Husbandry and Care of Hoofstock Brent A

Total Page:16

File Type:pdf, Size:1020Kb

Husbandry and Care of Hoofstock Brent A Husbandry and Care of Hoofstock Brent A. Huffman in ZOOKEEPING, Chapter 27, Edited by Mark Irwin et al. INTRODUCTION AND NATURAL HISTORY Hoofed mammals, also known as ungulates, display an incredible diversity of forms, adaptations, and lifestyles— features which make them an enduring part of zoo collections around the world. More than 250 living ungulate species are currently recognized (although recent revisions suggest that there may actually be more than 450 distinct species), with representatives found in nearly every zoogeographic together, they form the new order After studying this chapter, the region and biome on earth. Cetartiodactyla. reader will understand: They range in size from Despite the disparate origins of - anatomical terms specific to rabbit- sized chevrotains hoofed animals, two common traits ungulates impacts of species- (family Tragulidae) to the six- warrant their treatment as a group specific biology on housing, nutrition, meter-tall giraffe (Giraffa for husbandry purposes. First, all and social management camelopardalis) and 3,600- ungulates feed primarily on plants, - effects of ungulate behavior and kilogram White rhinoceros using specialized strategies to deal keeper demeanor on animal and (Ceratotherium simum), with with fibrous foods. Second, all keeper safety social groupings ranging from ungulates have similar physical and - best practices for encouraging solitary species like tapirs behavioral adaptations for avoidance species-appropriate natural (Tapirus spp.) to immense of predators. Although these behaviors herds of more than a million common traits have been - principal issues involved in the Serengeti wildebeest ecologically successful, they present reproductive and medical (Connochaetes taurinus). challenges in the care of hoof stock management of ungulates. (as ungulates are called in captivity). Although united by their Hoofed mammals have a long history BASIC EXTERNAL ANATOMY common possession of of human care: evidence of captive The basic four-legged (quadrupedal) enlarged, weight-bearing sheep exists in the remains of 9,000 mammalian body plan has evolved toenails (hooves), ungulates year old settlements (Herre and for a running (cursorial) existence in do not form a taxonomic Röhrs 1990, 585). More than a ungulates: elongated legs provide group: the hooves have dozen ungulates have since been speed when fleeing from predators. evolved several times domesticated, including the horse Because the limb joints of ungulates independently. Modern hoofed (Equus caballus), the pig (Sus and humans are in different relative mammals are classified either domesticus), the goat (Capra positions, the joints have specific as “odd- toed hircus), four cattle species (Bos names, detailed in ungulates” (order spp.), the water buffalo (Bubalus Figure 27.1 along with other Perissodactyla) like horses, bubalis), camels (family Camelidae), important ungulate anatomical rhinoceroses, and tapirs, or as and the reindeer (Rangifer features. The threat of predation “even- toed tarandus). With 4.5 billion domestic has also molded keen threat- ungulates” (artiodactyls) like ungulates (livestock) worldwide (FAO detecting senses; sensory emphasis pigs, peccaries, hippo- Database 2009, 2007 varies between species, but all potamuses, camels, and the figures), the experience with their ungulates have eyes on the sides of diverse ruminants (deer, husbandry is extensive. This their heads, providing an arc of cattle, antelopes, and giraffes, knowledge base is an important vision approaching 360 degrees. among others). Genetic resource for those caring for exotic evidence also includes whales ungulates. THE ZOO ENVIRONMENT and dolphins (formerly As a result of their cursorial Cetacea) within the even-toed This chapter will elaborate on the tendencies and relatively large body ungulate family tree (formerly challenges and techniques of size, zoos often exhibit hoof stock in Artiodactyla); combined working with ungulates in captivity. large outdoor enclosures (paddocks). ZOO’s PRINT, Volume XXIX, Number 11 November 2014 5 Smaller yards and indoor housing are commonly the public side to prevent escape should an animal provided to facilitate animal management. Enclosure choose to swim or panic and jump into the water, and requirements vary greatly between ungulate species a sloped area is essential to provide an easy route and zoo locations, but