Seeing Keratinocyte Proteins Through the Looking Glass of Intrinsic Disorder

Total Page:16

File Type:pdf, Size:1020Kb

Seeing Keratinocyte Proteins Through the Looking Glass of Intrinsic Disorder International Journal of Molecular Sciences Review Seeing Keratinocyte Proteins through the Looking Glass of Intrinsic Disorder Rambon Shamilov 1 , Victoria L. Robinson 2 and Brian J. Aneskievich 3,* 1 Graduate Program in Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA; [email protected] 2 Department of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA; [email protected] 3 Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA * Correspondence: [email protected]; Tel.: +1-860-486-3053 Abstract: Epidermal keratinocyte proteins include many with an eccentric amino acid content (com- positional bias), atypical ultrastructural fate (built-in protease sensitivity), or assembly visible at the light microscope level (cytoplasmic granules). However, when considered through the looking glass of intrinsic disorder (ID), these apparent oddities seem quite expected. Keratinocyte proteins with highly repetitive motifs are of low complexity but high adaptation, providing polymers (e.g., profi- laggrin) for proteolysis into bioactive derivatives, or monomers (e.g., loricrin) repeatedly cross-linked to self and other proteins to shield underlying tissue. Keratohyalin granules developing from liquid– liquid phase separation (LLPS) show that unique biomolecular condensates (BMC) and proteinaceous membraneless organelles (PMLO) occur in these highly customized cells. We conducted bioinfor- matic and in silico assessments of representative keratinocyte differentiation-dependent proteins. This was conducted in the context of them having demonstrated potential ID with the prospect of Citation: Shamilov, R.; Robinson, that characteristic driving formation of distinctive keratinocyte structures. Intriguingly, while ID is V.L.; Aneskievich, B.J. Seeing characteristic of many of these proteins, it does not appear to guarantee LLPS, nor is it required for Keratinocyte Proteins through the Looking Glass of Intrinsic Disorder. incorporation into certain keratinocyte protein condensates. Further examination of keratinocyte- Int. J. Mol. Sci. 2021, 22, 7912. specific proteins will provide variations in the theme of PMLO, possibly recognizing new BMC for https://doi.org/10.3390/ijms22157912 advancements in understanding intrinsically disordered proteins as reflected by keratinocyte biology. Academic Editor: Vladimir Keywords: filaggrin; keratinocyte; liquid–liquid phase separation (LLPS); loricrin; proteinaceous N. Uversky membraneless organelle (PMLO); intrinsically disordered protein (IDP) Received: 24 May 2021 Accepted: 20 July 2021 Published: 24 July 2021 1. Introduction 1.1. Protein Intrinsic Disorder and Keratinocyte Biology Publisher’s Note: MDPI stays neutral In silico, in vitro, and in vivo analyses of intrinsically disordered proteins (IDPs) are with regard to jurisdictional claims in expanding the appreciation [1,2] of their diverse and multiple roles as “hubs” or foci of published maps and institutional affil- iations. intracellular signaling, as scaffolds for protein condensates, and in contributing to other distinctive functions because of their presence as a “conformational ensemble” rather than one fixed three-dimensional structure [3]. This unique conformational characteristic is a consequence of amino acid sequences featuring a biased residue composition with increased polar, charged, and structure-breaking residues as compared to compaction- Copyright: © 2021 by the authors. supporting hydrophobic residues. With increased structural flexibility, IDPs feature prop- Licensee MDPI, Basel, Switzerland. erties distinct from fixed three-dimensional structures including increased regulation by This article is an open access article post-translational modification and greater promiscuity for binding partners. It is these distributed under the terms and conditions of the Creative Commons partner proteins, then, that often confer a specific structural conformation to IDPs via Attribution (CC BY) license (https:// their protein–protein interaction [3]. Despite the importance of signaling hubs and protein creativecommons.org/licenses/by/ scaffolds in the cell biology and differentiation of keratinocytes, we found few reports 4.0/). of purposeful IDP investigations in these cells