Sequence-, Structure-, and Dynamics-Based Comparisons of Structurally Homologous Chey-Like Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Sequence-, Structure-, and Dynamics-Based Comparisons of Structurally Homologous Chey-Like Proteins Sequence-, structure-, and dynamics-based comparisons of structurally homologous CheY-like proteins Yi Hea, Gia G. Maisuradzea, Yanping Yina, Khatuna Kachlishvilia, S. Rackovskya,b, and Harold A. Scheragaa,1 aBaker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; and bDepartment of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029 Contributed by Harold A. Scheraga, December 29, 2016 (sent for review October 18, 2016; reviewed by Robert L. Jernigan and Jeffrey Skolnick) We recently introduced a physically based approach to sequence (DSSP) algorithm (16), are slightly different, as shown in Fig. S1. comparison, the property factor method (PFM). In the present Spo0F and CheY have five well-defined α-helices and β-strands, work, we apply the PFM approach to the study of a challenging set and they exhibit a pairwise rmsd value of about 1.85 Å (14). of sequences—the bacterial chemotaxis protein CheY, the N-terminal NT-NtrC not only lacks one α-helix (corresponding to α4 in Spo0F receiver domain of the nitrogen regulation protein NT-NtrC, and and CheY) and two β-strands (β4andβ5 in Spo0F and CheY), but the sporulation response regulator Spo0F. These are all response also has a slightly larger rmsd (∼2.50 Å) from both Spo0F and CheY regulators involved in signal transduction. Despite functional sim- (14) and significantly shorter secondary structural fragments. ilarity and structural homology, they exhibit low sequence iden- Recent investigations, using a Go¯ model modified to include tity. PFM sequence comparison demonstrates a statistically significant sequence information (17), suggest that these proteins may have qualitative difference between the sequence of CheY and those of hierarchical folding processes and that formation of certain the other two proteins that is not found using conventional align- subdomains is critical to reaching the native state (12, 14). In this ment methods. This difference is shown to be consonant with model, CheY and NT-NtrC share an N-terminal to C-terminal structural characteristics, using distance matrix comparisons. We folding pathway, whereas the folding of Spo0F starts at the center also demonstrate that residues participating strongly in native and elongates first to the N terminus and then to the C terminus BIOPHYSICS AND contacts during unfolding are distributed differently in CheY than (12, 14). These folding differences must arise from significant COMPUTATIONAL BIOLOGY in the other two proteins. The PFM result is also in accord with sequence differences (18). dynamic simulation results of several types. Molecular dynamics Our approach is twofold. We investigate the interactions and simulations of all three proteins were carried out at several tem- fluctuations of these molecules, in an all-atom representation, in peratures, and it is shown that the dynamics of CheY are predicted their native states. This can provide information as to how the to differ from those of NT-NtrC and Spo0F. The predicted dynamic proteins perform their biological functions (19–22) and also in- properties of the three proteins are in good agreement with ex- formation that can be used to understand their folding processes perimentally determined B factors and with fluctuations predicted (23–25). Observed dynamic differences must be encoded in by the Gaussian network model. We pinpoint the differences be- amino acid sequences. tween the PFM and traditional sequence comparisons and discuss We also compare the sequences of the three proteins, using the informatic basis for the ability of the PFM approach to detect both the property factor method (PFM) (18, 26) and conven- physical differences between these sequences that are not appar- tional sequence alignment methods (27, 28). In previous systems ent from traditional alignment-based comparison. that we have studied, we have shown that the PFM approach is able to detect differences between sequences that conventional amino acid physical properties | protein fluctuations | all-atom simulations Significance he investigation of the similarities and differences in the Tdynamics of sequentially and structurally homologous pro- We study a set of proteins that exhibit low sequence identity, teins has a long history (1–14). One of the important computa- but high structural homology and functional similarity. It is tional approaches to this problem involves the identification of demonstrated that a physics-based sequence comparison tool, conserved residues (1–4) and the investigation of the influence of the property factor method, is able to detect differences be- these conserved residues on the folding mechanism of the pro- tween the sequences of these proteins that correlate with teins. An advantage of this approach is that the influence of differences in their structures and dynamics. It is shown that conserved residues can be verified by mutation experiments. these sequence