several key considerations are back to the enclosure. By far the most popular hoof universal. stock barrier is wire fencing due to its availability, low cost, and ease of installation. Fences tend to SUBSTRATE “disappear” into land-scaping: a benefit for visitors, Local soil is the most common substrate in paddocks, but a potential hazard for hoof stock. Flexible since replacing large areas of ground is prohibitively fencing, like chain link, can stretch to absorb impacts expensive. However, rates of hoof growth are and thereby reduce the potential for injury; it is substrate-adapted: the coarser a species’ native generally preferable to rigid or ungiving fence substrate, the faster its hoof growth must be to materials. Keepers should check for containment compensate for wear. Ungulates adapted to rough weaknesses daily, as these may cause injury, permit terrain, like wild goats, are therefore prone to escape, or allow free- roaming predators and native overgrown hooves when kept on softer surfaces. species (which may bear disease) to enter the Hoof wear can be increased by adding abrasive enclosure. Barriers may be the target of open sheds, substrates like decomposed granite, limestone or enclosed barns. Group- housed ungulates screenings, or roughened concrete to high-traffic behaviors like sparring and ramming, so secondary exhibit areas, such as around feeders and along barriers like bumper rails can be employed to pathways. Holding yards are often covered minimize damage by keeping large, strong, or exclusively with rough substrates, in part because of belligerent ungulates back from the primary their relative stability in varying weather conditions. containment. Electric fencing (“hot wire”), which In all cases, the extent of this “hard- standing” delivers a shock on contact, is a common secondary should be determined on the basis of species’ biology, barrier choice due to its effectiveness and as ungulates with sensitive feet (e.g., hippos and unobtrusive appearance. The ease with which slender rhinos) may develop foot abrasions and injuries if hot wires are broken makes them generally confined on rough ground. Whatever the enclosure unsuitable for primary containment (especially for substrate, it should provide good traction and even large ungulates), while the low visibility increases the footing. Proper drainage is necessary to prevent chances of entanglement during panicked flight. The erosion ruts and areas of deep mud: these uneven risk of collision with barriers is highest when surfaces can cause injuries to the long, slender legs hoofstock are introduced to unfamiliar enclosures. of hoofstock. In cold climates, ice may form in poorly Burlap, shade cloth, and other materials are drained areas; similar slippery areas may form with commonly attached to fences during initial intro- compacted snow, and clearing ductions to give them a solid appearance and reduce fresh snow from frequently-used areas should be a visual distractions from beyond. Electric fences are priority. Traction over slip hazards can be provided usually “flagged” by tying strips of cloth or plastic spreading sand, but rock salt and other potentially (e.g., caution tape) at regular intervals; for naive caustic or poisonous ice melters should be avoided. animals, the stress of initially encountering hot wire During spring thaws or after prolonged rain, even in a new exhibit can be reduced by exposing them to well-drained substrates may become waterlogged. If sections of flagged fencing in a familiar environment. this occurs, hoof stock should be held in barns or Further introductory precautions, such as reducing yards until the ground is dry and firm. Soft terrain is water depth in wet moats and pools, are covered in readily mired by hooves, creating potentially danger- detail by Kranz (1996). As the new animals become ous uneven surfaces when dry; uneven ground can established, hazard warnings can be gradually be smoothed with rakes or harrows, but prevention is removed until the exhibit returns to its normal preferable. appearance. CONTAINMENT REFUGE Ungulates may jump over, crawl under, climb Flight responses, as well as stress and conflct among through, or dig beneath obstacles (Fitzwater 1972, group members, can be reduced by providing hoof 52), so it is vital to research physical adaptations and stock with options for privacy. Refuges for smaller behavioral repertoires when choosing barriers. individuals (called creeps) can be created using Visually solid barriers like walls and stockades are secondary barriers that exclude larger animals. “understood” by hoof stock; even fabric walls can be Visual barriers like plantings, exhibit furniture, and effective short-term barriers. Enclosure boundaries rolling terrain allow animals to retreat from their that can be seen through carry the risk of collision- exhibit mates, keepers, and the public, thereby related trauma, so injury- reducing features should imparting a sense of security. Man-made visual be employed whenever possible. Dry moats should barriers include wooden lean-tos, stacked straw slope gently downwards to solid walls; steep drops