or, more broadly, in epidermal biology. Int. J. Mol. Sci. 2021, 22, 7912. https://doi.org/10.3390/ijms22157912 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 25 protein–protein interaction [3]. Despite the importance of signaling hubs and protein scaf- folds in the cell biology and differentiation of keratinocytes, we found few reports of pur- poseful IDP investigations in these cells or, more broadly, in epidermal biology. This ap- parent disconnect, especially in light of what IDP characteristics could mean for interpret- ing the function of keratinocyte-specific and keratinocyte-expressed proteins, led us to initiate a synergy of IDP and epidermal keratinocyte biology to fill this knowledge gap. Our premise is that specific investigation of intrinsic disorder (ID) in keratinocyte-ex- pressed proteins could facilitate the understanding of their function in ways heretofore not considered. Our approach utilized two complementary avenues: (i) an overview of Int. J. Mol. Sci. 2021, 22, 7912 the keratinocyte literature for IDP-relevant reports, and (ii) an extensive2 of 24 targeted bioin- formatic assessment of ID in keratinocyte proteins, especially for those proteins contrib- uting to keratinocyte-unique structures. We aimed to establish relevance for more exten- Thissive apparent IDP-directed disconnect, studies especially in incutaneous light of what resear IDP characteristicsch and, at could the meansame for time, inform IDP re- interpreting the function of keratinocyte-specific and keratinocyte-expressed proteins, led ussearchers to initiate aregarding synergy of IDPthe andopportunities epidermal keratinocyte for discov biologyery toin fillthe this specialized knowledge tissue of the epider- gap.mis. Our premise is that specific investigation of intrinsic disorder (ID) in keratinocyte- expressed proteins could facilitate the understanding of their function in ways heretofore not considered. Our approach utilized two complementary avenues: (i) an overview of the1.2. keratinocyte Epidermal literature Specialization for IDP-relevant and Keratino reports, andcyte-Related (ii) an extensive Protein targeted Intrinsic bioinfor- Disorder matic assessmentThe epidermis of ID in keratinocyteis the upper-most proteins, especially compartmen for thoset proteinsof the contributingskin. Due to the carefully reg- to keratinocyte-unique structures. We aimed to establish relevance for more extensive IDP-directedulated, progressive studies in cutaneous maturation research of and, its atmajor the same cell time, type, inform the IDP keratinocyte, researchers the epidermis pro- regardingvides an the essential opportunities barrier for discovery function in theto protec specializedt the tissue underlying of the epidermis. dermis and deeper tissues [4]. Within the epidermis (Figure 1), keratinocytes form multiple layers (strata). For the epi- 1.2. Epidermal Specialization and Keratinocyte-Related Protein Intrinsic Disorder dermisThe epidermis in humans is the and upper-most other mammals, compartment ofthese the skin. are Dueclassically to the carefully recognized regu- as the basal layer, lated,mitotically progressive active maturation and of in its majordirect cell contact type, the keratinocyte,with the underlying the epidermis provides dermis; then, the spinous anlayer, essential post-mitotic barrier function keratinocytes to protect the underlying with numerous dermis and deeper cell–cell tissues adhesion [4]. Within points (desmosome the epidermis (Figure1), keratinocytes form multiple layers (strata). For the epidermis in humans“spines”); and other the granular mammals, these layer are characterized classically recognized by keratohyalin as the basal layer, aggregates mitotically involved in keratin activeintermediate and in direct filament contact withreorganization; the underlying and, dermis; ulti then,mately, the spinous the cornified layer, post- layer, exposed to the mitoticenvironment keratinocytes and with composed numerous cell–cellof flattened adhesion kera pointstinocytes (desmosome (squames) “spines”); thefor which nuclear deg- granularradation layer and characterized extensive by protein–protein keratohyalin aggregates cross-lin involvedking in keratin have intermediate taken place in their transition filament reorganization; and, ultimately, the cornified layer, exposed to the environment andfrom composed granular of flattened to cornified keratinocytes (Figure (squames) 1). These for which layers nuclear are degradation recognized and by their histological extensiveposition protein–protein and specific cross-linking proteins derived have taken from place instrata- their transition and keratinocyte-specific from granular gene expres- tosion cornified from (Figurebasal1 to). Thesespinous layers to are granular recognized cells. by theirDue histological to their key position roles and in normal cell physiol- specific proteins derived from strata- and keratinocyte-specific gene expression from basal toogy spinous and tocertain granular disease cells. Due states, to their the key tertiary