differences are not detected in this challenging More subtle questions are raised by the existence of proteins system by conventional alignment methods. This result sug- that are structurally homologous and have similar biological gests that a significant amount of the information encoded in functions but dissimilar amino acid sequences. These molecules protein sequences is not captured by evolutionarily motivated are of particular interest because differences in behavior can arise comparison methods. from sequence differences, even though the proteins have almost identical tertiary structures. A central problem then becomes the Author contributions: Y.H., S.R., and H.A.S. designed research; Y.H., G.G.M., Y.Y., and S.R. detection of those sequence characteristics that correlate with performed research; Y.H., G.G.M., Y.Y., K.K., S.R., and H.A.S. analyzed data; and Y.H., G.G.M., observed differences in molecular properties. It is this problem Y.Y., K.K., S.R., and H.A.S. wrote the paper. that we address in the present work. Reviewers: R.L.J., Iowa State University; and J.S., Georgia Institute of Technology. We consider the proteins NT-NtrC, Spo0F, and CheY, which Conflict of interest statement: In 2014, a WeFold paper [Khoury GA, et al. (2014) WeFold: have α/β structures and are known to be response regulators A coopetition for protein structure prediction. Proteins 82(9):1850–1868] described a hybrid approach generated from several protein structure prediction methodologies of involved in signal transduction (15). All three proteins have about 13 laboratories, including the H.A.S. and J.S. groups, and did not involve any active re- 120 residues and very similar native structures, with pairwise root- search collaboration. mean-square deviations (rmsds) below 3.0 Å (14). However, they 1To whom correspondence should be addressed. Email: [email protected]. exhibit less than 35% pairwise sequence identity. Their secondary This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. structures, determined by the define secondary structure of proteins 1073/pnas.1621344114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1621344114 PNAS Early Edition | 1of6 Downloaded by guest on September 26, 2021 Results Sequence Relationships Between NT-NtrC, Spo0F, and CheY. Previous comparisons of the sequences of these three proteins have cen- tered on the large residues Leu, Ile, and Val, and have high- lighted nonpolar clusters on each side of the sheet formed by strands β1, β2, β3, β4, and β5 (14, 36). It was suggested that these are key contributors to the stability of the proteins. Side-chain size and hydrophobicity are important physical properties, which must necessarily influence the structures and folding mechanisms of α/β proteins. It is known, however, that all amino acid physical properties contribute equally to the dynamics and folding mech- Fig. 1. (A and B) The PFM similarity (A) and global alignment scores (B) anisms of proteins (25). based on the BLOSUM62 scoring matrix as a function of sequence position, for each pair of proteins, calculated using the optimal, 63-residue fragment A systematic analysis of the sequences of these protein was length. carried out. Both the PFM and conventional sequence alignments methods were used to investigate sequence similarities. PFM similarity (shown in Fig. 1A) was calculated as a function of chain alignment-based methods miss. We wish to study the applicability position, using a 63-residue maximal-similarity window length of the PFM algorithm to the present challenging set of proteins. for each pair. [The strategy for determination of the maximal- We demonstrate the following general points: (i) The PFM ap- similarity window length (Fig. S2) and the final average value proach is able to distinguish between these sequences in a corresponding to each window size (Fig. S3) are described in manner not available using conventional alignment. (ii) Differ- Supporting Information, Dependence of PFM Similarity on Frag- ences between the molecules detected by the PFM analysis, ment Length for NT-NtrC, Spo0F, and CheY.] Global sequence based solely on their sequences, are reflected in differences in alignment using the Needleman–Wunsch (NW) algorithm (Fig. both structure and predicted dynamic behavior. 1B) and the blocks substitution matrix 62 (BLOSUM62) (37) The Gaussian network model (GNM) (29, 30) and distance scoring matrix was also performed. To provide a normalized per- matrix analysis (31) were used to establish structural characteristics. residue score, the total score for each 63-residue fragment was Similarities and differences in the dynamics of the three molecules divided by 63.0. [Changing from the BLOSUM62 scoring matrix were predicted using 1-μs all-atom molecular dynamics (MD) to the BLOSUM50 (37) scoring matrix produced only small simulations at 303.15 K and 400 K, and 1.5-μs MD simulations at differences in the alignment-based results.] It can be seen from 450 K, in explicit solvent, generated using the Chemistry at Harvard Fig. 1 that the overall degrees of similarity of the three sequence Macromolecular Mechanics (CHARMM) force field (32–35).