Recommended publications
  • On the Incoherencies in Web Browser Access Control Policies
    On the Incoherencies in Web Browser Access Control Policies Kapil Singh∗, Alexander Moshchuk†, Helen J. Wang† and Wenke Lee∗ ∗Georgia Institute of Technology, Atlanta, GA Email: {ksingh, wenke}@cc.gatech.edu †Microsoft Research, Redmond, WA Email: {alexmos, helenw}@microsoft.com Abstract—Web browsers’ access control policies have evolved Inconsistent principal labeling. Today’s browsers do piecemeal in an ad-hoc fashion with the introduction of new not have the same principal definition for all browser re- browser features. This has resulted in numerous incoherencies. sources (which include the Document Object Model (DOM), In this paper, we analyze three major access control flaws in today’s browsers: (1) principal labeling is different for different network, cookies, other persistent state, and display). For resources, raising problems when resources interplay, (2) run- example, for the DOM (memory) resource, a principal is time changes to principal identities are handled inconsistently, labeled by the origin defined in the same origin policy and (3) browsers mismanage resources belonging to the user (SOP) in the form of <protocol, domain, port> [4]; but principal. We show that such mishandling of principals leads for the cookie resource, a principal is labeled by <domain, to many access control incoherencies, presenting hurdles for > web developers to construct secure web applications. path . Different principal definitions for two resources are A unique contribution of this paper is to identify the com- benign as long as the two resources do not interplay with patibility cost of removing these unsafe browser features. To do each other. However, when they do, incoherencies arise. For this, we have built WebAnalyzer, a crawler-based framework example, when cookies became accessible through DOM’s for measuring real-world usage of browser features, and used “document” object, DOM’s access control policy, namely the it to study the top 100,000 popular web sites ranked by Alexa.
    [Show full text]
  • Wild Or Bactrian Camel French: German: Wildkamel Spanish: Russian: Dikiy Verblud Chinese
    1 of 4 Proposal I / 7 PROPOSAL FOR INCLUSION OF SPECIES ON THE APPENDICES OF THE CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS A. PROPOSAL: Inclusion of the Wild camel Camelus bactrianus in Appendix I of the Convention on the Conservation of Migratory Species of Wild Animals: B. PROPONENT: Mongolia C. SUPPORTING STATEMENT 1. Taxon 1.1. Classis: Mammalia 1.2. Ordo: Tylopoda 1.3. Familia: Camelidae 1.4. Genus: Camelus 1.5. Species: Camelus bactrianus Linnaeus, 1758 1.6. Common names: English: Wild or Bactrian camel French: German: Wildkamel Spanish: Russian: Dikiy verblud Chinese: 2. Biological data 2.1. Distribution Wild populations are restricted to 3 small, remnant populations in China and Mongolia:in the Taklamakan Desert, the deserts around Lop Nur, and the area in and around region A of Mongolia’s Great Gobi Strict Protected Area (Reading et al 2000). In addition, there is a small semi-captive herd of wild camels being maintained and bred outside of the Park. 2.2. Population Surveys over the past several decades have suggested a marked decline in wild bactrian camel numbers and reproductive success rates (Zhirnov and Ilyinsky 1986, Anonymous 1988, Tolgat and Schaller 1992, Tolgat 1995). Researchers suggest that fewer than 500 camels remain in Mongolia and that their population appears to be declining (Xiaoming and Schaller 1996). Globally, scientists have recently suggested that less than 900 individuals survive in small portions of Mongolia and China (Tolgat and Schaller 1992, Hare 1997, Tolgat 1995, Xiaoming and Schaller 1996). However, most of the population estimates from both China and Mongolia were made using methods which preclude rigorous population estimation.
