Spectrin SH3 Domain Xavier Periole,1* Michele Vendruscolo,2 and Alan E

Total Page:16

File Type:pdf, Size:1020Kb

Spectrin SH3 Domain Xavier Periole,1* Michele Vendruscolo,2 and Alan E proteins STRUCTURE O FUNCTION O BIOINFORMATICS Molecular dynamics simulations from putative transition states of a-spectrin SH3 domain Xavier Periole,1* Michele Vendruscolo,2 and Alan E. Mark1,3,4* 1 Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands 2 Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom 3 School of Molecular and Microbial Sciences, University of Queensland, St Lucia, 4072, Queensland, Australia 4 Institute for Molecular Biosciences, University of Queensland, St Lucia, 4072, Queensland, Australia INTRODUCTION ABSTRACT Understanding of the process of protein folding is one of the grand challenges in A series of molecular dynam- molecular biology. Ever since it was shown that the information contained in the ics simulations in explicit sol- sequence of amino acids is sufficient for a protein to find the structure of its native vent were started from nine state,1 experimentalists and theoreticians have tried to understand the mechanisms of structural models of the tran- this important biological process.2–5 sition state of the SH3 do- 5 main of a-spectrin, which Much effort has been focused on proteins that undergo two-state folding. The pri- were generated by Lindorff- mary advantage of two-state proteins is the lack of detectable intermediate states, so Larsen et al. (Nat Struct Mol their folding process can be considered as involving a transition from a broad ensem- Biol 2004;11:443–449) using ble of configurations representing the unfolded state to a narrow ensemble of configu- molecular dynamics simula- rations making up the native state, via a specific transition state. The analysis of two- tions in which experimental state proteins greatly simplifies the interpretation of experiments designed to elucidate F-values were incorporated as the mechanism of folding. The F-value analysis,6 in which the effects of specific restraints. Two of the nine amino acid substitutions on folding kinetics and equilibria are measured,7 has been models were simulated 10 widely used to obtain structural information regarding the nature of the transition times for 200 ns and the state as F-values reflect the degree to which the environments of specific residues are remaining models simulated native-like in the transition state. By assuming that F-values correlate with the propor- two times for 200 ns. Com- 8–13 plete folding was observed in tion of native contacts in the transition state, F-values can also be used as restraints one case, while in the other in computer simulations. This approach has been used by several groups to propose simulations partial folding or models for the structures of the transition state ensembles (TSEs) of a range of pro- unfolding events were teins.10,12,14 However, as independent experimental information about transition states observed, which were charac- is difficult to obtain, it has been problematic to verify whether a TSE generated in this terized by a regularization of manner is in fact representative of the true TSE. Studies in which the TSE generated elements of secondary struc- using a set of experimental F-values is used to predict the results of further F-value ture. These results are consist- measurements,10,15 and studies showing that the contact order in the TSE correlate with ent with recent experimental protein folding rates16 are supporting the use of this approach. A further validation has evidence that the folding of been provided recently by the demonstration that the results of double-mutant cycle SH3 domains involves low populated intermediate states. experiments could be predicted from the knowledge of a set of structures representing the TSE of barnase.17 Proteins 2007; 69:536–550. In an alternative theoretical approach, a particular structure or set of structures is VC 2007 Wiley-Liss, Inc. identified as belonging to the TSE by calculating the probability of folding by generat- 18 Key words: molecular dyna- ing trajectories that are started from the proposed structures. Since the TSE corre- mics; transition state; protein folding; phi-value; Pfold. Grant sponsor: European Community Training and Mobility of research ‘‘Protein (mis)folding’’; Grant number: HPRN-CT- 2002-00241. *Correspondence to: Xavier Periole, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands. E-mail: [email protected] or Alan E. Mark, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia, 4072, Queensland, Australia. E-mail: [email protected] Received 28 November 2006; Revised 22 February 2007; Accepted 7 March 2007 Published online 10 July 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/prot.21491 536 PROTEINS VC 2007 WILEY-LISS, INC. Probing a TSE by MD in Explicit Solvent sponds to the point of highest