Recommended publications
  • NIH Public Access Author Manuscript Proteins
    NIH Public Access Author Manuscript Proteins. Author manuscript; available in PMC 2015 February 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Proteins. 2014 February ; 82(0 2): 208–218. doi:10.1002/prot.24374. One contact for every twelve residues allows robust and accurate topology-level protein structure modeling David E. Kim, Frank DiMaio, Ray Yu-Ruei Wang, Yifan Song, and David Baker* Department of Biochemistry, University of Washington, Seattle 98195, Washington Abstract A number of methods have been described for identifying pairs of contacting residues in protein three-dimensional structures, but it is unclear how many contacts are required for accurate structure modeling. The CASP10 assisted contact experiment provided a blind test of contact guided protein structure modeling. We describe the models generated for these contact guided prediction challenges using the Rosetta structure modeling methodology. For nearly all cases, the submitted models had the correct overall topology, and in some cases, they had near atomic-level accuracy; for example the model of the 384 residue homo-oligomeric tetramer (Tc680o) had only 2.9 Å root-mean-square deviation (RMSD) from the crystal structure. Our results suggest that experimental and bioinformatic methods for obtaining contact information may need to generate only one correct contact for every 12 residues in the protein to allow accurate topology level modeling. Keywords protein structure prediction; rosetta; comparative modeling; homology modeling; ab initio prediction; contact prediction INTRODUCTION Predicting the three-dimensional structure of a protein given just the amino acid sequence with atomic-level accuracy has been limited to small (<100 residues), single domain proteins.
    [Show full text]
  • Spectrin SH3 Domain Xavier Periole,1* Michele Vendruscolo,2 and Alan E
    proteins STRUCTURE O FUNCTION O BIOINFORMATICS Molecular dynamics simulations from putative transition states of a-spectrin SH3 domain Xavier Periole,1* Michele Vendruscolo,2 and Alan E. Mark1,3,4* 1 Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands 2 Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom 3 School of Molecular and Microbial Sciences, University of Queensland, St Lucia, 4072, Queensland, Australia 4 Institute for Molecular Biosciences, University of Queensland, St Lucia, 4072, Queensland, Australia INTRODUCTION ABSTRACT Understanding of the process of protein folding is one of the grand challenges in A series of molecular dynam- molecular biology. Ever since it was shown that the information contained in the ics simulations in explicit sol- sequence of amino acids is sufficient for a protein to find the structure of its native vent were started from nine state,1 experimentalists and theoreticians have tried to understand the mechanisms of structural models of the tran- this important biological process.2–5 sition state of the SH3 do- 5 main of a-spectrin, which Much effort has been focused on proteins that undergo two-state folding. The pri- were generated by Lindorff- mary advantage of two-state proteins is the lack of detectable intermediate states, so Larsen et al. (Nat Struct Mol their folding process can be considered as involving a transition from a broad ensem- Biol 2004;11:443–449) using ble of configurations representing the unfolded state to a narrow ensemble of configu- molecular dynamics simula- rations making up the native state, via a specific transition state.
