The Pennsylvania State University the Graduate School STUDYING DIVERTICULAR DISEASE USING FAMILIAL BASED NEXT

Total Page:16

File Type:pdf, Size:1020Kb

The Pennsylvania State University the Graduate School STUDYING DIVERTICULAR DISEASE USING FAMILIAL BASED NEXT The Pennsylvania State University The Graduate School STUDYING DIVERTICULAR DISEASE USING FAMILIAL BASED NEXT- GENERATION SEQUENCING TO IDENTIFY POTENTIAL CAUSATIVE VARIANTS A Dissertation in Cellular and Molecular Biology by Joel Leonard Coble © 2020 Joel Leonard Coble Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2020 The dissertation of Joel Coble was reviewed and approved by the following: James Broach Chair and Professor of the department of Biochemistry and Molecular Biology Director of the Penn State Institute for Personalized Medicine Dissertation Advisor Co-Chair of Committee Glenn Gerhard Chair and Professor of the department of Medical Genetics and Molecular Biochemistry Co-Chair of Committee Professor of Pathology and Laboratory Medicine Walter Koltun Chief, Division of Colon and Rectal Surgery Professor, Biomedical Sciences Gregory Yochum Associate Professor, Department of Biochemistry and Molecular Biology Milena Bogunovic Assistant Professor, Department of Microbiology and Immunology ii Abstract Diverticular disease (DD) is a multistage gastrointestinal disorder of the colon. DD begins with colonic outpouching, creating diverticula. This stage of disease is called diverticulosis and is asymptomatic. Approximately 32.6% of the population between 50-59 years of age have diverticulosis, and that number increases to 71.4% of individuals ≥ 80. When individual diverticula become inflamed, the disease has progressed to diverticulitis. Approximately 20% of individuals with diverticulosis will develop diverticulitis. Only 1-4% of those individuals will require surgical treatment. Naturally occurring genetic variants can predispose a person to a particular disease. This concept has yet to be thoroughly investigated for DD. Familial and population-based studies suggest 40-53% of DD is a result of genetics, while the remainder is a result of environmental factors such as diet or smoking. The overarching goal of this research was to use next-generation sequencing (NGS) to identify possible causative variants in families with DD and further investigate the mechanistic role of those variants and genes in the pathogenesis of DD. We recruited two families with DD at the Penn State Health Inflammatory Bowel Disease Center biorepository. We then performed exome sequencing on each family and assessed rare variants (<1% minor allele frequency (MAF)) matching the segregation pattern of disease for a possible biological role in the disorders. These data led to the identification of genes LAMB4 and COL1A1, which each contain variants in the two families with DD. iii LAMB4 and COL1A1 are critical for a functional extracellular matrix. LAMB4 is a member of the laminin family of genes, and COL1A1 is a member of the collagen family of genes. This led to the hypothesis where structurally or functionally damaging variants in these genes may decrease the integrity of the basement membrane in the colon, leading to greater susceptibility for outpouching to occur. We then performed targeted sequencing for LAMB4 or COL1A1 in 148 non-familial cases. This sequencing allowed for a comparison of patients with DD, also having a variant in one of the genes, to patients with DD that have no variants in these genes. Immunohistochemistry was then performed on colon tissue samples from those individuals to look at protein localization and expression. LAMB4 localizes to the myenteric plexus of the colon, and DD patients with LAMB4 variants have significantly decreased expression of LAMB4 compared to healthy control patients without variants in LAMB4 or compared to patients with DD but no variants in LAMB4. The localization and reduced expression in patients with both