Exotic Compact Objects Interacting with Fundamental Fields Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Exotic Compact Objects Interacting with Fundamental Fields Engineering Exotic compact objects interacting with fundamental fields Nuno André Moreira Santos Thesis to obtain the Master of Science Degree in Engineering Physics Supervisors: Prof. Dr. Carlos Alberto Ruivo Herdeiro Prof. Dr. Vítor Manuel dos Santos Cardoso Examination Committee Chairperson: Prof. Dr. José Pizarro de Sande e Lemos Supervisor: Prof. Dr. Carlos Alberto Ruivo Herdeiro Member of the Committee: Dr. Miguel Rodrigues Zilhão Nogueira October 2018 Resumo A astronomia de ondas gravitacionais apresenta-se como uma nova forma de testar os fundamentos da física − e, em particular, a gravidade. Os detetores de ondas gravitacionais por interferometria laser permitirão compreender melhor ou até esclarecer questões de longa data que continuam por responder, como seja a existência de buracos negros. Pese embora o número cumulativo de argumentos teóricos e evidências observacionais que tem vindo a fortalecer a hipótese da sua existência, não há ainda qualquer prova conclusiva. Os dados atualmente disponíveis não descartam a possibilidade de outros objetos exóticos, que não buracos negros, se formarem em resultado do colapso gravitacional de uma estrela suficientemente massiva. De facto, acredita-se que a assinatura do objeto exótico remanescente da coalescência de um sistema binário de objetos compactos pode estar encriptada na amplitude da onda gravitacional emitida durante a fase de oscilações amortecidas, o que tornaria possível a distinção entre buracos negros e outros objetos exóticos. Esta dissertação explora aspetos clássicos da fenomenologia de perturbações escalares e eletromagnéticas de duas famílias de objetos exóticos cuja geometria, apesar de semelhante à de um buraco negro de Kerr, é definida por uma superfície refletora, e não por um horizonte de eventos. Emgeral, tais objetos registam instabilidades quando caracterizados por condições de fronteira totalmente refletoras. No entanto, mostra-se que podem ser estáveis se se considerar condições de fronteira parcialmente ou sobre-refletoras. Os resultados sugerem que, pelo menos no que respeita a esta instabilidade, estes objetos exóticos podem ser viáveis do ponto de vista astrofísico. Palavras-chave: instabilidade de ergo-região, objetos compactos, buracos negros, relatividade geral Abstract Gravitational-wave astronomy offers a novel testing ground for fundamental physics, namely by unfolding new prospects of success in probing the nature of gravity. Current and near-future gravitational-wave interferometers are expected to provide deeper insights into long-standing open questions in gravitation such as the existence of black holes. Although a cumulative number of both theoretical and observational arguments has been strengthening the black-hole hypothesis, some sort of proof is still lacking. Up-to-date gravitational-wave data does not preclude other exotic compact objects rather than black holes from being the ultimate endpoint of compact binary mergers. The late-time gravitational-wave ringdown signal from compact binary coalescences has been argued to encode the signature of the compact object left behind the merger, which hints at the possibility of distinguishing black holes from other exotic compact objects. The present thesis addresses classical phenomenological aspects of scalar and electromagnetic field perturbations of two families of Kerr-like exotic compact objects featuring a surface with reflective properties instead of an event horizon. While these horizonless alternatives are prone to ergoregion instabilities when their surface is perfectly-reflecting, it is shown that stability can be achieved when considering partially- or over-reflecting boundary conditions. The results suggest that, at least inwhat regards this instability, Kerr-like exotic compact objects may be astrophysically viable. Keywords: ergoregion instability, exotic compact objects, black holes, general relativity Table of contents List of figures ix List of tables xiii Acronyms xv 1 Introduction 1 1.1 Black holes in general relativity . .2 1.2 Black holes as an endpoint of stellar evolution . .4 1.3 Observing astrophysical black holes . .5 1.4 Exotic compact objects . .6 1.5 Thesis scope and outline . .7 2 The Kerr metric 9 2.1 The Kerr metric in the Boyer-Lindquist form . .9 2.2 Symmetries . 