free energy along the reac- for comparison. In the following we examine a range of tion coordinate of the folding process, a TSE structure structural properties, including the solvent accessible sur- should have an equal probability to fold or to unfold, face area, the radius of gyration, the deviation of the and therefore its folding probability, Pfold, should be structure from the native configuration (global, local, equal to 0.5.18 Several studies have used this type of and per residue), and ratio of native contacts. approach to validate TSEs. Gsponer and Caflisch13 gen- erated putative TSE conformations and estimated the MODEL AND METHODS Pfold values of six structures using an implicit model to account for solvation effects. They found that up to 200 Starting structures for the simulations ns simulations were necessary to discriminate between folding or unfolding behavior. Shakhnovich and cow- The native state orkers determined Pfold values in simulations using a Go a 19,20 The native structure of the SH3 domain of -spectrin potential and observed that not all conformations (PDB code 1BK228) was used. The numbering of the res- satisfying experimental F-values were part of the TSE on idues is as in Ref. 27. the free energy landscape of the model that they consid- 20 ered. More recently, however, Wolynes and coworkers The transition state ensemble concluded that the use of F-values as restraints repre- sents an effective strategy for the accurate determination We considered the structures representing the TSE of a- 27 of transition state structures.21 Go potentials, in which spectrin SH3 generated by Lindorff-Larsen et al. In brief, 12 native interactions are considered more favorable than this TSE was generated using MD simulations in which exp nonnative ones, were used both by Shakhnovich and experimental F-values, F , were used as restraints by coworkers and Wolynes and coworkers, and they have adding a term in the force field to penalize the difference the advantage of being computationally very convenient. between the experimental F-values and those calculated calc exp There has been, however, some debate about whether the during the simulations, F .TheF values represent the free energy landscapes22 and the folding kinetics23 of Go ratio of the destabilization of the transition state (TS), TSÀU models resemble the true ones faithfully enough to pro- DDGi , compared to that of the native state (N), NÀU 7 vide good estimates of the Pfold values, which are known DDGi , due to a mutation i, and were interpreted as calc to be extremely sensitive to changes in conformations a measure of ratio of native contacts, F , present in the 10,12,27 and energetics.23 Within this context, the use of explicit TSE. solvent models in Pfold calculations has been analyzed DDGTSÀU recently by Rhee and Pande,23 who showed that it can exp i Ui ¼ NÀU ð1Þ represent, at least in the case of the 23-residue mini-pro- DDGi tein BBA5, a promising approach for a reliable estima- tion of Pfold. Even with simplified models the evaluation The unfolded state (U) is used as reference. The Fcalc of reliable Pfold values is computationally extremely values were computed for each residue in a given con- demanding. Several methods have been proposed to formation as the ratioofnativecontacts8,10: calc conf N conf reduce this demand by alternative determinations of the Ui ¼ Qi =Qi , where Qi designate the number of N Pfold values of conformations sampled during reversible contacts of the residue i in a conformation and Qi the folding simulations.24–26 For example Rao et al.24 number of contacts of the same residue i in the native showed that the Pfold of a conformation can be approxi- state. A specific contact between two residues was consid- mated by the probability that structurally similar confor- ered to exist if the two residues were separated by at least mations (clusters) fold during a reversible folding simula- two positions along the sequence and the distance tion. Such a procedure was suggested to be equivalent to between their Ca atoms was less than 8.5 A˚ .10 A contact a Pfold calculation for each individual conformation of was considered native if observed to exist for more than the cluster obtained through multiple simulations but 80% of the time during the 100 ns simulation of the much less computational demanding. native state. Fcalc were determined for each conformation In this work, extensive atomistic molecular dynamics of the MD simulations. (MD) simulations in explicit solvent are used to examine Nine transition state conformations (TSC) were a set of nine structures selected from a model of the TSE extracted from the original set of 500 structures (the set ensemble of the a-spectrin SH3 domain, which was gen- Y ¼ 500 K, see Ref. 27 for details) and will be referred erated by Lindorff-Larsen et al.27 using experimental F- as TSC-X with X ¼ 1 to 9.