    [Show full text]
  • Foot and Mouth Disease Fastfact
    Foot and Mouth Disease (FMD) What is foot and mouth How does FMD affect my Who should I contact if I disease and what causes it? animal? suspect FMD? Foot and mouth disease (FMD) is The most common signs of foot Contact your veterinarian a highly contagious viral disease of and mouth disease are fever and immediately. FMD is not currently cloven-hoofed (two-toed) animals (e.g., the formation of blisters, ulcers and found in the United States; suspicion cattle, pigs, sheep). FMD causes painful sores on the mouth, tongue, nose, of the disease requires immediate sores and blisters on the feet, mouth feet, and teats. Foot lesions occur in attention. the area of the coronary band and and teats of animals. between the toes. Infected cattle are How can I protect my animal Foot and mouth disease is a high depressed, reluctant to move, and from FMD? consequence livestock disease due to unwilling or unable to eat, which can To prevent the introduction of FMD, its potential for rapid spread, severe lead to decreased milk production, use strict biosecurity procedures on trade restrictions and the subsequent weight loss, and poor growth. Affected your farm. Isolate any new introductions economic impacts that would result. animals may also have nasal discharge or animal returning to the farm for The disease occurs in parts of Asia, and excessive salivation. Pigs often several weeks before introducing them have sore feet but less commonly into the herd. Minimize visitors on Africa, the Middle East and South develop mouth lesions. Sheep and your farm, especially those that have America, but has been eradicated goats show very mild, if any, signs of traveled from countries with FMD.
    [Show full text]
  • Bactrian Camel, Two-Humped Camel
    Camelus ferus/bactrianus Common name: Bactrian camel, two-humped camel Local name: Havtagai (Mongolian), Wildkamel (German), Jya nishpa yapung (Ladakhi) Classification: Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Artiodactyla Family: Camelidae Genus: Camelus Species: ferus/bactrianus Profile: The scientific name of the wild Bactrian camel is Camelus ferus, while the domesticated form is called Camelus bactrianus. The distinctive feature of the animal is that it is two-humped whereas the Dromedary camel has a single hump. DNA tests have revealed that there are two or three distinct genetic differences and about 3% base difference between the wild and domestic populations of Bactrian camels. They also differ physically. The wild Bactrian camel is smaller and slender than the domestic breed. The wild camels have a sandy gray- brown coat while the domestic ones have a dark brown coat. The predominant difference between them however is the shape of the humps. While that of the wild camel are small and pyramid-like, those of the domestic ones are large and irregular. The face of a Bactrian camel is long and triangular with a split upper lip. The Bactrian camel is highly adapted to surviving the cold desert climate. Each foot has an undivided sole with two large toes that can spread wide apart for walking on sand. The ears and nose are lined with hair to protect against sand and the muscular nostrils can be closed during sandstorms. The eyes are protected from sand and debris by a double layer of long eyelashes while bushy eyebrows give protection from the sun. It grows a thick shaggy coat during winter, which is shed very rapidly in spring to give the animal a shorn look.
    [Show full text]
  • Using Replicated Execution for a More Secure and Reliable Web Browser
    Using Replicated Execution for a More Secure and Reliable Web Browser Hui Xue Nathan Dautenhahn Samuel T. King University of Illinois at Urbana Champaign huixue2, dautenh1, kingst @uiuc.edu { } Abstract Unfortunately, hackers actively exploit these vulnerabil- ities as indicated in reports from the University of Wash- Modern web browsers are complex. They provide a ington [46], Microsoft [61], and Google [49, 48]. high-performance and rich computational environment Both industry and academia have improved the se- for web-based applications, but they are prone to nu- curity and reliability of web browsers. Current com- merous types of security vulnerabilities that attackers modity browsers make large strides towards improving actively exploit. However, because major browser plat- the security and reliability of plugins by using sandbox- forms differ in their implementations they rarely exhibit ing techniques to isolate plugins from the rest of the the same vulnerabilities. browser [62, 33]. However, these browsers still scatter In this paper we present Cocktail, a system that uses security logic throughout millions of lines of code, leav- three different off-the-shelf web browsers in parallel to ing these systems susceptible to browser-based attacks. provide replicated execution for withstanding browser- Current research efforts, like Tahoma [32], the OP web based attacks and improving browser reliability. Cock- browser [36], the Gazelle web browser [59], and the Illi- tail mirrors inputs to each replica and votes on browser nois Browser Operating System [58] all propose build- states and outputs to detect potential attacks, while con- ing new web browsers to improve security. Although tinuing to run.