DD and variants in LAMB4 provide additional supporting evidence for the role of the enteric nervous system in the pathogenesis of DD. COL1A1 showed no discernible change in the pattern of expression or localization between and within similar groups. This research has identified potential causative variants for DD and assessed the functional role of the LAMB4 and COL1A1 proteins in DD. Although this data has helped to shed light on the pathogenesis of DD, further research is iv needed to fully elucidate the exact mechanistic role of these genes in DD to provide new and novel pathways to be the focus of treatment or intervention. v Table of Contents List of Figures…………....………………………………………………..….…ix List of Tables………………………………………………………………........xi List of Abbreviations………...………...…………………………………........xii Acknowledgments……………………...……………………………….....….xiv Chapter 1: Introduction…………………………………………………........1 1.1.1 Epidemiology and financial burden of gastrointestinal disorders……1 1.1.2 Epidemiology and financial burden of diverticular disease…………..1 1.2.1 Gastrointestinal and colonic anatomy………………………………….2 1.2.2 Enteric Nervous System anatomy………………………………………6 1.2.3 Colonic microbiome………………………………………………………7 1.2.4 Extracellular matrix…………………………………………………........8 1.3.1 Pathogenesis of diverticular disease…………………………………...9 1.3.2 Genetics of diverticular disease……………………………………….11 1.4.1 Disorders with DD comorbidity……………………………………..….14 1.4.2 Colonic wall changes in conditions with diverticular disease as comorbidity…………………………………………………………………......15 1.4.3 Neuronal/motility changes in diseases with diverticular disease comorbidity………………………………………………………………......…21 1.5 Next-generation sequencing……………………………………………..24 1.6 Summary…………………………………………………………………...24 Chapter 2: Identification of a rare LAMB4 variant associated with familial diverticulitis through exome sequencing……………………...26 2.1 Abstract…………………………………………………………………….27 2.2 Introduction………………………………………………………………...28 2.3 Results……………………………………………………………………...30 2.3.1 Exome sequencing identified a rare variant in the LAMB4 gene that segregated with diverticulitis………………………………………………….30 2.3.2 LAMB4 variants are associated with decreased LAMB4 protein expression in colonic myenteric plexus……………………………………..33 2.3.3 Additional rare LAMB4 variants are present in sporadic diverticulitis patients………………………………………………………………………….37 2.3.4 Patients with diverticulitis and variants in LAMB4 showed decreased expression of LAMB4 in the myenteric plexus……………………………...39 2.4 Discussion………………………………………………………………….43 2.5 Materials and Methods……………………………………………………47 2.5.1 Patients and samples……………………………………………...…...47 2.5.2 Whole-exome sequencing…………………………………………......48 2.5.3 Bioinformatics pipeline………………………………………………….48 2.5.4 Variant filtering…………………………………………………………..49 2.5.5 Targeted and confirmation sequencing……………………………….49 vi 2.5.6 Immunohistochemistry of LAMB4……………………………………..50 2.5.7 Quantification of images………………………………………………..51 2.6 Accession Number………………………………………………………..52 2.7 Funding……………………………………………………………………..52 Chapter 3: Identification of a rare COL1A1 variant associated with familial diverticulitis through exome sequencing…………......………53 3.1 Abstract…………………………………………………………………….54 3.2 Introduction……………………………………………………………...…55 3.3 Results……………………………………………………………………...58 3.3.1 Exome sequencing of recruited family identified two variants in COL1A1…………………………………………………………………………58 3.3.2 Non-familial sporadic diverticulitis patients…………………………..59 3.3.3 COL1A1 localization and abundance did not correlate with disease status or presence of variant…………………………………………………61 3.4 Discussion………………………………………………………………….63 3.5 Materials and Methods……………..…………………………………….68 3.5.1 Patients and samples…………………………………………………..68 3.5.2 Whole-exome sequencing…………………………………………......69 3.5.3 Bioinformatics pipeline………………………………………………….69 3.5.4 Variant filtering…………………………………………………………..69 3.5.5 Targeted and confirmation sequencing……………………………….69 3.5.6 Immunohistochemistry of COL1A1..