11 2.2.1 Discrete symmetries . 11 2.2.2 Continuous symmetries . 11 2.3 Curvature singularity and maximal analytical extension . 12 2.4 Zero angular momentum observer (ZAMO) and frame dragging . 15 2.5 Ergoregion . 15 2.6 Penrose process . 17 2.7 Superradiance . 18 3 Quasinormal modes 21 3.1 Black-hole perturbation theory . 21 3.2 Quasinormal modes . 24 3.3 Methods for computing quasinormal modes . 26 3.3.1 Direct-integration shooting method . 26 4 Scalar perturbations of exotic compact objects 29 4.1 Klein-Gordon equation on Kerr spacetime . 29 viii Table of contents 4.2 Quasinormal modes . 31 4.2.1 Schwarzschild-like exotic compact objects . 31 4.2.2 Kerr-like exotic compact objects . 32 4.2.3 Superspinars . 39 4.3 Superradiant scattering . 41 4.4 Summary . 45 5 Electromagnetic perturbations of exotic compact objects 47 5.1 The Newman-Penrose formalism . 47 5.2 Maxwell’s equations . 48 5.2.1 Maxwell’s equations on Kerr spacetime . 49 5.3 Electric and magnetic fields in the ZAMO frame . 53 5.4 Perfectly-reflecting boundary conditions . 54 5.5 Detweiler transformation . 55 5.6 Quasinormal modes . 57 5.6.1 Schwarzschild-like exotic compact objects . 57 5.6.2 Kerr-like exotic compact objects . 58 5.6.3 Superspinars . 62 5.7 Summary . 64 6 Conclusion and Future Work 65 References 67 Appendix A Teukolsky-Starobinsky identities 71 A.1 Definitions and operator identities . 71 A.2 Teukolsky-Starobinsky identities for spin-1 fields . 72 List of figures 2.1 Maximal analytical extension of Kerr solution for a2 > M 2.................. 13 2.2 Carter-Penrose of the maximal analytical extension of Kerr spacetime along the axis of symmetry (θ = 0) for a2 < M 2 and a2 = M 2.......................... 14 2.3 Proper volume of the ergoregion of Kerr spacetime as a function of |a/M|.......... 16 4.1 Real and imaginary parts of the fundamental |l| = 1, 2 scalar quasinormal mode frequencies of a Schwarzschild-like exotic compact object with a perfectly-reflecting (|R|2 = 1) surface at r = r0 ≡ rH + δ, 0 < δ ≪ M, where rH is the would-be event horizon of the corresponding Schwarzschild black hole, as a function of δ/M, for both Dirichlet and Neumann boundary conditions. 32 4.2 Real and imaginary parts of the fundamental l = m = 1 scalar quasinormal mode frequencies of a Kerr-like exotic compact object with a perfectly-reflecting (|R|2 = 1) surface at r = r0 ≡ rH + δ, δ ≪ M, where rH is the would-be event horizon of the corresponding Kerr black hole, as a function of δ/M, for both Dirichlet and Neumann boundary conditions. 34 4.3 Critical value of the rotation parameter above which the fundamental l = m = 1 scalar quasinormal mode frequency of a perfectly-reflecting (|R|2 = 1) Kerr-like exotic compact object is unstable, for both Dirichlet and Neumann boundary conditions. 36 4.4 Detailed view of the imaginary part of the fundamental l = m = 1 scalar quasinormal mode frequencies of a Kerr-like exotic compact object with a perfectly-reflecting (|R|2 = 1) surface at r = r0 ≡ rH + δ, 0 < δ ≪ M, where rH is the would-be event horizon of the corresponding Kerr black hole, as a function of the rotation parameter a/M in the range [0.8,1], for both Dirichlet and Neumann boundary conditions. 36 4.5 Timescale of the scalar ergoregion instability of rapidly-rotating Kerr-like exotic compact 2 objects with a perfectly-reflecting (|R| = 1) surface at r = r0 ≡ rH + δ, 0 < δ ≪ M, where rH is the would-be event horizon of the corresponding Kerr black hole, as a function of δ/M, for l = m = 1 and both Dirichlet and Neumann boundary conditions. 