustive. Addi- engineers.As we willshow, a vastarray of specieshave tionalexamples are discussed at greater length in the text. effectsthat are fundamentallysimilar, albeit often on All theexamples of whichwe are awarecan be as- moremodest spatial and temporal scales. Yet there is no signedto one of fivepossible cases (Fig. 1), or to a commonlanguage to describewhat ecosystem engineers combinationof twoor moreof these cases. As in many do, no formalstructure to modeltheir effects, and no otherareas of ecology,the diversity of biologicalpro- generaltheory round which to organiseunderstanding of cesses meansthat precise pigeon-holing is sometimes theprocess. Examples, which are developedmore for- difficult.The boundariesbetween types of engineering mallybelow (for others, see Table 1), includenot only areoccasionally fuzzy and, in thereal world, separating beaverand their dams but also gophers,ants and termites engineeringfrom other ecological processes may also be thatmove soil, woodpeckersthat drill holes, alligators difficult,simply because these non-trophic interactions thatmake wallows, rock-eating snails, trees, corals, sea- alwaysco-occur with trophic interactions. We discuss grassbeds and Sphagnum blanket bogs. some difficultcases as we proceed.The majorityof The purposesof thisarticle are fourfold: (i) to define examplesare, however, easy to classify.The legendto andto giveexamples of ecosystem engineering by orga- Fig. 1 explainsthe conventional notation used to describe nisms;(ii) to developa conceptualframework that ex- them.For clarity, itis easiestto introducethe arguments plainsand classifiesits effects; (iii) to showhow orga- usingbeaver and their dams. nismalengineering differs from related concepts (e.g. Beaverconform to case 4 in Fig. 1. Thatis theyare 'keystonespecies' Paine 1969,Krebs 1985); (iv) andto allogenicengineers, taking materials in theenvironment identifyquestions for further work on organismsas eco- (in thiscase trees,but in themore general case it can be systemengineers. First we definewhat we meanby an anyliving or non-living material), and turning them (en- ecosystemengineer, before providing examples and a gineeringthem) from physical state 1 (livingtrees) into conceptualframework for what is, andis not,ecosystem physicalstate 2 (deadtrees in a beaverdam). This act of engineering. engineeringthen creates a pond,and it is thepond which hasprofound effects on a wholeseries of resource-flows usedby other organisms. The critical step in thisprocess is thetransformation oftrees from state 1 (living)to state 2 (a dam).This transformation modulates the supply of Definitions otherresources, particularly water, but also sediments, Ecosystemengineers are organismsthat directly or in- nutrientsetc. A criticalcharacteristic ofecosystem engi- directlymodulate the availability of resources (other than neeringis thatit mustchange the availability (quality, themselves)to otherspecies, by causingphysical state quantity,distribution) ofresources utilised by other taxa, changesin bioticor abioticmaterials. In so doingthey excludingthe biomass provided directly by thepopula- modify,maintain and/or create habitats. tionof allogenicengineers. Engineering is not the direct The directprovision of resourcesby an organismto provisionof resources in the form of meat, fruits, leaves, otherspecies, in theform of living or dead tissues is not orcorpses. Beaver are not the direct providers of water, in engineering.Rather, it is thestuff of most contemporary the way that prey are a directresource for predators, or ecologicalresearch, for example plant-herbivore orpred- leavesare food for caterpillars. ator-preyinteractions, food web studiesand decomposi- Now considerthe autogenicequivalents of beaver tionprocesses. (Fig. 1, case 3). Simpleexamples are thegrowth of a Autogenicengineers change the environment via
Recommended publications
  • Evidence from Fossil Crustaceans in Cold-Water C
    Klompmaker et al. BMC Evolutionary Biology (2016) 16:132 DOI 10.1186/s12862-016-0694-0 RESEARCH ARTICLE Open Access Evolution of body size, vision, and biodiversity of coral-associated organisms: evidence from fossil crustaceans in cold- water coral and tropical coral ecosystems Adiël A. Klompmaker1,2,3*, Sten L. Jakobsen4 and Bodil W. Lauridsen5 Abstract Background: Modern cold-water coral and tropical coral environments harbor a highly diverse and ecologically important macrofauna of crustaceans that face elevated extinction risks due to reef decline. The effect of environmental conditions acting on decapod crustaceans comparing these two habitats is poorly understood today and in deep time. Here, we compare