Recommended publications
  • S100A7 Promotes the Migration and Invasion of Osteosarcoma Cells Via the Receptor for Advanced Glycation End Products
    ONCOLOGY LETTERS 3: 1149-1153, 2012 S100A7 promotes the migration and invasion of osteosarcoma cells via the receptor for advanced glycation end products KEN KATAOKA*, TOMOYUKI ONO*, HITOSHI MURATA, MIKA MORISHITA, KEN-ICHI YAMAMOTO, MASAKIYO SAKAGUCHI and NAM-HO HUH Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan Received December 14, 2011; Accepted February 1, 2012 DOI: 10.3892/ol.2012.612 Abstract. Osteosarcoma is the most common malignant tumor significantly improved the 5-year survival rate of osteosarcoma of bone in childhood and adolescence. Despite intensive patients from 15 to 70% (2). However, 30-40% of patients still research for new therapies, the outcome in patients with metas- succumb to the disease, mainly due to distant metastasis to tasis remains extremely poor. S100 proteins are involved in the the lung (3). Despite intensive research for new therapies, the proliferation, cell cycle progression and metastasis of numerous outcome in patients with metastasis remains extremely poor. malignant tumors, including osteosarcoma. In the present study, The S100 protein family consists of 20 calcium-binding we identified S100A7 as a candidate to promote the migra- proteins with EF hand motifs (4). S100 proteins have been tion of osteosarcoma cells. S100A7 promoted the migration shown to have intracellular and extracellular roles in the regula- and invasion of osteosarcoma cells as assayed in vitro. An in tion of diverse processes, including protein phosphorylation, vitro pull-down assay revealed the binding of the recombinant cell growth and motility, cell-cycle regulation, transcription, S100A7 protein with its putative receptor, the receptor for differentiation and cell survival (5).
    [Show full text]
  • Inflammation-Mediated Skin Tumorigenesis Induced by Epidermal C-Fos
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos Eva M. Briso,1 Juan Guinea-Viniegra,1 Latifa Bakiri,1 Zbigniew Rogon,2 Peter Petzelbauer,3 Roland Eils,2 Ronald Wolf,4 Mercedes Rinco´ n,5 Peter Angel,6 and Erwin F. Wagner1,7 1BBVA Foundation-Spanish National Cancer Research Center (CNIO) Cancer Cell Biology Program, CNIO, 28029 Madrid, Spain; 2Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; 3Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, A-1090 Vienna, Austria; 4Department of Dermatology and Allergology, Ludwig-Maximilian University, Munich, Germany; 5Division of Immunobiology, Department of Medicine, University of Vermont, 05405 Burlington, Vermont, USA; 6Division of Signal Transduction and Growth Control, DKFZ, DKFZ-Center for Molecular Biology of the University of Heidelberg (ZMBH) Alliance, 69120 Heidelberg, Germany Skin squamous cell carcinomas (SCCs) are the second most prevalent skin cancers. Chronic skin inflammation has been associated with the development of SCCs, but the contribution of skin inflammation to SCC development remains largely unknown. In this study, we demonstrate that inducible expression of c-fos in the epidermis of adult mice is sufficient to promote inflammation-mediated epidermal hyperplasia, leading to the development of preneoplastic lesions. Interestingly, c-Fos transcriptionally controls mmp10 and s100a7a15 expression in keratinocytes, subsequently leading to CD4 T-cell recruitment to the skin, thereby promoting epidermal hyperplasia that is likely induced by CD4 T-cell-derived IL-22. Combining inducible c-fos expression in the epidermis with a single dose of the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) leads to the development of highly invasive SCCs, which are prevented by using the anti-inflammatory drug sulindac.