    [Show full text]
  • HTTP Cookie - Wikipedia, the Free Encyclopedia 14/05/2014
    HTTP cookie - Wikipedia, the free encyclopedia 14/05/2014 Create account Log in Article Talk Read Edit View history Search HTTP cookie From Wikipedia, the free encyclopedia Navigation A cookie, also known as an HTTP cookie, web cookie, or browser HTTP Main page cookie, is a small piece of data sent from a website and stored in a Persistence · Compression · HTTPS · Contents user's web browser while the user is browsing that website. Every time Request methods Featured content the user loads the website, the browser sends the cookie back to the OPTIONS · GET · HEAD · POST · PUT · Current events server to notify the website of the user's previous activity.[1] Cookies DELETE · TRACE · CONNECT · PATCH · Random article Donate to Wikipedia were designed to be a reliable mechanism for websites to remember Header fields Wikimedia Shop stateful information (such as items in a shopping cart) or to record the Cookie · ETag · Location · HTTP referer · DNT user's browsing activity (including clicking particular buttons, logging in, · X-Forwarded-For · Interaction or recording which pages were visited by the user as far back as months Status codes or years ago). 301 Moved Permanently · 302 Found · Help 303 See Other · 403 Forbidden · About Wikipedia Although cookies cannot carry viruses, and cannot install malware on 404 Not Found · [2] Community portal the host computer, tracking cookies and especially third-party v · t · e · Recent changes tracking cookies are commonly used as ways to compile long-term Contact page records of individuals' browsing histories—a potential privacy concern that prompted European[3] and U.S.
    [Show full text]
  • Antler Size of Alaskan Moose Alces Alces Gigas: Effects of Population Density, Hunter Harvest and Use of Guides
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 2007 Antler Size of Alaskan Moose Alces alces gigas: Effects of Population Density, Hunter Harvest and Use of Guides Jennifer I. Schmidt Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks Jay M. Ver Hoef National MarineMammal Laboratory, National Oceanic and Atmospheric Association, U.S. Department of Commerce R. Terry Bowyer Idaho State University, Pocatello Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Part of the Environmental Sciences Commons Schmidt, Jennifer I.; Ver Hoef, Jay M.; and Bowyer, R. Terry, "Antler Size of Alaskan Moose Alces alces gigas: Effects of Population Density, Hunter Harvest and Use of Guides" (2007). Publications, Agencies and Staff of the U.S. Department of Commerce. 179. https://digitalcommons.unl.edu/usdeptcommercepub/179 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Antler size of Alaskan moose Alces alces gigas: effects of population density, hunter harvest and use of guides Jennifer I. Schmidt, Jay M. Ver Hoef & R. Terry Bowyer Schmidt, J.I., Ver Hoef, J.M. & Bowyer, T. 2007: Antler size of Alaskan moose Alces alces gigas: effects of population density, hunter harvest and use of guides. - Wildl. Biol. 13: 53-65. Moose Alces alces gigas in Alaska, USA, exhibit extreme sexual dimor- phism, with adult males possessing large, elaborate antlers.