37 x List of figures 4.6 Imaginary part of the fundamental l = m = 1 scalar quasinormal mode frequencies of a Kerr-like exotic compact objects with a partially-reflecting|R| ( 2 < 1) surface at r = r0 ≡ rH + δ, where rH is the would-be event horizon of the corresponding Kerr black hole and δ/M = 10−5, as a function of a/M, for quasi-Dirichlet and quasi-Neumann boundary conditions. 38 4.7 Fit of the maximum value of the imaginary part of the fundamental l = m = 1 scalar quasinormal mode frequency of a Kerr-like exotic compact object with reflectivity R in the range [−0.9980,−1] (quasi-Dirichlet boundary conditions) to the polynomial (4.22), for different values of δ/M...................................... 38 4.8 Real and imaginary parts of the fundamental l = m = 1 scalar quasinormal frequencies of 2 a superspinar with a perfectly-reflecting (|R| = 1) surface at r = r0 > 0, as a function of a/M, for both Dirichlet and Neumann boundary conditions. 40 4.9 Critical value of the rotation parameter below which the fundamental l = m = 1 scalar quasinormal mode frequency of a perfectly-reflecting (|R|2 = 1) superspinar is unstable, for both Dirichlet and Neumann boundary conditions. 41 4.10 Timescale of the scalar ergoregion instability of superspinars with a perfectly-reflecting 2 (|R| = 1) surface at r = r0 > 0, as a function of r0, for l = m = 1.............. 41 4.11 Imaginary part of the fundamental l = m = 1 scalar quasinormal mode frequencies of a superspinar featuring a surface with reflectivity R at r = r0 => 0, as a function of a/M.. 41 4.12 Amplification factors for superradiant l = m = 1 scalar field perturbations scattered off Kerr-like exotic compact objects with a/M = 0.9 and featuring a surface with reflectivity R at r = r0 ≡ rH + δ, where rH is the would-be event horizon of the corresponding Kerr black hole and δ/M = 10−5.................................... 42 4.13 Numerical and analytical values for the amplification factors of superradiant l = m = 1 scalar field perturbations scattered off Kerr-like exotic compact objects with a/M = 0.9 and featuring a surface with reflectivity R at r = r0 ≡ rH + δ, where rH is the would-be event horizon of the corresponding Kerr black hole and δ/M = 10−5............
Recommended publications
  • Stationary Double Black Hole Without Naked Ring Singularity
    LAPTH-026/18 Stationary double black hole without naked ring singularity G´erard Cl´ement∗ LAPTh, Universit´eSavoie Mont Blanc, CNRS, 9 chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux cedex, France Dmitri Gal'tsovy Faculty of Physics, Moscow State University, 119899, Moscow, Russia, Kazan Federal University, 420008 Kazan, Russia Abstract Recently double black hole vacuum and electrovacuum metrics attracted attention as exact solutions suitable for visualization of ultra-compact objects beyond the Kerr paradigm. However, many of the proposed systems are plagued with ring curvature singularities. Here we present a new simple solution of this type which is asymptotically Kerr, has zero electric and magnetic charges, but is endowed with magnetic dipole moment and electric quadrupole moment. It is manifestly free of ring singularities, and contains only a mild string-like singularity on the axis corresponding to a distributional energy- momentum tensor. Its main constituents are two extreme co-rotating black holes carrying equal electric and opposite magnetic and NUT charges. PACS numbers: 04.20.Jb, 04.50.+h, 04.65.+e arXiv:1806.11193v1 [gr-qc] 28 Jun 2018 ∗Electronic address: [email protected] yElectronic address: [email protected] 1 I. INTRODUCTION Binary black holes became an especially hot topic after the discovery of the first gravita- tional wave signal from merging black holes [1]. A particular interest lies in determining their observational features other than emission of strong gravitational waves. Such features include gravitational lensing and shadows which presumably can be observed in experiments such as the Event Horizon Telescope and future space projects.