the biodiversity, eye socket height as a proxy for eye size, and body size of decapods in fossil cold-water and tropical reefs that formed prior to human disturbance. Results: We show that decapod biodiversity is higher in fossiltropicalreefsfromTheNetherlands,Italy,and Spain compared to that of the exceptionally well-preserved Paleocene (Danian) cold-water reef/mound ecosystem from Faxe (Denmark), where decapod diversity is highest in a more heterogeneous, mixed bryozoan-coral habitat instead of in coral and bryozoan-dominated facies. The relatively low diversity at Faxe was not influenced substantially by the preceding Cretaceous/Paleogene extinction event that is not apparent in the standing diversity of decapods in our analyses, or by sampling, preservation, and/or a latitudinal diversity gradient. Instead, the lower availability of food and fewer hiding places for decapods may explain this low diversity. Furthermore, decapods from Faxe are larger than those from tropical waters for half of the comparisons, which may be caused by a lower number of predators, the delayed maturity, and the increased life span of crustaceans in deeper, colder waters.
    [Show full text]
  • Host-Plant Genotypic Diversity Mediates the Distribution of an Ecosystem Engineer
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work Spring 4-2006 Genotypic diversity mediates the distribution of an ecosystem engineer Kerri Margaret Crawford University of Tennessee-Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Recommended Citation Crawford, Kerri Margaret, "Genotypic diversity mediates the distribution of an ecosystem engineer" (2006). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/949 This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. • f" .1' I,'r· ... 4 ....., ' 1 Genotypic diversity mediates the distribution of an ecosystem engineer 2 3 4 5 6 7 Kerri M. Crawfordl, Gregory M. Crutsinger, and Nathan J. Sanders2 8 9 10 11 Department 0/Ecology and Evolutionary Biology, University o/Tennessee, Knoxville, Tennessee 12 37996 13 14 lAuthor for correspondence: email: [email protected]. phone: (865) 974-2976,/ax: (865) 974­ 15 3067 16 2Senior thesis advisor 17 18 19 20 21 22 23 24 25 26 27 28 29 30 12 April 2006 1 1 Abstract 2 Ecosystem engineers physically modify environments, but much remains to be learned about 3 both their effects on community structure and the factors that predict their occurrence. In this 4 study, we used experiments and observations to examine the effects of the bunch galling midge, 5 Rhopalomyia solidaginis, on arthropod species associated with Solidago altissima.
    [Show full text]
  • Occupied and Abandoned Structures from Ecosystem Engineering Differentially Facilitate Stream Community Colonization 1, 1 1 BENJAMIN B
    Occupied and abandoned structures from ecosystem engineering differentially facilitate stream community colonization 1, 1 1 BENJAMIN B. TUMOLO , LINDSEY K. ALBERTSON, WYATT F. CROSS, 2 3 MELINDA D. DANIELS, AND LEONARD S. SKLAR 1Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, Montana 59717 USA 2Stroud Water Research Center, 970 Spencer Road, Avondale, Pennsylvania 19311 USA 3Department of Geography, Planning and Environment, Concordia University, 1455 De Maisonneuve Boulevard West, Montreal, Quebec, Canada Citation: Tumolo, B. B., L. K. Albertson, W. F. Cross, M. D. Daniels, and L. S. Sklar. 2019. Occupied and abandoned structures from ecosystem engineering differentially facilitate stream community colonization. Ecosphere 10(5):e02734. 10.1002/ecs2.2734 Abstract. Ecosystem engineers transform habitats in ways that facilitate a diversity of species; however, few investigations have isolated short-term effects of engineers from the longer-term legacy effects of their engineered structures. We investigated how initial presence of net-spinning caddisflies (Hydropsychidae) and their structures that provide and modify habitat differentially influence benthic community coloniza- tion in a headwater stream by conducting an in situ experiment that included three treatments: (1) initial engineering organism with its habitat modification structure occupied (hereafter caddisfly); (2) initial habi- tat modification structure alone (hereafter silk); and (3) a control with the initial absence of both engineer and habitat modification structure (hereafter control). Total invertebrate colonization density and biomass was higher in caddisfly and silk treatments compared to controls (~25% and 35%, respectively). However, finer-scale patterns of taxonomy revealed that density for one of the taxa, Chironomidae, was ~19% higher in caddisfly compared to silk treatments.