Recommended publications
  • NIH Public Access Author Manuscript Proteins
    NIH Public Access Author Manuscript Proteins. Author manuscript; available in PMC 2015 February 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Proteins. 2014 February ; 82(0 2): 208–218. doi:10.1002/prot.24374. One contact for every twelve residues allows robust and accurate topology-level protein structure modeling David E. Kim, Frank DiMaio, Ray Yu-Ruei Wang, Yifan Song, and David Baker* Department of Biochemistry, University of Washington, Seattle 98195, Washington Abstract A number of methods have been described for identifying pairs of contacting residues in protein three-dimensional structures, but it is unclear how many contacts are required for accurate structure modeling. The CASP10 assisted contact experiment provided a blind test of contact guided protein structure modeling. We describe the models generated for these contact guided prediction challenges using the Rosetta structure modeling methodology. For nearly all cases, the submitted models had the correct overall topology, and in some cases, they had near atomic-level accuracy; for example the model of the 384 residue homo-oligomeric tetramer (Tc680o) had only 2.9 Å root-mean-square deviation (RMSD) from the crystal structure. Our results suggest that experimental and bioinformatic methods for obtaining contact information may need to generate only one correct contact for every 12 residues in the protein to allow accurate topology level modeling. Keywords protein structure prediction; rosetta; comparative modeling; homology modeling; ab initio prediction; contact prediction INTRODUCTION Predicting the three-dimensional structure of a protein given just the amino acid sequence with atomic-level accuracy has been limited to small (<100 residues), single domain proteins.
    [Show full text]
  • Backbone Dynamics of Free Barnase and Its Complex with Barstar Determined by 15N NMR Relaxation Study
    Journal of Biomolecular NMR, 18: 107–118, 2000. KLUWER/ESCOM 107 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study Sarata C. Sahua, Abani K. Bhuyanb, Jayant B. Udgaonkarb & R.V. Hosura;∗ aDepartment of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; bNational Centre for Biological Sciences, Tata Institute of Fundamental Research, University of Agricultural Sciences (UAS) - Gandhi Krishi Vigyan Kendra (GKVK) Campus, Bangalore 560 065, India Received 18 April 2000; Accepted 7 July 2000 Key words: backbone dynamics, barnase, barstar, complex, 15N NMR relaxation, protein–protein interactions Abstract Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 ◦C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D {1H}-15N NMR spec- 15 troscopy. N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear {1H}-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N- terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (τm) are 5.0 and 9.5 ns for the free and complexed barnase, respectively.
    [Show full text]
  • Characterization of in Vitro Oxidized Barstar
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector FEBS 15911 FEBS Letters 370 (1995) 273-277 Characterization of in vitro oxidized barstar C. Frisch, G. Schreiber, A.R. Fersht* Cambridge Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge, CB2 2QH, UK Received 13 July 1995 mutant which has been solved independently by Guillet et al. Abstract The polypeptide inhibitor of the ribonuclease barnase, [8] to 2.6 A resolution and by Buckle et al. [4] to 2.0/k resolu- barstar, has two cysteine residues in positions 40 and 82. These tion. The distance between the s-carbon atoms of the alanines have been proposed to form a disulfide bridge leading to an in position 40 and 82 in the two crystal structures of the barstar increase in stability without changing the inhibitory activity of the protein. Barstar and a mutant (E80A) were oxidized in vitro and (C40A/C82A) double mutant is 11.4 A [8] and 11.7 A [4], re- the biochemical and physico-chemical properties of the oxidized spectively. In the solution structure of barstar that was deter- monomers were analysed. The oxidized proteins show no inhibi- mined by NMR [7] (Fig. 1), the distance between the s-carbon tion of barnase using a plate assay and are significantly destabi- atoms of the cysteines is 11.5 h. These s-carbon distances are lized. CD spectra indicate a loss of secondary structure. The outside the normal range for a disulfide bond, which is usually amino acid substitution E80 --~ A stabilizes the oxidized barstar from 4.4 to 6.8 A [9].