    [Show full text]
  • Critical Evaluation of Gene Expression Changes in Human Tissues In
    Supplementary Material ‘Critical Evaluation of Gene Expression Changes in Human Tissues in Response to Supplementation with Dietary Bioactive Compounds: Moving Towards Better-Quality Studies’ by Biljana Pokimica and María-Teresa García-Conesa Table S1. Characteristics of the human trials included in this review: study design, type of participants, control and intervention description, dose and duration of treatment, analyses and related bioavailability studies. Study Experimental Characteristics Reference Clinical trial Participants C (Control T (Treatment with Total daily dose, Bioavailability studies: type of sample, design (RCT, (health status, description) bioactive compounds, duration (d or h)1 compounds and (or) metabolites analysed, crossover, gender) products or diet) main results2 parallel) Mix meals and diets Persson I et al., Single arm Healthy, C: not included T: mix Veg T: 250 g, NR 2000 [1] men 21 d Møller P et al., RCT, Healthy, C1: placebo tablet + T: mix FruVeg T: 600 g, Plasma: (NS↑) β-car, T, C2 (post- vs pre-) 2003 [2] parallel, mix energy drink (same 24 d (NC) VitC, T, C2 (post- vs pre-) double blinded amount of sugars as T) (NS↓, 69%) VitC, β-car, C1 (post- vs pre-) (regarding C1 C2: tablet with and C2) antioxidants + minerals (same amount as T) + energy drink (same amount of sugars as T) Almendingen K Randomized, Healthy, C: no proper control T1,2: mix FruVeg T1: 300 g, Plasma: ↑α-car, β-car, T2 vs T1 (post-) et al., 2005 [3] crossover, mix included (comparison T2: 750 g, (NS↑) Lyc, Lut, T2 vs T1 (post-) [4] single
    [Show full text]
  • Pharaoh Cuttlefish, Sepia Pharaonis, Genome Reveals Unique Reflectin
    fmars-08-639670 February 9, 2021 Time: 18:18 # 1 ORIGINAL RESEARCH published: 15 February 2021 doi: 10.3389/fmars.2021.639670 Pharaoh Cuttlefish, Sepia pharaonis, Genome Reveals Unique Reflectin Camouflage Gene Set Weiwei Song1,2, Ronghua Li1,2,3, Yun Zhao1,2, Herve Migaud1,2,3, Chunlin Wang1,2* and Michaël Bekaert3* 1 Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China, 2 Collaborative Innovation Centre for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China, 3 Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom Sepia pharaonis, the pharaoh cuttlefish, is a commercially valuable cuttlefish species across the southeast coast of China and an important marine resource for the world fisheries. Research efforts to develop linkage mapping, or marker-assisted selection have been hampered by the absence of a high-quality reference genome. To address this need, we produced a hybrid reference genome of S. pharaonis using a long-read Edited by: platform (Oxford Nanopore Technologies PromethION) to assemble the genome and Andrew Stanley Mount, short-read, high quality technology (Illumina HiSeq X Ten) to correct for sequencing Clemson University, United States errors. The genome was assembled into 5,642 scaffolds with a total length of 4.79 Gb Reviewed by: and a scaffold N of 1.93 Mb. Annotation of the S. pharaonis genome assembly Simo Njabulo Maduna, 50 Norwegian Institute of Bioeconomy identified a total of 51,541 genes, including 12 copies of the reflectin gene, that enable Research (NIBIO), Norway cuttlefish to control their body coloration.
    [Show full text]
  • (Rage) in Progression of Pancreatic Cancer
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2017 INVOLVEMENT OF THE RECEPTOR FOR ADVANCED GLYCATION END PRODUCTS (RAGE) IN PROGRESSION OF PANCREATIC CANCER Nancy Azizian MS Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Azizian, Nancy MS, "INVOLVEMENT OF THE RECEPTOR FOR ADVANCED GLYCATION END PRODUCTS (RAGE) IN PROGRESSION OF PANCREATIC CANCER" (2017). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 748. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/748 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. INVOLVEMENT OF THE RECEPTOR FOR ADVANCED GLYCATION END PRODUCTS (RAGE) IN PROGRESSION OF PANCREATIC CANCER by Nancy
    [Show full text]
  • Comparative Genomics Search for Losses of Long-Established Genes on the Human Lineage
    Comparative Genomics Search for Losses of Long-Established Genes on the Human Lineage Jingchun Zhu1, J. Zachary Sanborn1, Mark Diekhans1, Craig B. Lowe1, Tom H. Pringle1, David Haussler1,2* 1 Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America, 2 Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, California, United States of America Taking advantage of the complete genome sequences of several mammals, we developed a novel method to detect losses of well-established genes in the human genome through syntenic mapping of gene structures between the human, mouse, and dog genomes. Unlike most previous genomic methods for pseudogene identification, this analysis is able to differentiate losses of well-established genes from pseudogenes formed shortly after segmental duplication or generated via retrotransposition. Therefore, it enables us to find genes that were inactivated long after their birth, which were likely to have evolved nonredundant biological functions before being inactivated. The method was used to look for gene losses along the human lineage during the approximately 75 million years (My) since the common ancestor of primates and rodents (the euarchontoglire crown group). We identified 26 losses of well-established genes in the human genome that were all lost at least 50 My after their birth. Many of them were previously characterized pseudogenes in the human genome, such as GULO and UOX. Our methodology is highly effective at identifying losses of single-copy genes of ancient origin, allowing us to find a few well-known pseudogenes in the human genome missed by previous high-throughput genome-wide studies.