    [Show full text]
  • Optimal Control of an Invasive Ecosystem Engineer by David Kling (Presenter), University of California, Davis James Sanchirico
    Optimal Control of an Invasive Ecosystem Engineer By David Kling (presenter), University of California, Davis James Sanchirico, University of California, Davis Alan Hastings, University of California, Davis Managing natural systems in the face of global anthropogenic change poses an enormous challenge. Human-mediated changes can greatly complicate resource management by rendering ecosystems unable to return to their natural condition (hysteresis) or by shifting the ecosystem to an entirely new and possibly less beneficial state (regime shift) (Beisner et al. 2003; Scheffer and Carpenter 2003). One common and pervasive example of a complex management problem is the control of invasive introduced species. It is now well-known that nonnative species can have strong negative impacts on ecosystem function and services and on native biodiversity (Chapin et al. 2000; Olson 2006). Researchers have devoted considerable effort towards understanding the economics of invasion control. Previous theoretical work has identified circumstances where the eradication of an invader is optimal (Olson and Roy 2008). Recent work has also investigated the spatial-dynamics of control and characterized how landscape features can drive optimal policies (Epanchin-Niell and Wilen 2009). A key finding from this research is that early intervention, when the population of the invader is small, is a pivotal determinant of the cost- effectiveness of eradication. Despite this progress, a persistent gap in theoretical work by economists on invasions has been left by a reliance on simple models of invader population dynamics that ignore a number of ecological processes that can accompany invasions and that may call for substantially different control strategies. Ecosystem engineers are organisms that have significant impacts on ecosystems through changing key physical characteristics of the system (Cuddington et al.
    [Show full text]
  • Ecosystem Engineering — Moving Away from 'Just-So' Stories
    BERKENBUSCH, ROWDEN: BURROWING SHRIMP AS ECOSYSTEM ENGINEERS 67 FORUM ARTICLE Ecosystem engineering — moving away from ‘just-so’ stories K. Berkenbusch1,2,* and A.A. Rowden2 1Department of Marine Science, University of Otago, P.O. Box 56, Dunedin, New Zealand 2National Institute of Water and Atmospheric Research, P.O. Box 14-901, Wellington, New Zealand *Address for correspondence: Environmental Protection Agency, 2111 SE Marine Science Drive, Newport, Oregon 97365, U.S.A. (E-mail: [email protected]) __________________________________________________________________________________________________________________________________ Abstract: The concept of ecosystem engineering has been proposed recently to account for key processes between organisms and their environment which are not directly trophic or competitive, and which result in the modification, maintenance and/or creation of habitats. Since the initial reporting of the idea, little work has been undertaken to apply the proposed concept to potential ecosystem engineers in the marine environment. Biological and ecological data for the burrowing ghost shrimp Callianassa filholi (Decapoda: Thalassinidea) allowed for a formal assessment of this species as an ecosystem engineer, in direct accordance with published criteria. Despite a low population density and the short durability of its burrow structures, Callianassa filholi affected a number of resource flows by its large lifetime per capita activity. Ecosystem effects were evident in significant changes in macrofauna community composition over small spatial and temporal scales. Seasonal variation in the effects of ghost shrimp activity were associated with changes in seagrass (Zostera novazelandica) biomass, which revealed the probability of interactions between antagonistic ecosystem engineers. The formal assessment of Callianassa filholi provides the opportunity to aid discussion pertaining to the development of the ecosystem engineering concept.