    [Show full text]
  • The Folding of Groel-Bound Barnase As a Model for Chaperonin-Mediated Protein Folding (Chaperone/Protein Engineering)
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 5326-5330, June 1995 Biochemistry The folding of GroEL-bound barnase as a model for chaperonin-mediated protein folding (chaperone/protein engineering) FERNANDO J. CORRALES AND ALAN R. FERSHT* Medical Research Council Unit for Protein Function and Design and Cambridge Centre for Protein Engineering, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 lEW, United Kingdom Contributed by Alan R. Fersht, March 3, 1995 ABSTRACT We have analyzed the pathway of folding of solution, then the rate of folding should fall to zero when all barnase bound to GroEL to resolve the controversy ofwhether the barnase becomes bound at saturating concentrations of proteins can fold while bound to chaperonins (GroEL or GroEL. Cpn6O) or fold only after their release into solution. Four We now analyze the folding pathway in detail by stopped- phases in the folding were detected by rapid-reaction kinetic flow monitoring the change of tryptophan fluorescence of measurements of the intrinsic fluorescence of both wild type barnase, GroEL not having tryptophan residues. Unfortu- and barnase mutants. The phases were assigned from their nately, the fluorescence of denatured barnase when bound to rate laws, sensitivity to mutations, and correspondence to GroEL is so close to that of fully folded barnase that it is regain ofcatalytic activity. At high ratios ofdenatured barnase difficult to monitor the folding by using conventional stopped- to GroEL, 4 mol ofbarnase rapidly bind per 14-mer of GroEL. flow fluorimeters. We have now overcome these difficulties by At high ratios of GroEL to barnase, 1 mol of barnase binds replacing Trp-94 by tyrosine (mutant W94Y), which removes with a rate constant of 3.5 x 107 s-1 M-1.
    [Show full text]
  • Investigating the Structural Determinants of Electrostatic Binding Among Protein-Protein Complexes: a Systematic, Large-Scale Computational Study
    Investigating the Structural Determinants of Electrostatic Binding among Protein-protein Complexes: A Systematic, Large-scale Computational Study Emma Nechamkin April 2012 Wellesley College Wellesley, MA Submitted in Partial Fulfillment of the Prerequisites for Honors in Chemistry Acknowledgements Writing my senior thesis has been a wonderful experience, and there are many people to whom I owe thanks for support and guidance. First and foremost, my brilliant advisor Mala Radhakrishnan has been incredibly supportive and understanding. In dorkier terms, her advising style is incredibly close to the hypothetical optimum. Without her constant guidance, motivation, and feed- back, my thesis simply would not exist. I am truly grateful to be a student in her lab. Second, the faculty on my thesis committee, David Haines and Don Elmore of the Chemistry Department, and YuJin Ko of the English Department, have dedicated significant time to my thesis. In particular, the chemistry faculty on my committee have provided insight on much of my work and offered much needed encouragement. Third, I would like to thank the entire Wellesley College Chemistry Department. Clearly the best department on campus, the chemistry department has an unparal- leled involvement with and dedication to its students. At a sometimes stressful and overwhelming school like Wellesley, I am glad to have found my niche. Fourth, each member of the Radhakrishnan Lab over my time here has taught me something about research and listened to at least one incredibly long story I have shared. For the group's helpfulness, reassurance, and companionship, I am deeply grateful. In particular, Ying Yi Zhang has shared some wonderful code with me.