    [Show full text]
  • The Limited Role of Nonnative Contacts in the Folding Pathways of a Lattice Protein
    doi:10.1016/j.jmb.2009.06.058 J. Mol. Biol. (2009) 392, 1303–1314 Available online at www.sciencedirect.com The Limited Role of Nonnative Contacts in the Folding Pathways of a Lattice Protein Brian C. Gin1,2,3, Juan P. Garrahan4 and Phillip L. Geissler1,2⁎ 1Department of Chemistry, Models of protein energetics that neglect interactions between amino acids University of California at that are not adjacent in the native state, such as the Gō model, encode or Berkeley, Berkeley, underlie many influential ideas on protein folding. Implicit in this CA 94720, USA simplification is a crucial assumption that has never been critically evaluated in a broad context: Detailed mechanisms of protein folding are not biased by 2Chemical Sciences and Physical nonnative contacts, typically argued to be a consequence of sequence design Biosciences Divisions, Lawrence and/or topology. Here we present, using computer simulations of a well- Berkeley National Laboratory, studied lattice heteropolymer model, the first systematic test of this oft- Berkeley, CA 94720, USA assumed correspondence over the statistically significant range of hundreds 3School of Medicine, University of thousands of amino acid sequences that fold to the same native structure. of California at San Francisco, Contrary to previous conjectures, we find a multiplicity of folding San Francisco, CA 94143, USA mechanisms, suggesting that Gō-likemodelscannotbejustifiedby 4 considerations of topology alone. Instead, we find that the crucial factor in School of Physics and discriminating among topological pathways is the heterogeneity of native Astronomy, University of contact energies: The order in which native contacts accumulate is Nottingham, Nottingham profoundly insensitive to omission of nonnative interactions, provided NG7 2RD, UK that native contact heterogeneity is retained.
    [Show full text]
  • Using Stochastic Roadmap Simulation to Predict Experimental Quantities in Protein Folding Kinetics: Folding Rates and Phi-Values
    Using Stochastic Roadmap Simulation to Predict Experimental Quantities in Protein Folding Kinetics: Folding Rates and Phi-Values Tsung-Han Chiang∗ Mehmet Serkan Apaydin† Douglas L. Brutlag‡ David Hsu∗ Jean-Claude Latombe‡ ∗National University of Singapore, Singapore, 117543, Singapore †Duke University, Durham, NC, 27705, USA ‡Stanford University, Stanford, CA 94305, USA Abstract This paper presents a new method for studying protein folding kinetics. It uses the recently intro- duced Stochastic Roadmap Simulation (SRS) method to estimate the transition state ensemble (TSE) and predict the rates and the Φ-values for protein folding. The new method was tested on 16 proteins, whose rates and Φ-values have been determined experimentally. Comparison with experimental data shows that our method estimates the TSE much more accurately than an existing method based on dynamic pro- gramming. This improvement leads to better folding-rate predictions. We also compute the mean first passage time of the unfolded states and show that the computed values correlate with experimentally de- termined folding rates. The results on Φ-value predictions are mixed, possibly due to the simple energy model used in the tests. This is the first time that results obtained from SRS have been compared against a substantial amount of experimental data. The results further validate the SRS method and indicate its potential as a general tool for studying protein folding kinetics. 1 Introduction Protein folding is a fundamental biological process. Starting out as a long, linear chain of amino acids, a protein molecule remarkably configures itself, or folds, into a unique three-dimensional structure, called the native conformation, in order to perform vital biological functions.
    [Show full text]
  • A New Approach to Optimize a Protein Energy Function on a Folding
    A NEW APPROACH TO OPTIMIZE A PROTEIN ENERGY FUNCTION ON A FOLDING PATHWAY USING GŌ-LIKE POTENTIAL AND ALL-ATOM, AB INITIO MONTE CARLO SIMULATIONS APPROVED BY SUPERVISORY COMMITTEE Nick Grishin, Ph.D. Elizabeth Goldsmith, Ph.D. Zbyszek Otwinowski, Ph.D. Luke Rice, Ph.D. A NEW APPROACH TO OPTIMIZE A PROTEIN ENERGY FUNCTION ON A FOLDING PATHWAY USING GŌ-LIKE POTENTIAL AND ALL-ATOM, AB INITIO MONTE CARLO SIMULATIONS by Alexandra Safronova DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas in Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center Dallas, Texas May, 2016 A NEW APPROACH TO OPTIMIZE A PROTEIN ENERGY FUNCTION ON A FOLDING PATHWAY USING GŌ-LIKE POTENTIAL AND ALL-ATOM, AB INITIO MONTE CARLO SIMULATIONS Alexandra Safronova, M.S. Nick Grishin, Ph.D. Prediction of a protein structure is important for understanding the function of a protein. The process of protein structure prediction employs the approximation of a protein free energy that guides protein folding to the protein’s native state. A function with a good approximation of the protein free energy should allow estimation of the structural distance of the evaluated candidate structure to the protein native state. Currently the energy optimization process relies on the correlation between the energy and the similarity to the native structure. The energy function is presented as a weighted sum of iii components which are designed by human experts with the use of statistical analysis of solved protein strictures.