    [Show full text]
  • Liquid Network Connectivity Regulates the Stability and Composition Of
    Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components Jorge R. Espinosaa,b,c, Jerelle A. Josepha,b,c , Ignacio Sanchez-Burgosa,b,c , Adiran Garaizara,b,c , Daan Frenkelb , and Rosana Collepardo-Guevaraa,b,c,1 aMaxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kindgdom; bDepartment of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; and cDepartment of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom Edited by Ken A. Dill, Stony Brook University, Stony Brook, NY, and approved April 17, 2020 (received for review October 8, 2019) One of the key mechanisms used by cells to control the spatiotem- 10), cellular bodies (11), or otherwise (8)—are ubiquitous within poral organization of their many components is the formation and the cell interior. Biomolecular condensates account for numer- dissolution of biomolecular condensates through liquid–liquid ous highly diverse domains, both inside the cytoplasm [e.g., P phase separation (LLPS). Using a minimal coarse-grained model granules (12) and RNA granules/bodies (13–15)] and in the cell that allows us to simulate thousands of interacting multivalent nucleus [e.g., Cajal bodies (16), nucleoli (17), heterochromatin proteins, we investigate the physical parameters dictating the domains (18, 19), the transport channels in the nuclear pore stability and composition of multicomponent biomolecular con- complex (20), and possibly superenhancers
    [Show full text]
  • Microarray Analysis of Novel Genes Involved in HSV- 2 Infection
    Microarray analysis of novel genes involved in HSV- 2 infection Hao Zhang Nanjing University of Chinese Medicine Tao Liu ( [email protected] ) Nanjing University of Chinese Medicine https://orcid.org/0000-0002-7654-2995 Research Article Keywords: HSV-2 infection,Microarray analysis,Histospecic gene expression Posted Date: May 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-517057/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background: Herpes simplex virus type 2 infects the body and becomes an incurable and recurring disease. The pathogenesis of HSV-2 infection is not completely clear. Methods: We analyze the GSE18527 dataset in the GEO database in this paper to obtain distinctively displayed genes(DDGs)in the total sequential RNA of the biopsies of normal and lesioned skin groups, healed skin and lesioned skin groups of genital herpes patients, respectively.The related data of 3 cases of normal skin group, 4 cases of lesioned group and 6 cases of healed group were analyzed.The histospecic gene analysis , functional enrichment and protein interaction network analysis of the differential genes were also performed, and the critical components were selected. Results: 40 up-regulated genes and 43 down-regulated genes were isolated by differential performance assay. Histospecic gene analysis of DDGs suggested that the most abundant system for gene expression was the skin, immune system and the nervous system.Through the construction of core gene combinations, protein interaction network analysis and selection of histospecic distribution genes, 17 associated genes were selected CXCL10,MX1,ISG15,IFIT1,IFIT3,IFIT2,OASL,ISG20,RSAD2,GBP1,IFI44L,DDX58,USP18,CXCL11,GBP5,GBP4 and CXCL9.The above genes are mainly located in the skin, immune system, nervous system and reproductive system.