    [Show full text]
  • Hawking Radiation
    a brief history of andreas müller student seminar theory group max camenzind lsw heidelberg mpia & lsw january 2004 http://www.lsw.uni-heidelberg.de/users/amueller talktalk organisationorganisation basics ☺ standard knowledge advanced knowledge edge of knowledge and verifiability mindmind mapmap whatwhat isis aa blackblack hole?hole? black escape velocity c hole singularity in space-time notion „black hole“ from relativist john archibald wheeler (1968), but first speculation from geologist and astronomer john michell (1783) ☺ blackblack holesholes inin relativityrelativity solutions of the vacuum field equations of einsteins general relativity (1915) Gµν = 0 some history: schwarzschild 1916 (static, neutral) reissner-nordstrøm 1918 (static, electrically charged) kerr 1963 (rotating, neutral) kerr-newman 1965 (rotating, charged) all are petrov type-d space-times plug-in metric gµν to verify solution ;-) ☺ black hole mass hidden in (point or ring) singularity blackblack holesholes havehave nono hairhair!! schwarzschild {M} reissner-nordstrom {M,Q} kerr {M,a} kerr-newman {M,a,Q} wheeler: no-hair theorem ☺ blackblack holesholes –– schwarzschildschwarzschild vs.vs. kerrkerr ☺ blackblack holesholes –– kerrkerr inin boyerboyer--lindquistlindquist black hole mass M spin parameter a lapse function delta potential generalized radius sigma potential frame-dragging frequency cylindrical radius blackblack holehole topologytopology blackblack holehole –– characteristiccharacteristic radiiradii G = M = c = 1 blackblack holehole --
    [Show full text]
  • String Theory, QCD and Black Holes
    Black Hole Microstate Structure Fuzzballs and Firewalls Iosif Bena IPhT, CEAEA Saclay with Nick Warner, Jan deBoer, Micha Berkooz, Simon Ross, Gianguido Dall’Agata, Stefano Giusto, Masaki Shigemori, Dieter van den Bleeken, Monica Guica, Sheer El-Showk, Stanislav Kuperstein, Hagen Triendl, Bert Vercnocke, Andrea Puhm, Ref. Ares(2012)790792 - 29/06/2012 ! Department C "Grant Management" ! Mittwoch, 12. März 2014 ! Subject: Aggressive marketing from publishing houses Dear Madam, Dear Sir, The European Research Council Executive Agency (ERCEA) would like to alert you of publishing houses and online publications which try to make profit out of publishing articles, or interviewing researchers funded from the EU budget, either by the European Research Council (ERC) or by the European Commission (EC). From time to time participants in projects funded under the EU framework programmes are contacted – often by telephone - by organisations seeking payment in return for publishing information on the work being undertaken within their projects. As with "cold calling" in general, the claims and assertions made should be treated with an appropriate level of caution before a decision is made on the best course of action. These publications and their services have not been endorsed by the EC, or the ERCEA. Common tactics to secure business may include vague references to high-level contributions from decision makers, or making the project participant believe that his or her activities have been identified on the basis of special merit which may not be the case. Commercial entities use many ways of promoting their services, but grant-holders are not obliged to use them. Whatever the impression given by such service providers, their products have not received any formal approval or endorsement from the EC or the ERCEA.
    [Show full text]
  • SNOWMASS21-TF1 TF0-057.Pdf 409.50KB 2020-08-31 21:46:42
    Snowmass2021 - Letter of Interest Peering inside Black Holes with Gravitational Waves Thematic Areas: (TF01) String theory, quantum gravity, black holes (TF2) Effective field theory techniques (TF3) CFT and formal QFT (TF4) Scattering amplitudes (TF5) Lattice gauge theory (TF6) Theory techniques for precision physics (TF7) Collider phenomenology (TF8) BSM model building (TF9) Astro-particle physics & cosmology (TF10) Quantum Information Science (TF11) Theory of neutrino physics (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities (CF7) Cosmic Probes of Fundamental Physics Contact Information: Emil Mottola (Los Alamos National Laboratory & Perimeter Institute)[[email protected]] Author: Emil Mottola Abstract: In classical General Relativity (GR) the interiors of Black Holes (BHs) are not only singular but, if rotating, also admit closed timelike curves, violating causality.1 This feature occurs at macroscopic distance scales, far larger than the microscopic Planck scale LP l. When quantum effects are considered, severe conflicts with statistical thermodynamics, conservation of probability and an enormous BH entropy arise also at the macroscopic horizon scale.2,3 This suggests that a low energy semi-classical Effective Field Theory (EFT) approach should be applicable. In this LOI such an approach based the conformal anomaly is proposed, which leads to a non-singular horizonless, but ultra-compact object called a gravitational condensate star. The gravastar hypothesis can be tested by searching for discrete surface modes and GW echoes emitted after binary merger events. In this new era of GW and multi-messenger astronomy with additional GW detectors coming online in this decade, the time is now ripe for a full-fledged effort to confront these theoretical ideas with the observational data that hold the promise of resolving the conundrum that BHs pose, and potentially point to a new path to ultimate synthesis of gravitation and quantum theory.