    [Show full text]
  • Solvation Effects and Driving Forces for Protein Thermodynamic and Kinetic Cooperativity: How Adequate Is Native-Centric Topological Modeling?
    November 29, 2002 Solvation Effects and Driving Forces for Protein Thermodynamic And Kinetic Cooperativity: How Adequate Is Native-Centric Topological Modeling? H¨useyin KAYA and Hue Sun CHAN† Protein Engineering Network of Centres of Excellence (PENCE), Department of Biochemistry, and Department of Medical Genetics & Microbiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada Running title: Continuum G¯oModel Chevron Plots Key words: calorimetric cooperativity / single-exponential kinetics / unfolding / chevron plot / desolvation barrier / continuum G¯omodels / heat capacity † Corresponding author. E-mail address of Hue Sun CHAN: [email protected] arXiv:cond-mat/0212105v2 [cond-mat.stat-mech] 12 Dec 2002 Tel: (416)978-2697; Fax: (416)978-8548 Mailing address: Department of Biochemistry, University of Toronto, Medical Sciences Building – 5th Fl., 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada. 1 Summary What energetic and solvation effects underlie the remarkable two-state thermodynamics and folding/unfolding kinetics of small single-domain proteins? To address this question, we investigate the folding and unfolding of a hierarchy of continuum Langevin dynamics models of chymotrypsin inhibitor 2. We find that residue-based additive G¯o-like contact energies, although native-centric, are by themselves insufficient for proteinlike calorimet- ric two-state cooperativity. Further native biases by local conformational preferences are necessary for proteinlike thermodynamics. Kinetically, however, even models with both contact and local native-centric energies do not produce simple two-state chevron plots. Thus a model protein’s thermodynamic cooperativity is not sufficient for sim- ple two-state kinetics. The models tested appear to have increasing internal friction with increasing native stability, leading to chevron rollovers that typify kinetics that are commonly referred to as non-two-state.
    [Show full text]
  • Bcl::Fold - De Novo Protein Structure Prediction by Assembly Of
    BCL::FOLD - DE NOVO PROTEIN STRUCTURE PREDICTION BY ASSEMBLY OF SECONDARY STRUCTURE ELEMENTS By Mert Karakaş Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemical and Physical Biology December, 2011 Nashville, Tennessee Approved: Professor Jens Meiler Professor Albert Beth Professor Phoebe Stewart Professor Charles Sanders Professor Brandt Eichman To Gülfem, my parents and my brother ii ACKNOWLEDGEMENTS I am deeply grateful to my advisor Dr. Jens Meiler for his support throughout my graduate career. Being one of the first members of his laboratory, I had the great chance to work on a very challenging and large scale project from the ground up. He has provided very valuable input as well as showing great confidence in me which allowed me to grow as an independent researcher. Last six years has been a great learning experience for me. I would like to thank my colleagues, specifically Nils Woetzel and Nathan Alexander who have been invaluable in every part of my thesis project. I would also like to thank Dr. Rene Staritzbichler and Dr. Brian Weiner for their scientific contributions to BCL::Fold project. I would also like to acknowledge the members of my thesis committee Dr. Al Beth, Dr. Phoebe Stewart, Dr. Chuck Sanders and Dr. Brandt Eichman. It has not always been easy in graduate school. Fortunately I was lucky to have great friends who provided great companionship in this treacherous journey. I would like to especially thank Andrew Morin, Yoana Dimitrova, Kazım Tuncay Tekle, Can Envarlı and Cem Albayrak.