    [Show full text]
  • Integrating Ecosystem Engineering and Food Webs
    i t o r ’ Oikos 123: 513–524, 2014 d s E doi: 10.1111/j.1600-0706.2013.01011.x OIKOS © 2014 The Authors. Oikos © 2014 Nordic Society Oikos Subject Editor: James D. Roth. Accepted 27 November 2013 C h o i c e Integrating ecosystem engineering and food webs Dirk Sanders, Clive G. Jones, Elisa Thébault, Tjeerd J. Bouma, Tjisse van der Heide, Jim van Belzen and Sébastien Barot D. Sanders ([email protected]), Centre for Ecology and Conservation, College of Life and Environmental Sciences, Univ. of Exeter, Cornwall Campus, Penryn, TR10 9EZ, UK. – C. G. Jones, Cary Inst. of Ecosystem Studies, PO Box AB, Millbrook, NY 12545, USA. – E. Thébault, Inst. of Ecology and Environmental Sciences iEES (CNRS, UMPC, IRD, INRA), Univ. Pierre et Marie Curie, Batiment A, 7 quai St Bernard, FR-75252 Paris Cedex 05, France. – S. Barot, Inst. of Ecology and Environmental Science-Paris (CNRS, UMPC, IRD, INRA), Ecole Normale Supérieure, 46 Rue d’Ulm, FR-75230 Paris Cedex 05, France. – T. J. Bouma and J. van Belzen, Dept of Spatial Ecology, Royal Netherlands Inst. for Sea Research, PO Box 140, NL-4400 AC Yerseke, the Netherlands. – T. van der Heide, Dept. od Aquatic Ecology and Environmental Biology, Inst. for Water and Wetland Research, Radboud Univ. Nijmegen, Heyendaalsweg 135, NL-6525 AJ Nijmegen, the Netherlands, and: Centre for Ecological and Evolutionary Studies (CEES), Univ. of Groningen, PO Box 11103, NL-9700 CC Groningen, the Netherlands. Ecosystem engineering, the physical modification of the environment by organisms, is a common and often influential process whose significance to food web structure and dynamics is largely unknown.
    [Show full text]
  • Genotypic Diversity Mediates the Distribution of an Ecosystem Engineer Kerri Margaret Crawford University of Tennessee-Knoxville
    University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program Spring 4-2006 Genotypic diversity mediates the distribution of an ecosystem engineer Kerri Margaret Crawford University of Tennessee-Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Recommended Citation Crawford, Kerri Margaret, "Genotypic diversity mediates the distribution of an ecosystem engineer" (2006). University of Tennessee Honors Thesis Projects. https://trace.tennessee.edu/utk_chanhonoproj/949 This is brought to you for free and open access by the University of Tennessee Honors Program at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in University of Tennessee Honors Thesis Projects by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. • f" .1' I,'r· ... 4 ....., ' 1 Genotypic diversity mediates the distribution of an ecosystem engineer 2 3 4 5 6 7 Kerri M. Crawfordl, Gregory M. Crutsinger, and Nathan J. Sanders2 8 9 10 11 Department 0/Ecology and Evolutionary Biology, University o/Tennessee, Knoxville, Tennessee 12 37996 13 14 lAuthor for correspondence: email: [email protected]. phone: (865) 974-2976,/ax: (865) 974­ 15 3067 16 2Senior thesis advisor 17 18 19 20 21 22 23 24 25 26 27 28 29 30 12 April 2006 1 1 Abstract 2 Ecosystem engineers physically modify environments, but much remains to be learned about 3 both their effects on community structure and the factors that predict their occurrence. In this 4 study, we used experiments and observations to examine the effects of the bunch galling midge, 5 Rhopalomyia solidaginis, on arthropod species associated with Solidago altissima.