    [Show full text]
  • FOR Environmental Release of Genetically Engineered Mustard
    Assessment of Food and Environmental Safety of GE mustard ASSESSMENT OF FOOD AND ENVIRONMENTAL SAFETY (AFES) FOR Environmental release of Genetically Engineered Mustard (Brassica juncea) hybrid DMH-11 and use of parental events (Varuna bn3.6 and EH2 modbs2.99) for development of new generation hybrids Application submitted by Centre for Genetic Manipulation of Crop Plants (CGMCP), University of Delhi South Campus, New Delhi 2016 1 Assessment of Food and Environmental Safety of GE mustard 2 Assessment of Food and Environmental Safety of GE mustard Table of Contents 1 CHAPTER 1: INTRODUCTION 5 1.1 The Application 6 1.2 Global status of hybrid seed production technology in Brassica napus using MS-RF system deploying the genes used for B. juncea 8 2 CHAPTER 2: BIOLOGY OF INDIAN MUSTARD 11 2.1 Origin and domestication of Brassica juncea 11 2.2 Brassica species present in India and their distribution 12 2.3 Cultivation of B. juncea: soil and climate requirement 14 2.4 Standard agriculture practices for growing B. juncea 14 2.5 Weeds, Major pest and disease 15 2.6 Zonalization of varietal testing 15 3 CHAPTER 3: INDIAN BIOSAFETY REGULATORY FRAMEWORK 17 3.1 Introduction 17 3.2 Step by step process to be followed by the applicant 22 3.3 Step by step regulatory compliance and data generation in the case of GE mustard parental lines and hybrid DMH-11 24 3.4 Assessment of Food/feed and Environmental Safety (AFES) - Risk Assessment Process 25 4 CHAPTER 4: MOLECULAR CHARACTERIZATION OF GE MUSTARD HYBRID DMH-11 AND ITS PARENTAL LINES 33 4.1 Introduction 33 4.2 The male sterility- fertility restorer technology 34 4.3 Gene constructs 35 4.4 Method of genetic transformation of B.
    [Show full text]
  • A General Approach for the Generation of Orthogonal Trnas
    Chemistry & Biology 8 (2001) 883^890 www.elsevier.com/locate/chembiol Research Paper A general approach for the generation of orthogonal tRNAs Lei Wang a; 1, Peter G. Schultz b; * aDepartment of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA bDepartment of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA Received 26 March 2001; accepted 29 May 2001 First published online 27 July 2001 Abstract Background: The addition of new amino acids to the genetic cognate M. jannaschii tyrosyl-tRNA synthetase (TyrRS). Four code of Escherichia coli requires an orthogonal suppressor tRNA mutant suppressor tRNAs were selected that are poorer substrates Tyr that is uniquely acylated with a desired unnatural amino acid by for E. coli synthetases than M. jannaschii tRNACUA, but still can Tyr an orthogonal aminoacyl-tRNA synthetase. A tRNACUA^tyrosyl- be charged efficiently by M. jannaschii TyrRS. Tyr tRNA synthetase pair imported from Methanococcus jannaschii Conclusions: The mutant suppressor tRNACUA together with can be used to generate such a pair. In vivo selections have been the M. jannaschii TyrRS is an excellent orthogonal tRNA^ developed for selecting mutant suppressor tRNAs with enhanced synthetase pair for the in vivo incorporation of unnatural amino orthogonality, which can be used to site-specifically incorporate acids into proteins. This general approach may be expanded to unnatural amino acids into proteins in E. coli. generate additional orthogonal tRNA^synthetase pairs as well as Results: A library of amber suppressor tRNAs derived from M. probe the interactions between tRNAs and their cognate Tyr Tyr jannaschii tRNA was generated.