…………………………………..69 Chapter 4: Conclusion……………………………....………………………70 4.1.1 Genomics of colorectal disorders……………………………………..71 4.1.2 Identification of the LAMB4 variant……………………………….......71 4.1.3 Identification of the COL1A1 variant…………………………………..73 4.2.1 Limitations of this research…………………………………………….74 4.2.2 Value and benefits of this research…………………………...………79 4.3 Future directions……………………………………………………...…...80 4.4 Conclusion…………………………………………………………………84 Appendix: Identification of two rare variants associated with familial Crohn’s Disease through exome sequencing…………..…….86 5.1 Background………………………………………………………………...87 5.1.1 Epidemiology and financial burden of Crohn’s Disease…..………..87 5.1.2 The pathogenesis of Crohn’s Disease………………………………..87 5.1.3 Genetics of Crohn’s Disease…………………………………………..90 5.2 Introduction………………………………………………………………...92 5.3 Results………………………………………………………………...……94 5.4 Discussion………………………………………………………………….95 5.5 Materials and Methods……………………………………………….…103 vii 5.5.1 Recruitment of the affected family…………………………………...103 5.5.2 Exome sequencing of the recruited family………………………….104 5.6 Conclusion………………………………………………….…………….106 References……………………………………………………….…………..107 viii List of Figures 1-1 Schematic representation of the human colon…………………………………..3 1-2 Diagram of the gastrointestinal layers and innervation of the colon…………..4 1-3 Colonic crypts……………………………………………………………………….6 1-4 Schematic illustration of some of the possible mechanisms that may contribute to the development of diverticular disease……………………………..10 1-5 Schematic illustration of the observation that a diverticulum often occurs near sites of vascularization………………………………………………………………..11 1-6 Relative risk (standardized incidence ratio) in siblings according to the age at diagnosis of the index case…………………………………………………………..12
Recommended publications
  • Role of Nlrs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation
    International Journal of Molecular Sciences Review Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation Ioannis Kienes 1, Tanja Weidl 1, Nora Mirza 1, Mathias Chamaillard 2 and Thomas A. Kufer 1,* 1 Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; [email protected] (I.K.); [email protected] (T.W.); [email protected] (N.M.) 2 University of Lille, Inserm, U1003, F-59000 Lille, France; [email protected] * Correspondence: [email protected] Abstract: Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection. Citation: Kienes, I.; Weidl, T.; Mirza, Keywords: NOD-like receptors; Interferons; innate immunity; immune regulation; type I interferon; N.; Chamaillard, M.; Kufer, T.A.
    [Show full text]
  • Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data
    INTEROPERABILITY IN TOXICOLOGY: CONNECTING CHEMICAL, BIOLOGICAL, AND COMPLEX DISEASE DATA Sean Mackey Watford A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Gillings School of Global Public Health (Environmental Sciences and Engineering). Chapel Hill 2019 Approved by: Rebecca Fry Matt Martin Avram Gold David Reif Ivan Rusyn © 2019 Sean Mackey Watford ALL RIGHTS RESERVED ii ABSTRACT Sean Mackey Watford: Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data (Under the direction of Rebecca Fry) The current regulatory framework in toXicology is expanding beyond traditional animal toXicity testing to include new approach methodologies (NAMs) like computational models built using rapidly generated dose-response information like US Environmental Protection Agency’s ToXicity Forecaster (ToXCast) and the interagency collaborative ToX21 initiative. These programs have provided new opportunities for research but also introduced challenges in application of this information to current regulatory needs. One such challenge is linking in vitro chemical bioactivity to adverse outcomes like cancer or other complex diseases. To utilize NAMs in prediction of compleX disease, information from traditional and new sources must be interoperable for easy integration. The work presented here describes the development of a bioinformatic tool, a database of traditional toXicity information with improved interoperability, and efforts to use these new tools together to inform prediction of cancer and complex disease. First, a bioinformatic tool was developed to provide a ranked list of Medical Subject Heading (MeSH) to gene associations based on literature support, enabling connection of compleX diseases to genes potentially involved.