    [Show full text]
  • Ecotone Formation Through Ecological Niche Construction: the Role of Biodiversity and Species Interactions. Kévin Liautaud, Matthieu Barbier, Michel Loreau
    Ecotone formation through ecological niche construction: the role of biodiversity and species interactions. Kévin Liautaud, Matthieu Barbier, Michel Loreau To cite this version: Kévin Liautaud, Matthieu Barbier, Michel Loreau. Ecotone formation through ecological niche con- struction: the role of biodiversity and species interactions.. Ecography, Wiley, 2020, 45 (5), pp.714- 723. 10.1111/ecog.04902. hal-02491373 HAL Id: hal-02491373 https://hal.archives-ouvertes.fr/hal-02491373 Submitted on 26 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 43 1–10 ECOGRAPHY Research Ecotone formation through ecological niche construction: the role of biodiversity and species interactions Kevin Liautaud, Matthieu Barbier and Michel Loreau K. Liautaud (https://orcid.org/0000-0001-6164-8415) ✉ ([email protected]), M. Barbier and M. Loreau, Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, UMR 5321, CNRS and Paul Sabatier Univ., Moulis, France. Ecography Rapid changes in species composition, also known as ecotones, can result from vari- 43: 1–10, 2020 ous causes including rapid changes in environmental conditions, or physiological doi: 10.1111/ecog.04902 thresholds. The possibility that ecotones arise from ecological niche construction by ecosystem engineers has received little attention.
    [Show full text]
  • Occurrence of Bioluminescent and Nonbioluminescent Species in The
    www.nature.com/scientificreports OPEN Occurrence of bioluminescent and nonbioluminescent species in the littoral earthworm genus Pontodrilus Teerapong Seesamut1, Daichi Yano1, José Paitio1, Ikuhiko Kin1, Somsak Panha2,3 & Yuichi Oba1* Pontodrilus litoralis is a cosmopolitan littoral earthworm known to exhibit bioluminescence. Recently, a congeneric species, Pontodrilus longissimus, from Thailand was described. These species are sympatric, but their burrowing depths on Thai beaches are diferent. In this study, we examined the in vivo and in vitro bioluminescent properties of P. longissimus and P. litoralis. Mechanical stimulation induced in vivo luminescence in P. litoralis, as reported previously, but not in P. longissimus. In vitro cross-reaction tests between these species revealed the absence of luciferin and luciferase activities in P. longissimus. The coelomic fuid of P. litoralis had strong fuorescence that matched the spectral maximum of its bioluminescence, but the same result was not observed for P. longissimus. These results suggest that P. litoralis has luminescence abilities due to the creation of bioluminescent components (i.e., luciferin, luciferase, and light emitters). The presence of both luminous and nonluminous species in a single genus is likely widespread, but only a few examples have been confrmed. Our fndings provide insight into the possible functions of bioluminescence in earthworms, such as avoiding predation by littoral earwigs. Te earthworm genus Pontodrilus Perrier, 1874, displays various unique characteristics. Te littoral earthworm P. litoralis (Grube, 1855) is distributed on the tropical and subtropical coasts of the Atlantic, Indian and Pacifc Oceans1–3 and is known to be bioluminescent4–7. Te luminescent system of P. litoralis has been shown to be a luciferin-luciferase type reaction triggered by hydrogen peroxide, with a fuorescence compound acting as a light emitter7, although the chemical structure of the luciferin remains uncertain and the luciferase gene has not been determined.