    [Show full text]
  • Bison, Water Buffalo, &
    February 2021 - cdfa' Bison, Water Buffalo, & Yak (or Crossbreeds) Entry Requirements ~ EPAlTMENT OF CALI FORNI \1c U LTU RE FOOD & AC Interstate Livestock Entry Permit California requires an Interstate Livestock Entry Permit for all bison, water buffalo, and/or yaks. To obtain an Interstate Livestock Entry Permit, please call the CDFA Animal Health Branch (AHB) permit line at (916) 900-5052. Permits are valid for 15 days after being issued. Certificate of Veterinary Inspection California requires a Certificate of Veterinary Inspection (CVI) for bison, water buffalo, and/or yaks within 30 days before movement into the state. Official Identification (ID) Bison, water buffalo, and/or yaks of any age and sex require official identification. Brucellosis Brucellosis vaccination is not required for bison, ------1Animal Health Branch Permit Line: water buffalo, and/or yaks to enter California. (916) 900-5052 A negative brucellosis test within 30 days prior to entry is required for all bison, water buffalo, and/ If you are transporting livestock into California or yaks 6 months of age and over with the with an electronic CVI, please print and present following exceptions: a hard copy to the Inspector at the Border • Steers or identified spayed heifers, and Protection Station. • Any Bovidae from a Certified Free Herd with the herd number and date of current Animal Health and Food Safety Services test recorded on the CVI. Animal Health Branch Headquarters - (916) 900-5002 Tuberculosis (TB) Redding District - (530) 225-2140 Modesto District - (209) 491-9350 A negative TB test is Tulare District - (559) 685-3500 required for all bison, Ontario District - (909) 947-4462 water buffalo, and/or yaks 6 months of age and over within For California entry requirements of other live- www.cdfa.ca.gov stock and animals, please visit the following: 60 days prior to Information About Livestock and Pet Movement movement.
    [Show full text]
  • 1 BOARD of ANIMAL HEALTH Subpart 2 Chapter 12 Sheep And
    BOARD OF ANIMAL HEALTH Subpart 2 Chapter 12 Sheep and Goats 109 All sheep and goats, except those for immediate slaughter shall be accompanied by an official certificate of veterinary inspection (OCVI) and shall comply with the following: 1. Intact sheep and goats require individual identification by an official USDA Scrapie eartag, brand, or tattoo recorded on the OCVI. 2. “I certify these animals are free of clinical signs of the diseases contagious footrot, keratoconjunctivitis, contagious ecthyma (Orf), scabies and lice and that the sexually intact animals represented on this form are not known to be scrapie- positive, suspect, high risk, or exposed, and did not originate from a known infected, source, exposed, or noncompliant flock.” 3. When originating from an area known to have scabies, must be dipped within ten (10) days immediately preceding the date of entry in an USDA approved dip, and maintained on absolutely clean premises until delivered to the final destination. Dairy goats and dairy sheep maintained separate from other sheep and goats are exempt from dipping when certified free of scabies on OCVI. 4. Dairy goats and dairy sheep over 6 months of age must be negative to an official tuberculin test and an official brucellosis test made within 30 days immediately preceding date of entry. 5. All sheep and goats for immediate slaughter shall be consigned to a recognized slaughtering establishment on either an OCVI or permit or waybill or inspection certification from federally inspected stockyards. In either instance, a copy shall accompany sheep and goats and a copy shall be forwarded to the State Veterinarian of Mississippi.
    [Show full text]
  • Rangifer Tarandus) Hoof Suitable for Efficient Locomotion on Complex Grounds
    J Vet Res 61, 223-229, 2017 DE DE GRUYTER OPEN DOI:10.1515/jvetres-2017-0029 G Macro-microscopic research in reideer (Rangifer tarandus) hoof suitable for efficient locomotion on complex grounds Rui Zhang, Yu Qiao, Qiaoli Ji, Songsong Ma, Jianqiao Li Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Nanguan District, Changchun, 130022, People's Republic of China [email protected] Received: November 25, 2016 Accepted: May 8, 2017 Abstract Introduction: Reindeer are adapted to long distance migration. This species can cope with variations in substrate, especially in ice and snow environment. However, few detailed studies about reindeer hoof are available. Thus this article describes the results of studies on macro- and micro-structures of reindeer hoof. Material and Methods: The gross anatomy of the reindeer hooves was examined. Stereo microscope (SM) and a scanning electron microscope (SEM) were used to observe four key selected positions of reindeer hooves. Moreover, element contents of the three selected positions of reindeer hooves were analysed using the SEM equipped with energy dispersive spectroscope. Results: Hoof bone structures were similar to other artiodactyl animals. In the microscopic analysis, the surfaces of the ungula sphere and ungula sole presented irregular laminated structure. Ungula edge surfaces were smooth and ungula cusp surfaces had unique features. Aside from C, O, and N, reindeer hooves contained such elements as S, Si, Fe, Al, and Ca. The content of the elements in different parts varied. Ti was the particular element in the ungula sole, and ungula edge lacked Mg and S which other parts contained.