    [Show full text]
  • 'Folding and Unfolding Mechanism of Highly Stable Full-Consensus Ankyrin
    Wetzel, S K; Settanni, G; Kenig, M; Binz, H K; Plückthun, A (2008). Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins. Journal of Molecular Biology, 376(1):241-257. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: Journal of Molecular Biology 2008, 376(1):241-257. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2008 Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins Wetzel, S K; Settanni, G; Kenig, M; Binz, H K; Plückthun, A Wetzel, S K; Settanni, G; Kenig, M; Binz, H K; Plückthun, A (2008). Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins. Journal of Molecular Biology, 376(1):241-257. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: Journal of Molecular Biology 2008, 376(1):241-257. doi:10.1016/j.jmb.2007.11.046 J. Mol. Biol. (2008) 376, 241–257 Available online at www.sciencedirect.com Folding and Unfolding Mechanism of Highly Stable Full-Consensus Ankyrin Repeat Proteins Svava K. Wetzel1, Giovanni Settanni2, Manca Kenig1, H. Kaspar Binz1 and Andreas Plückthun1⁎ 1Department of Biochemistry, Full-consensus designed ankyrin repeat proteins were designed with one to University of Zürich, six identical repeats flanked by capping repeats. These proteins express well Winterthurerstrasse 190, in Escherichia coli as soluble monomers.
    [Show full text]
  • The Protein Folding Problem
    The Protein Folding Problem Ken A. Dill,1,2 S. Banu Ozkan,3 M. Scott Shell,4 and Thomas R. Weikl5 1Department of Pharmaceutical Chemistry, 2Graduate Group in Biophysics, University of California, San Francisco, California 94143; email: [email protected] 3Department of Physics, Arizona State University, Tempe, Arizona 85287; email: [email protected] 4Department of Chemical Engineering, University of California, Santa Barbara, California 93106; email: [email protected] 5Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 14424 Potsdam, Germany; email: [email protected] Annu. Rev. Biophys. 2008. 37:289–316 Key Words The Annual Review of Biophysics is online at structure prediction, funnel energy landscapes, CASP, folding biophys.annualreviews.org code, folding kinetics This article’s doi: 10.1146/annurev.biophys.37.092707.153558 Abstract Copyright c 2008 by Annual Reviews. The “protein folding problem” consists of three closely related puz- All rights reserved zles: (a) What is the folding code? (b) What is the folding mechanism? 1936-122X/08/0609-0289$20.00 (c) Can we predict the native structure of a protein from its amino acid sequence? Once regarded as a grand challenge, protein fold- ing has seen great progress in recent years. Now, foldable proteins and nonbiological polymers are being designed routinely and mov- ing toward successful applications. The structures of small proteins are now often well predicted by computer methods. And, there is now a testable explanation for how a protein can fold so quickly: A protein solves its large global optimization problem as a series of smaller local optimization problems, growing and assembling the native structure from peptide fragments, local structures first.
    [Show full text]
  • Sequence-Structure Relationship in Proteins: a Computational Analysis
    “Sequence-Structure Relationship in Proteins: a Computational Analysis of Proteins that Differ in Sequence but Share the Same Fold” Thesis submitted for the Degree Doctor of Philosophy by Iddo Friedberg arXiv:1310.1403v1 [q-bio.BM] 4 Oct 2013 Submitted to the Senate of the Hebrew University July 2002 i This work was carried out under the supervision of Prof. Hanah Margalit. ii Acknowledgements I owe the completion of this work to quite a few individuals: To my parents, Devorah and Ilan who taught me the love of science. To my wife, Vered, who has lovingly supported me during the inevitable hardships that a doctoral program entails. To Hanah Margalit, my advisor. Hanah’s unique blend of patience, optimism, high working standards, originality, and scientific critique have made this work possible. I believe that if I am a better researcher now than I was five years ago, it is solely due to her guidance. To Tommy Kaplan, who helped in producing and collating information from the SSSD database. An extraordinarily gifted person, and I am glad to have had the op- portunity to work with him. To the people involved in the Biopython project, a set of open-source tools for bioinformatics to which I have contributed little, and from which I have taken much. This fine package has saved me months of coding time. I would especially like to thank Brad Chapman and Jeff Chang for introducing me to the finer points of open-source collaboration. To the people in Hanah Margalit’s group, who have provided a warm work atmo- sphere, and a helpful professional environment.