    [Show full text]
  • Weyl Metrics and Wormholes
    Prepared for submission to JCAP Weyl metrics and wormholes Gary W. Gibbons,a;b Mikhail S. Volkovb;c aDAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK bLaboratoire de Math´ematiqueset Physique Th´eorique,LMPT CNRS { UMR 7350, Universit´ede Tours, Parc de Grandmont, 37200 Tours, France cDepartment of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya street 18, 420008 Kazan, Russia E-mail: [email protected], [email protected] Abstract. We study solutions obtained via applying dualities and complexifications to the vacuum Weyl metrics generated by massive rods and by point masses. Rescal- ing them and extending to complex parameter values yields axially symmetric vacuum solutions containing singularities along circles that can be viewed as singular mat- ter sources. These solutions have wormhole topology with several asymptotic regions interconnected by throats and their sources can be viewed as thin rings of negative tension encircling the throats. For a particular value of the ring tension the geometry becomes exactly flat although the topology remains non-trivial, so that the rings liter- ally produce holes in flat space. To create a single ring wormhole of one metre radius one needs a negative energy equivalent to the mass of Jupiter. Further duality trans- formations dress the rings with the scalar field, either conventional or phantom. This gives rise to large classes of static, axially symmetric solutions, presumably including all previously known solutions for a gravity-coupled massless scalar field, as for exam- ple the spherically symmetric Bronnikov-Ellis wormholes with phantom scalar. The multi-wormholes contain infinite struts everywhere at the symmetry axes, apart from arXiv:1701.05533v3 [hep-th] 25 May 2017 solutions with locally flat geometry.
    [Show full text]
  • Growth and Merging Phenomena of Black Holes: Observational, Computational and Theoretical Efforts
    Communications of BAO, Vol. 68, Issue 1, 2021, pp. 56-74 Growth and merging phenomena of black holes: observational, computational and theoretical efforts G.Ter-Kazarian∗ Byurakan Astrophysical Observatory, 378433, Aragatsotn District, Armenia Abstract We briefly review the observable signature and computational efforts of growth and merging phenomena of astrophysical black holes. We examine the meaning, and assess the validity of such properties within theoretical framework of the long-standing phenomenological model of black holes (PMBHs), being a peculiar repercussion of general relativity. We provide a discussion of some key objectives with the analysis aimed at clarifying the current situation of the subject. It is argued that such exotic hypothetical behaviors seem nowhere near true if one applies the PMBH. Refining our conviction that a complete, self-consistent gravitation theory will smear out singularities at huge energies, and give the solution known deep within the BH, we employ the microscopic theory of black hole (MTBH), which has explored the most important novel aspects expected from considerable change of properties of space-time continuum at spontaneous breaking of gravitation gauge symmetry far above nuclear density. It may shed further light upon the growth and merging phenomena of astrophysical BHs. Keywords: galaxies: nuclei|black hole physics|accretion 1. Introduction One of the achievements of contemporary observational astrophysics is the development of a quite detailed study of the physical properties of growth and merging phenomena of astrophysical black holes, even at its earliest stages. But even thanks to the fruitful interplay between the astronomical observations, the theoretical and computational analysis, the scientific situation is, in fact, more inconsistent to day.