    [Show full text]
  • Pleistocene Mammals from Extinction Cave, Belize
    Canadian Journal of Earth Sciences Pleistocene Mammals From Extinction Cave, Belize Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2018-0178.R3 Manuscript Type: Article Date Submitted by the 04-May-2019 Author: Complete List of Authors: Churcher, C.S.; University of Toronto, Zoology Central America, Pleistocene, Fauna, Vertebrate Palaeontology, Keyword: Limestone cave Is the invited manuscript for consideration in a Special Not applicableDraft (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 43 Canadian Journal of Earth Sciences 1 1 PLEISTOCENE MAMMALS FROM EXTINCTION CAVE, BELIZE 2 by C.S. CHURCHER1 Draft 1Department of Zoology, University of Toronto, Toronto, Ontario Canada M5S 2C6 and 322-240 Dallas Rd., Victoria, British Columbia, Canada V8V 4X9 (corresponding address): e-mail [email protected] https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 43 2 4 5 ABSTRACT. A small mammalian fauna is recorded from Extinction Cave (also called Sibun 6 Cave), east of Belmopan, on the Sibun River, Belize, Central America. The animals recognized 7 are armadillo (†Dasypus bellus), American lion (†Panthera atrox), jaguar (P. onca), puma or 8 mountain lion (Puma concolor), Florida spectacled bear (†Tremarctos floridanus), javelina or 9 collared peccary (Pecari tajacu), llama (Camelidae indet., ?†Palaeolama mirifica), red brocket 10 deer (Mazama americana), bison (Bison sp.) and Mexican half-ass (†Equus conversidens), and 11 sabre-tooth cat († Smilodon fatalis) may also be represented (‘†’ indicates an extinct taxon). 12 Bear and bison are absent from the region today. The bison record is one of the more southernly 13 known. The bear record is almost the mostDraft westerly known and a first for Central America.
    [Show full text]
  • Judging Dairy Cattle
    Judging Dairy Cattle The primary function of the dairy cow is the economical production of milk. It has been proven that quality type or form is directly related to function. In other words, a dairy cow with good quality type has the potential to efficiently and economically produce milk. Your task, as a producer of dairy cows, is to breed good quality cows. In this leaflet we will work towards these objectives to help you accomplish your task. Learn the desirable points of conformation in a quality dairy cow and heifer. Show you how to determine if a particular animal possesses these desirable points. The first step is to learn the parts of the dairy animal. Parts of the Dairy Cow Judging the Dairy Cow 4-H Manitoba 2019 Once you know the parts of the body, the next step to becoming a successful dairy judge is to learn what the ideal animal looks like. In this section, we will work through the parts of a dairy cow and learn the desirable and undesirable characteristics. Holstein Canada has developed a scorecard which places relative emphasis on the six areas of importance in the dairy cow. This scorecard is used by all dairy breeds in Canada. The Holstein Cow Scorecard uses these six areas: 1. Frame / Capacity 2. Rump 3. Feet and Legs 4. Mammary System 5. Dairy Character When you judge, do not assign numerical scores. Use the card for relative emphasis only. When cows are classified by the official breed classifiers, classifications and absolute scores are assigned. 2 HOLSTEIN COW SCORE CARD 18 1.
    [Show full text]