    [Show full text]
  • Part II – Summary
    Bayer CropScience AG EFSA-GMO-BE-2010-81 Page 1 of 22 15 September 2011 Part II – Summary PART II Request for Authorization of Glufosinate Ammonium-Tolerant Genetically Modified Oilseed Rape MS8, RF3 and MS8xRF3 in accordance with article 5 of Regulation (EC) N° 1829/2003 A. GENERAL INFORMATION 1. Details of application a) Member State of application: Belgium b) Application number: EFSA-GMO-BE-2010-81 c) Name of the product (commercial and other names): Glufosinate ammonium-tolerant genetically modified MS8, RF3 and MS8xRF3 oilseed rape. The unique identifiers assigned to MS8/RF31 oilseed rape are: MS8: ACS-BNØØ5-8 RF3: ACS-BNØØ3-6 MS8xRF3: ACS-BNØØ5-8xACS-BNØØ3-6 d) Date of acknowledgement of valid application: Not available at the date of application 2. Applicant a) Name of applicant: This is an application submitted by Bayer CropScience AG. b) Address of applicant: Bayer CropScience AG represented by Bayer BioScience NV Alfred-Nobel-Strasse 50 Technologiepark 38 D - 40789 Monheim am Rhein B-9052 Gent Germany Belgium c) Name and address of the person established in the Community who is responsible for the placing on the market, whether it be the manufacturer, the importer or the distributor, if different from the applicant (Commission Decision 2004/204/EC Art 3(a)(ii)): MS8/RF3 oilseed rape will be imported and processed in the EU by the same groups who currently import, 1 The designation “MS8/RF3” is used to refer to “MS8, RF3 and MS8xRF3”. Bayer CropScience AG EFSA-GMO-BE-2010-81 Page 2 of 22 15 September 2011 Part II – Summary process and distribute commodity oilseed rape.
    [Show full text]
  • Identification and Characterization of Protein Folding Intermediates Stefano Gianni, Ylva Ivarsson, Per Jemth, Maurizio Brunori, Carlo Travaglini-Allocatelli
    Identification and characterization of protein folding intermediates Stefano Gianni, Ylva Ivarsson, Per Jemth, Maurizio Brunori, Carlo Travaglini-Allocatelli To cite this version: Stefano Gianni, Ylva Ivarsson, Per Jemth, Maurizio Brunori, Carlo Travaglini-Allocatelli. Identifica- tion and characterization of protein folding intermediates. Biophysical Chemistry, Elsevier, 2007, 128 (2-3), pp.105. 10.1016/j.bpc.2007.04.008. hal-00501662 HAL Id: hal-00501662 https://hal.archives-ouvertes.fr/hal-00501662 Submitted on 12 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ Identification and characterization of protein folding intermediates Stefano Gianni, Ylva Ivarsson, Per Jemth, Maurizio Brunori, Carlo Travaglini- Allocatelli PII: S0301-4622(07)00087-7 DOI: doi: 10.1016/j.bpc.2007.04.008 Reference: BIOCHE 4952 To appear in: Biophysical Chemistry Received date: 29 March 2007 Revised date: 16 April 2007 Accepted date: 16 April 2007 Please cite this article as: Stefano Gianni, Ylva Ivarsson, Per Jemth, Maurizio Brunori, Carlo Travaglini-Allocatelli, Identification and characterization of protein folding inter- mediates, Biophysical Chemistry (2007), doi: 10.1016/j.bpc.2007.04.008 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Recombinant Expression of Barnase in Escherichia Coli and Its
    Shankar et al. Microb Cell Fact (2021) 20:171 https://doi.org/10.1186/s12934-021-01642-y Microbial Cell Factories RESEARCH Open Access Recombinant expression of Barnase in Escherichia coli and its application in plasmid purifcation Ram Shankar1* , Nina Schäfer1, Marco Schmeer1, Joe Max Risse2, Karl Friehs2 and Martin Schleef1,2,3* Abstract Background: The use of bovine-origin ribonucleases has been part of the standard protocol for plasmid DNA purif- cation. As the feld of gene therapy now enters the clinical stage, such enzymes need to be phased out or alternative purifcation protocols need to be developed to ensure product safety and regulatory compliance. The recombinant expression of bacterial RNase is fraught with toxicity problems making it a challenging enzyme to express. The current study describes a plasmid construct that allowed expression of barnase in Escherichia coli under co-expression of its native inhibitor barstar. Results: The pure enzyme without the inhibitor barstar was exported to the extracellular space through the peri- plasm and then purifed from the cell-free supernatant. Cation exchange chromatography was employed as a primary purifcation step. This was followed by hydrophobic interaction chromatography which resulted in a concentrated fraction of active enzyme. Although current levels of volumetric activity achieved are quite meagre (4 Kunitz units 1 mL− ), in principle its application to plasmid DNA purifcation could be proved. Currently, this is capable of processing small amounts (13 g) of bacterial biomass for plasmid production. Conclusions: The current work focusses on the downstream purifcation strategies for a recombinant RNase and sets a framework for higher scale production if specifc productivity is increased by optimal hosts and/or re-engineered plasmids.