    [Show full text]
  • APA-Format APA-Style Template
    An Overview of Black Holes Arjun Dahal , Tribhuvan University, [email protected] Naresh Adhikari, Bowling Green State University, [email protected] ABSTRACT Black holes are one of the fascinating objects in the universe with gravitational pull strong enough to capture light within them. Through this article we have attempted to provide an insight to the black holes, on their formation and theoretical developments that made them one of the unsolved mysteries of universe. Keywords: Black Holes, General Theory of Relativity, Schwarzschild Metric, Schwarzschild Radius, Kerr Metric, Kerr-Newman Metric, Chandrasekhar Limit, Tolman-Oppenheimer- Volkoff Limit, Reissner-Nordstorm Metric, Gravitational Collapse, Singularity ©2017-2018 Journal of St. Xavier’s Physics Council , Open access under CC BY-NC-ND 4.0 Introduction Black hole is a region in space-time where gravitational field is so immense that it is impossible even for light or any other electromagnetic radiation to escape. Hence, it is not visible to us. However, it is predicted through its interaction with other matter in its neighborhood. They are the prediction of Einstein’s General Theory of Relativity. Early on 18th century, Mitchell and Laplace had suggested about the objects with intense gravitational pull strong enough to trap light within it, but black holes appeared in the equations of physics, after Schwarzschild gave the solution of Einstein’s field equation in early 1916. The discovery of pulsars in 1967 ignited back the interest on gravitationally collapsed bodies to the scientists, and finally in 1971, Cygnus X-1, first black hole was detected. (An Illustration of black hole on top of data of distant galaxies.
    [Show full text]
  • Arxiv:2010.05354V1 [Gr-Qc] 11 Oct 2020
    Black hole or Gravastar? The GW190521 case I. Antoniou1, ∗ 1Department of Physics, University of Ioannina, GR-45110, Ioannina, Greece (Dated: August 31, 2021) The existence of cosmological compact objects with very strong gravity is a prediction of General Relativity and an exact solution of the Einstein equations. These objects are called black holes and recently we had the first observations of them. However, the theory of black hole formation has some disadvantages. In order to avoid these, some scientists suggest the existence of gravastars (gravitation vacuum stars), an alternative stellar model which seems to solve the problems of the black hole theory. In this work we compare black holes and gravastars using a wide range of the literature and we emphasize the properties of gravastars, which are consistent with the current cosmological observations. Also, we propose gravastars as the solution of the ”pair-instability” effect and a possible explanation for the observed masses of the compact objects, before the collapse, from the gravitational signal GW190521, since in the formation of a gravastar there aren’t mass restrictions. PACS numbers: 98.62.Ai, 04.20.Cv, 04.30.-w I. INTRODUCTION black holes, or some other compact object with very strong gravity. Many scientists dispute the One of the most attractive concepts in Gen- existence of black holes because if we take into ac- eral Relativity is the existence and the properties count quantum effects, the gravitational collapse of black holes, a region of spacetime where grav- of objects comes to a halt and furthermore no ity is so strong that nothing, no particles or even event horizon forms [2].
    [Show full text]
  • SPACETIME SINGULARITIES: the STORY of BLACK HOLES
    1 SPACETIME SINGULARITIES: The STORY of BLACK HOLES We have already seen that the Big Bang is a kind of 'singularity' in the structure of spacetime. To the question "what was before the Big Bang?", one can reply, at least in the context of GR, that the question actually has no meaning - that time has no meaning 'before' the Big Bang. The point is that the universe can be ¯nite in extent in both time and space, and yet have no boundary in either. We saw what a curved space which is ¯nite in size but has no boundary means for a 2-d surface - a balloon is an example. Notice that if we made a balloon that curved smoothly except at one point (we could, for example, pinch it at this point) we could say that the balloon surface curvature was singular (ie., in¯nite) at this point. The idea of a 4-d spacetime with no boundary in spacetime, but with a ¯nite spacetime 4-dimensional volume, is a simple generalization of this. And just as it makes no sense, inside a 2-d balloon, to ask where the boundary is, we can have spacetime geometries which have no boundary in space or time, or where spacetime 'terminates' at a singularity. All of this is easy to say, but the attitude of most early workers in GR was to ignore the possible existence of singularities, and/or hope that they would just go away. The reaction of Einstein to the discovery of singular solutions to his equations was quite striking.