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • NOD-Like Receptors in the Eye: Uncovering Its Role in Diabetic Retinopathy
    International Journal of Molecular Sciences Review NOD-like Receptors in the Eye: Uncovering Its Role in Diabetic Retinopathy Rayne R. Lim 1,2,3, Margaret E. Wieser 1, Rama R. Ganga 4, Veluchamy A. Barathi 5, Rajamani Lakshminarayanan 5 , Rajiv R. Mohan 1,2,3,6, Dean P. Hainsworth 6 and Shyam S. Chaurasia 1,2,3,* 1 Ocular Immunology and Angiogenesis Lab, University of Missouri, Columbia, MO 652011, USA; [email protected] (R.R.L.); [email protected] (M.E.W.); [email protected] (R.R.M.) 2 Department of Biomedical Sciences, University of Missouri, Columbia, MO 652011, USA 3 Ophthalmology, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 652011, USA 4 Surgery, University of Missouri, Columbia, MO 652011, USA; [email protected] 5 Singapore Eye Research Institute, Singapore 169856, Singapore; [email protected] (V.A.B.); [email protected] (R.L.) 6 Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 652011, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-573-882-3207 Received: 9 December 2019; Accepted: 27 January 2020; Published: 30 January 2020 Abstract: Diabetic retinopathy (DR) is an ocular complication of diabetes mellitus (DM). International Diabetic Federations (IDF) estimates up to 629 million people with DM by the year 2045 worldwide. Nearly 50% of DM patients will show evidence of diabetic-related eye problems. Therapeutic interventions for DR are limited and mostly involve surgical intervention at the late-stages of the disease. The lack of early-stage diagnostic tools and therapies, especially in DR, demands a better understanding of the biological processes involved in the etiology of disease progression.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • ATP-Binding and Hydrolysis in Inflammasome Activation
    molecules Review ATP-Binding and Hydrolysis in Inflammasome Activation Christina F. Sandall, Bjoern K. Ziehr and Justin A. MacDonald * Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; [email protected] (C.F.S.); [email protected] (B.K.Z.) * Correspondence: [email protected]; Tel.: +1-403-210-8433 Academic Editor: Massimo Bertinaria Received: 15 September 2020; Accepted: 3 October 2020; Published: 7 October 2020 Abstract: The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure.
    [Show full text]
  • TITLE PAGE Oxidative Stress and Response to Thymidylate Synthase
    Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 2, 2021 -Targeted -Targeted 1 , University of of , University SC K.W.B., South Columbia, (U.O., Carolina, This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted.
    [Show full text]
  • Supplementary File 2A Revised
    Supplementary file 2A. Differentially expressed genes in aldosteronomas compared to all other samples, ranked according to statistical significance. Missing values were not allowed in aldosteronomas, but to a maximum of five in the other samples. Acc UGCluster Name Symbol log Fold Change P - Value Adj. P-Value B R99527 Hs.8162 Hypothetical protein MGC39372 MGC39372 2,17 6,3E-09 5,1E-05 10,2 AA398335 Hs.10414 Kelch domain containing 8A KLHDC8A 2,26 1,2E-08 5,1E-05 9,56 AA441933 Hs.519075 Leiomodin 1 (smooth muscle) LMOD1 2,33 1,3E-08 5,1E-05 9,54 AA630120 Hs.78781 Vascular endothelial growth factor B VEGFB 1,24 1,1E-07 2,9E-04 7,59 R07846 Data not found 3,71 1,2E-07 2,9E-04 