    [Show full text]
  • Probing Possible Downhill Folding: Native Contact Topology Likely Places a Significant Constraint on the Folding Cooperativity of Proteins with ∼40 Residues
    doi:10.1016/j.jmb.2008.09.023 J. Mol. Biol. (2008) 384, 512–530 Available online at www.sciencedirect.com Probing Possible Downhill Folding: Native Contact Topology Likely Places a Significant Constraint on the Folding Cooperativity of Proteins with ∼40 Residues Artem Badasyan, Zhirong Liu and Hue Sun Chan⁎ Department of Biochemistry Experiments point to appreciable variations in folding cooperativity among and Department of Molecular natural proteins with approximately 40 residues, indicating that the Genetics, Faculty of Medicine, behaviors of these proteins are valuable for delineating the contributing University of Toronto, Toronto, factors to cooperative folding. To explore the role of native topology in a Ontario, Canada M5S 1A8 protein's propensity to fold cooperatively and how native topology might constrain the degree of cooperativity achievable by a given set of physical Received 16 July 2008; interactions, we compared folding/unfolding kinetics simulated using received in revised form α three classes of native–centric C chain models with different interaction 6 September 2008; schemes. The approach was applied to two homologous 45-residue accepted 10 September 2008 fragments from the peripheral subunit-binding domain family and a 39- Available online residue fragment of the N-terminal domain of ribosomal protein L9. Free- 17 September 2008 energy profiles as functions of native contact number were computed to assess the heights of thermodynamic barriers to folding. In addition, chevron plots of folding/unfolding rates were constructed as functions of native stability to facilitate comparison with available experimental data. Although common Gō-like models with pairwise Lennard-Jones-type interactions generally fold less cooperatively than real proteins, the rank ordering of cooperativity predicted by these models is consistent with experiment for the proteins investigated, showing increasing folding cooperativity with increasing nonlocality of a protein's native contacts.
    [Show full text]
  • Theory of Protein Folding Jose´ Nelson Onuchic1,2, and Peter G Wolynes1,2,3
    Theory of protein folding Jose´ Nelson Onuchic1,2,Ã and Peter G Wolynes1,2,3 Protein folding should be complex. Proteins organize leave others to review the results of highly detailed all- themselves into specific three-dimensional structures, through atom simulation. a myriad of conformational changes. The classical view of protein folding describes this process as a nearly sequential Basic concepts series of discrete intermediates. In contrast, the energy The locations of atoms in proteins can be determined, in landscape theory of folding considers folding as the progressive favorable cases, to an accuracy of less than 3 A˚ using X-ray organization of an ensemble of partially folded structures crystallography. This specificity of structure arises from through which the protein passes on its way to the natively the heterogeneity of the protein chain. The differing folded structure. As a result of evolution, proteins have a rugged energies associated with positioning different residues funnel-like landscape biased toward the native structure. near or far from each other or from solvent enable some Connecting theory and simulations of minimalist models with structures to be more stable than others. If a sequence experiments has completely revolutionized our understanding is chosen at random, the specificity of structure is still of the underlying mechanisms that control protein folding. small — a variety of globally different structures have very low energies, but within a few kBT of each other. Addresses This mathematical observation has been the bane of 1Center for Theoretical Biological Physics, 2Department of Physics, computational protein structure prediction using energy 3 Department of Chemistry and Biochemistry, University of California functions.
    [Show full text]