    [Show full text]
  • The Limited Role of Nonnative Contacts in the Folding Pathways of a Lattice Protein
    doi:10.1016/j.jmb.2009.06.058 J. Mol. Biol. (2009) 392, 1303–1314 Available online at www.sciencedirect.com The Limited Role of Nonnative Contacts in the Folding Pathways of a Lattice Protein Brian C. Gin1,2,3, Juan P. Garrahan4 and Phillip L. Geissler1,2⁎ 1Department of Chemistry, Models of protein energetics that neglect interactions between amino acids University of California at that are not adjacent in the native state, such as the Gō model, encode or Berkeley, Berkeley, underlie many influential ideas on protein folding. Implicit in this CA 94720, USA simplification is a crucial assumption that has never been critically evaluated in a broad context: Detailed mechanisms of protein folding are not biased by 2Chemical Sciences and Physical nonnative contacts, typically argued to be a consequence of sequence design Biosciences Divisions, Lawrence and/or topology. Here we present, using computer simulations of a well- Berkeley National Laboratory, studied lattice heteropolymer model, the first systematic test of this oft- Berkeley, CA 94720, USA assumed correspondence over the statistically significant range of hundreds 3School of Medicine, University of thousands of amino acid sequences that fold to the same native structure. of California at San Francisco, Contrary to previous conjectures, we find a multiplicity of folding San Francisco, CA 94143, USA mechanisms, suggesting that Gō-likemodelscannotbejustifiedby 4 considerations of topology alone. Instead, we find that the crucial factor in School of Physics and discriminating among topological pathways is the heterogeneity of native Astronomy, University of contact energies: The order in which native contacts accumulate is Nottingham, Nottingham profoundly insensitive to omission of nonnative interactions, provided NG7 2RD, UK that native contact heterogeneity is retained.
    [Show full text]
  • Molecular Constructor on the Basis of Barnase–Barstar Module
    ISSN 1068-1620, Russian Journal of Bioorganic Chemistry, 2009, Vol. 35, No. 6, pp. 685–701. © Pleiades Publishing, Ltd., 2009. Original Russian Text © S.M. Deev, E.N. Lebedenko, 2009, published in Bioorganicheskaya Khimiya, 2009, Vol. 35, No. 6, pp. 761–778. Antibody Engineering: Molecular Constructor on the basis of Barnase–Barstar Module S. M. Deev1 and E. N. Lebedenko Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997 Russia Received May 19, 2009; in final form, May 29, 2009 Abstract—Today, antibody engineering for clinical applications is a rapidly progressing field of science and a big business. The basic functions of an antibody can be spatially differentiated and attributed to various struc- tural domains of a molecule. Therefore, each of them may be an object for engineering with the aim of using a definite antibody function. In this sense, the potential of antibodies is unique. In this article, recent achieve- ments and current problems of antibody engineering are briefly reviewed. The main attention is focused on a molecular constructor that allows for obtaining, with the help of a versatile barnase–barstar module, mono- and multivalent miniantibodies and their derivatives with outlined properties. Key words: single chain antibodies, multivalency, bispecificity, targeted delivery, barnase–barstar module DOI: 10.1134/S1068162009060041 INTRODUCTION mAbs), active or diagnostic agents, for instance, cytok- ines, protein toxins and radioisotopes, enzymes, fluo- Currently, antibodies have the second largest pro- rescent proteins, etc. duction value in the pharmaceutical market after vac- cines. More than 85% of antibodies permitted for clin- The current review will focus on a molecular con- ical use are products of antibody engineering.
    [Show full text]