7,49 W92795 Hs.434386 Hypothetical protein LOC201229 LOC201229 1,55 2,0E-07 4,0E-04 7,03 AA454564 Hs.323396 Family with sequence similarity 54, member B FAM54B 1,25 3,0E-07 5,2E-04 6,65 AA775249 Hs.513633 G protein-coupled receptor 56 GPR56 -1,63 4,3E-07 6,4E-04 6,33 AA012822 Hs.713814 Oxysterol bining protein OSBP 1,35 5,3E-07 7,1E-04 6,14 R45592 Hs.655271 Regulating synaptic membrane exocytosis 2 RIMS2 2,51 5,9E-07 7,1E-04 6,04 AA282936 Hs.240 M-phase phosphoprotein 1 MPHOSPH -1,40 8,1E-07 8,9E-04 5,74 N34945 Hs.234898 Acetyl-Coenzyme A carboxylase beta ACACB 0,87 9,7E-07 9,8E-04 5,58 R07322 Hs.464137 Acyl-Coenzyme A oxidase 1, palmitoyl ACOX1 0,82 1,3E-06 1,2E-03 5,35 R77144 Hs.488835 Transmembrane protein 120A TMEM120A 1,55 1,7E-06 1,4E-03 5,07 H68542 Hs.420009 Transcribed locus 1,07 1,7E-06 1,4E-03 5,06 AA410184 Hs.696454 PBX/knotted 1 homeobox 2 PKNOX2 1,78 2,0E-06
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Depicting Gene Co-Expression Networks Underlying Eqtls Nathalie Vialaneix, Laurence Liaubet, Magali San Cristobal
    Depicting gene co-expression networks underlying eQTLs Nathalie Vialaneix, Laurence Liaubet, Magali San Cristobal To cite this version: Nathalie Vialaneix, Laurence Liaubet, Magali San Cristobal. Depicting gene co-expression networks underlying eQTLs. Haja N. Kadarmideen. Systems Biology in Animal Production and Health vol 2, 2, Springer International Publishing, pp.1-31, 2016, 978-3-319-43330-1. 10.1007/978-3-319-43332-5_1. hal-01390589 HAL Id: hal-01390589 https://hal.archives-ouvertes.fr/hal-01390589 Submitted on 2 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Depicting gene co-expression networks underlying eQTLs Nathalie Villa-Vialaneix, Laurence Liaubet and Magali SanCristobal Abstract Deciphering the biological mechanisms underlying a list of genes whose expression is under partial genetic control (i.e., having at least one eQTL) may not be as easy as for a list of differential genes. Indeed, no specific phenotype (e.g., health or production phenotype) is linked to the list of transcripts under study. There is a need to find a coherent biological interpretation of a list of genes under (partial) genetic control. We propose a pipeline using appropriate statistical tools to build a co-expression network from the list of genes, then to finely depict the network structure.
    [Show full text]
  • Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways
    biomolecules Article Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways Aayushi Srivastava 1,2,3,4 , Abhishek Kumar 1,5,6 , Sara Giangiobbe 1, Elena Bonora 7, Kari Hemminki 1, Asta Försti 1,2,3 and Obul Reddy Bandapalli 1,2,3,* 1 Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; [email protected] (A.S.); [email protected] (A.K.); [email protected] (S.G.); [email protected] (K.H.); [email protected] (A.F.) 2 Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany 3 Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany 4 Medical Faculty, Heidelberg University, D-69120 Heidelberg, Germany 5 Institute of Bioinformatics, International Technology Park, Bangalore 560066, India 6 Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India 7 S.Orsola-Malphigi Hospital, Unit of Medical Genetics, 40138 Bologna, Italy; [email protected] * Correspondence: [email protected]; Tel.: +49-6221-42-1709 Received: 29 August 2019; Accepted: 10 October 2019; Published: 13 October 2019 Abstract: Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated over the last few decades. However, known variants account for a very small percentage of the genetic burden. Here, we focused on the identification of common pathways and networks enriched in NMTC families to better understand its pathogenesis with the final aim of identifying one novel high/moderate-penetrance germline predisposition variant segregating with the disease in each studied family.
    [Show full text]
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]