    [Show full text]
  • Read Book Habitat Pdf Free Download
    HABITAT PDF, EPUB, EBOOK Roy Simon | 96 pages | 01 Nov 2016 | Image Comics | 9781632158857 | English | Fullerton, United States Habitat PDF Book Take the quiz Citation Do you know the person or title these quotes desc For example, in Britain it has been estimated that various types of rotting wood are home to over species of invertebrate. The chief environmental factors affecting the distribution of living organisms are temperature, humidity, climate, soil and light intensity, and the presence or absence of all the requirements that the organism needs to sustain it. Bibcode : Natur. Loss of habitat is the single greatest threat to any species. In areas where it has become established, it has altered the local fire regimen to such an extant that native plants cannot survive the frequent fires, allowing it to become even more dominant. Whether from natural processes or the activities of man, landscapes and their associated habitats change over time. Biology Botanical terms Ecological terms Plant morphology terms. Dictionary Entries near habitat habitally habitancy habitant habitat habitat form habitat group habitation See More Nearby Entries. We're gonna stop you right there Literally How to use a word that literally drives some pe Retrieved 16 May Simply put, habitat destruction has reduced the majority of species everywhere on Earth to smaller ranges than they enjoyed historically. History at your fingertips. Another cause of disturbance is when an area may be overwhelmed by an invasive introduced species which is not kept under control by natural enemies in its new habitat. National Wildlife Federation. The laws may be designed to protect a particular species or group of species, or the legislation may prohibit such activities as the collecting of bird eggs, the hunting of animals or the removal of plants.
    [Show full text]
  • Flowcam® Publications
    9/17/2021 FlowCam® Publications If you are interested in obtaining a copy of any of these publications, please contact Yokogawa Fluid Imaging Technologies at [email protected] and we will help you. Publication Volume Date Authors Title doi: Jan Xinyue He, Chao Chen, Zili Zhang, Haiyan Hu, Anhui Tan, Temporal and spatial characteristics of harmful algae blooms in the offshore Journal of Applied Remote Sensing 10.1117/1.JRS.16.01200 2022 Zhiyuan Xing waters, China during 1990 to 2019 4 doi: M.N. Müller, G.T. Yogui, A.O. Gálvez, L.G. de Sales Jannuzzi, Aug Cellular accumulation of crude oil compounds reduces the competitive fitness Environmental Pollution 10.1016/j.envpol.2021.1 J.F. de Souza Filho, M. de Jesus Flores Montes, P.A.M. de 2021 of the coral symbiont Symbiodinium glynnii 17938 Castro Melo, S. Neumann-Leitão, E. Zanardi-Lamardo doi: Aug Whitney Hassett, Julie Zimmerman, Gretchen Rollwagen- An experimental evaluation of the efficacy of imaging flow cytometry Lake and Reservoir Management 10.1080/10402381.2021 2021 Bollens, Stephen Bollens & Timothy D. Counihan (FlowCam) for detecting invasive Dreissened and Corbiculid bivalve veligers .1961176 doi: 10.1038/s41598-021- Aug Dmitry V. Malashenkov, Veronika Dashkova, Kymbat Comparative analysis of freshwater phytoplankton communities in two lakes of Scientific Reports 95223-z 2021 Zhakupova, Ivan A. Vorobjev, Natasha S. Barteneva Burabay National Park using morphological and molecular approaches A. Neeley, S. Beaulieu, C. Proctor, I. Centinić, J. Futrelle, I.S. doi: Jul Standards and practices for reporting plankton and other particle observations Woods Hole Open Access Server Ramos, H.
    [Show full text]
  • John H. Lawton; Moshe Shachak Ecology, Vol
    Positive and Negative Effects of Organisms as Physical Ecosystem Engineers Clive G. Jones; John H. Lawton; Moshe Shachak Ecology, Vol. 78, No. 7. (Oct., 1997), pp. 1946-1957. Stable URL: http://links.jstor.org/sici?sici=0012-9658%28199710%2978%3A7%3C1946%3APANEOO%3E2.0.CO%3B2-Q Ecology is currently published by Ecological Society of America. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/esa.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Oct 30 13:55:18 2007 SPECIAL FEATURE Ecology Vol.
    [Show full text]