    [Show full text]
  • Arxiv:1607.03593V1 [Gr-Qc] 13 Jul 2016 Hc Ssilukona Ula N H Super-Nuclear the to and Core, Nuclear Used Densities
    Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells 1,2 3 † 4,5‡ Nami Uchikata ,∗ Shijun Yoshida , and Paolo Pani 1Department of Physics, Rikkyo University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan 2Department of Mathematics and Physics, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan 3Astronomical Institute, Tohoku University, Aramaki-Aoba, Aoba-ku, Sendai 980-8578, Japan 4Dipartimento di Fisica, ”Sapienza” Universit`adi Roma & Sezione INFN Roma1, Piazzale Aldo Moro 5, 00185 Roma, Italy 5Centro Multidisciplinar de Astrof´ısica — CENTRA, Departamento de F´ısica, Instituto Superior T´ecnico — IST, Universidade de Lisboa - UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal (Dated: July 14, 2016) The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These “I-Love-Q” relations have important implications for astro- physics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black-hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neu- tron star.
    [Show full text]
  • Isotropic Gravastar Model in Rastall Gravity
    Hindawi Advances in Astronomy Volume 2020, Article ID 8861168, 10 pages https://doi.org/10.1155/2020/8861168 Research Article Isotropic Gravastar Model in Rastall Gravity G. Abbas and K. Majeed Department of Mathematics, e Islamia University of Bahawalpur, Bahawalpur, Pakistan Correspondence should be addressed to G. Abbas; [email protected] Received 26 September 2020; Revised 28 October 2020; Accepted 4 November 2020; Published 16 November 2020 Academic Editor: Yu Liu Copyright © 2020 G. Abbas and K. Majeed. ,is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the present paper, we have introduced a new model of gravastar with an isotropic matter distribution in Rastall gravity by the Mazur–Mottola (2004) mechanism. Mazur–Mottola approach is about the construction of gravastar which is predicted as an alternative to black hole. By following this convention, we define gravastar in the form of three phases. ,e first one is an interior phase which has negative density; the second part consists of thin shell comprising ultrarelativistic stiff fluid for which we have discussed the length, energy, and entropy. By the graphical analysis of entropy, we have shown that our proposed thin shell gravastar model is potentially stable. ,e third phase of gravastar is defined by the exterior Schwarzschild geometry. For the interior of gravastar, we have found the analytical solutions free from any singularity and the event horizon in the framework of Rastall gravity. 1. Introduction For the very first time, in the 18th century, Laplace and It was required to formulate such an alternative system Michell gave the clues of existence of a celestial body having that could tackle the abovementioned challenges; then, in extreme density and strongest gravitational effect enough 2001, Mazur and Mottola [10, 11] suggested a marvelous idea that even the light cannot be escaped.
    [Show full text]
  • A Portrait of a Black Hole
    Overview_Black Holes A picture of a dark monster. The image is the first direct visual evidence of a black hole. This particularly massive specimen is at the center of the supergiant galaxy Messier 87 and was acquired by the Event Horizon Telescope (EHT), an array of eight ground-based radio telescopes distributed around the globe. A portrait of a black hole Black holes swallow all light, making them invisible. That’s what you’d think anyway, but astronomers thankfully know that this isn’t quite the case. They are, in fact, surrounded by a glowing disc of gas, which makes them visible against this bright background, like a black cat on a white sofa. And that’s how the Event Horizon Telescope has now succeeded in taking the first picture of a black hole. Researchers from the Max Planck Institute for Radio Astronomy in Bonn and the Institute for Radio Astronomy in the Millimeter Range (IRAM) in Grenoble, France, were among those making the observations. Photo: EHT Collaboration TEXT HELMUT HORNUNG n spring 2017, scientists linked up objects at extremely small angles of less tion of the Max Planck Institute for Ra- eight telescopes spread out over than 20 microarcseconds. With that dio Astronomy. In the 2017 observing one face of the globe for the first resolution, our eyes would see individ- session alone, the telescopes recorded time, forming a virtual telescope ual molecules on our own hands. approximately four petabytes of data. with an effective aperture close to This is such a huge volume that it was the Idiameter of the entire planet.
    [Show full text]