    [Show full text]
  • Probing the S100 Protein Family Through Genomic and Functional Analysis$
    Genomics 84 (2004) 10–22 www.elsevier.com/locate/ygeno Probing the S100 protein family through genomic and functional analysis$ Timothy Ravasi,a,b,* Kenneth Hsu,c Jesse Goyette,c Kate Schroder,a Zheng Yang,c Farid Rahimi,c Les P. Miranda,b,1 Paul F. Alewood,b David A. Hume,a,b and Carolyn Geczyc a SRC for Functional and Applied Genomics, CRC for Chronic Inflammatory Diseases, University of Queensland, Brisbane 4072, QLD, Australia b Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia c Cytokine Research Unit, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia Received 25 November 2003; accepted 2 February 2004 Available online 10 May 2004 Abstract The EF-hand superfamily of calcium binding proteins includes the S100, calcium binding protein, and troponin subfamilies. This study represents a genome, structure, and expression analysis of the S100 protein family, in mouse, human, and rat. We confirm the high level of conservation between mammalian sequences but show that four members, including S100A12, are present only in the human genome. We describe three new members of the S100 family in the three species and their locations within the S100 genomic clusters and propose a revised nomenclature and phylogenetic relationship between members of the EF-hand superfamily. Two of the three new genes were induced in bone-marrow-derived macrophages activated with bacterial lipopolysaccharide, suggesting a role in inflammation. Normal human and murine tissue distribution profiles indicate that some members of the family are expressed in a specific manner, whereas others are more ubiquitous.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE Protonic Conduction and Photochemical Modification of Protein Reflectin THESIS Submitted In
    UNIVERSITY OF CALIFORNIA, IRVINE Protonic Conduction and Photochemical Modification of Protein Reflectin THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Chemical and Biochemical Engineering by Yegor Van Dyke Thesis Committee: Professor Alon A. Gorodetsky, Chair Professor Hung D. Nguyen Professor Frank G. Shi 2016 Chapter 1 © 2016 American Chemical Society Chapter 2 © 2016 Gorodetsky Group Chapter 3 © 2016 Yegor Van Dyke TABLE OF CONTENTS LIST OF FIGURES ....................................................................................................................... iii ACKNOWLEDGMENTS ............................................................................................................. vi ABSTRACT OF THE THESIS .................................................................................................... vii CHAPTER 1: Photochemical Doping of Protonic Transistors from a Cephalopod Protein ..................................................................................................................... 1 1.1 Abstract ..................................................................................................................................... 1 1.2 Introduction ………….............................................................................................................. 4 1.3 Experimental Section ................................................................................................................ 5 1.3.1 Preparation of Wild-Type and Mutant Reflectins
    [Show full text]
  • Differentially Expressed Late Constituents of the Epidermal Cornified Envelope
    Differentially expressed late constituents of the epidermal cornified envelope D. Marshall, M. J. Hardman, K. M. Nield, and C. Byrne* School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom Communicated by Elaine Fuchs, University of Chicago, Chicago, IL, September 17, 2001 (received for review June 23, 2001) Barrier activity of skin and internal barrier-forming epithelial There have been persistent reports of additional genes͞ linings are conferred by a lipid-corneocyte structure (stratum proteins with structures homologous to cornified envelope pro- corneum in skin).The integrity of the corneocytes depends on the teins. These include XP5, XP31, XP32 (12), the newly identified outer cornified envelope and is essential for maintenance of barrier component of the EDC (NICE-1; ref. 13), protein products of a function. During epidermal development and differentiation, pro- range of annotated expressed sequence tags (ESTs; ref. 14), and teins are sequentially incorporated into the envelope via action of Eig3 protein (15). We show that at least some of these proteins epidermal transglutaminases in a well documented process. How- are encoded by a previously undetected gene cluster in the ever, recent knockouts of major cornified envelope constituents human epidermal differentiation complex (EDC) at 1q21 (16), have failed to disrupt barrier function significantly, suggesting that with homologues detected in mouse (12, 14, 16). We show that additional unidentified components are involved. We report a new these genes encode proteins, which are new cornified envelope gene cluster in the epidermal differentiation complex at human constituents distinct from SPRRs. Like SPRRs, the genes are 1q21 encoding a family of 18 proteins that are substrates for differentially expressed in different types of barrier epithelia.
    [Show full text]
  • University of California, San Diego
    UC San Diego UC San Diego Electronic Theses and Dissertations Title The post-terminal differentiation fate of RNAs revealed by next-generation sequencing Permalink https://escholarship.org/uc/item/7324r1rj Author Lefkowitz, Gloria Kuo Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO The post-terminal differentiation fate of RNAs revealed by next-generation sequencing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Gloria Kuo Lefkowitz Committee in Charge: Professor Benjamin D. Yu, Chair Professor Richard Gallo Professor Bruce A. Hamilton Professor Miles F. Wilkinson Professor Eugene Yeo 2012 Copyright Gloria Kuo Lefkowitz, 2012 All rights reserved. The Dissertation of Gloria Kuo Lefkowitz is approved, and it is acceptable in quality and form for publication on microfilm and electronically: __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION Ma and Ba, for your early indulgence and support. Matt and James, for choosing more practical callings. Roy, my love, for patiently sharing the ups and downs
    [Show full text]