Erwin L. Hahn 1921-2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neutron Spin Echo Spectroscopy
Neutron Spin Echo Spectroscopy Peter Fouquet [email protected] Institut Laue-Langevin Grenoble, France Oxford Neutron School 2017 What you are supposed to learn in this tutorial 1. The length and time scales that can be studied using NSE spectroscopy 2. The measurement principle of NSE spectroscopy 3. Discrimination techniques for coherent, incoherent and magnetic dynamics 4. To which scientific problems can I apply NSE spectroscopy? NSE-Tutorial Mind Map Quantum Mechanical Model Resonance Spin-Echo Classical Model Measurement principle “4-point Echo” NSE spectroscopy Instrument Frustrated Components Magnets Bio- molecules Time/Space Map NSE around Surface the globe Diffusion Science Cases Paramagnetic Spin Echo Experiment planning and Interpretation Diffusion Glasses Polymers Models Coherent and Incoherent Scattering Data Treatment The measurement principle of neutron spin echo spectroscopy (quantum mechanical model) • The neutron wave function is split by magnetic fields • The 2 wave packets arrive at magnetic coil 1 magnetic coil 2 polarised sample the sample with a time neutron difference t • If the molecules move between the arrival of the first and second wave packet then coherence is lost • The intermediate scattering t λ3 Bdl function I(Q,t) reflects this ∝ loss in coherence strong wavelength field integral dependence Return The measurement principle of neutron spin echo spectroscopy Dynamic Scattering NSE spectra for diffusive motion Function S(Q,ω) G(R,ω) I(Q,t) = e-t/τ Fourier Transforms temperature up ⇒ τ down Intermediate VanHove -
Here Science-Based Cost- Effective Pathways Forward?
Sponsors Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan PIRE-ECCI Program, UC Santa Barbara, USA Max-Planck-Gesellschaft, Germany National Science Council, Taiwan Organizing committee Dr. Kuei-Hsien Chen (IAMS, Academia Sinica, Taiwan) Dr. Susannah Scott (University of California - Santa Barbara, USA) Dr. Alec Wodtke (University of Göttingen & Max-Planck-Gesellschaft, Germany) Table of Contents General Information .............................................................................................. 1 Program for Sustainable Energy Workshop ....................................................... 3 I01 Dr. Alec M. Wodtke Beam-surface Scattering as a Probe of Chemical Reaction Dynamics at Interfaces ........................................................................................................... 7 I02 Dr. Kopin Liu Imaging the steric effects in polyatomic reactions ............................................. 9 I03 Dr. Chi-Kung Ni Energy Transfer of Highly Vibrationally Excited Molecules and Supercollisions ................................................................................................. 11 I04 Dr. Eckart Hasselbrink Energy Conversion from Catalytic Reactions to Hot Electrons in Thin Metal Heterostructures ............................................................................................... 13 I05 Dr. Jim Jr-Min Lin ClOOCl and Ozone Hole — A Catalytic Cycle that We Don’t Like ............... 15 I06 Dr. Trevor W. Hayton Nitric Oxide Reduction Mediated by a Nickel Complex -
Reversed out (White) Reversed
Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments. -
Princeton University, Physics 311/312; NMR Andthe Spin Echo 1
Princeton University, Physics 311/312; NMR andthe Spin Echo 1 NUCLEAR MAGNETIC RESONANCE AND THE SPIN ECHO Introduction In this experiment we investigate the properties of several materials using pulsed nuclear magnetic resonance (NMR). The NMR technique is used extensively for medical imaging and as a tool in condensed matter and materials physics. The physical mechanism behind NMR is a resonant transition between the energy states of a precessing spin 1/2 particle, specifically a proton, in an external magnetic field. By illuminating the atoms in a liquid, gas or solid with pulses of radio frequency (RF) radiation of various lengths, one can examine the interaction of the spins with the external field, with each other, and with the “lattice.” À Consider a particle with classical angular momentum J in a constant external magnetic field ¼ .The = h  particle has a magnetic moment due to its angular momentum. From the classical equation of À motion we know that if ¼ and are not parallel, the magnetic moment will precess about the magnetic ! = À À ¼ field. The frequency of this precession, ¼ , is independent of the angle between and and is called the Larmor frequency. À In NMR, a sample is placed in a constant magnetic field ¼ as shown in Figure 1. All the spins of À the protons try to align with ¼ but the thermal motion (phonons) of the lattice, to some extent, prevents Å À ¼ this. There is still though a net magnetization, ¼ , parallel to . To manipulate the magnetization, we À apply an RF field perpendicular to ¼ . This results in an oscillating magnetic field that can be viewed as the superposition of two counter-rotating components; only the component rotating in the same direction as that of the spin’s precession has significant effect. -
Double Spin-Echo Sequence for Rapid Spectroscopic Imaging of Hyperpolarized 13C
Journal of Magnetic Resonance 187 (2007) 357–362 www.elsevier.com/locate/jmr Communication Double spin-echo sequence for rapid spectroscopic imaging of hyperpolarized 13C Charles H. Cunningham a,*, Albert P. Chen b, Mark J. Albers b, John Kurhanewicz b, Ralph E. Hurd c, Yi-Fen Yen c, John M. Pauly d, Sarah J. Nelson b, Daniel B. Vigneron b a Department of Medical Biophysics, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, Ont., Canada M4N 3M5 b Department of Radiology, University of California at San Francisco, San Francisco, CA, USA c GE Healthcare Technologies, Menlo Park, CA, USA d Department of Electrical Engineering, Stanford University, Stanford, CA, USA Received 2 February 2007; revised 17 April 2007 Available online 2 June 2007 Abstract Dynamic nuclear polarization of metabolically active compounds labeled with 13C has been introduced as a means for imaging met- abolic processes in vivo. To differentiate between the injected compound and the various metabolic products, an imaging technique capa- ble of separating the different chemical-shift species must be used. In this paper, the design and testing of a pulse sequence for rapid magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C is presented. The pulse sequence consists of a small-tip exci- tation followed by a double spin echo using adiabatic refocusing pulses and a ‘‘flyback’’ echo-planar readout gradient. Key elements of the sequence are insensitivity to calibration of the transmit gain, the formation of a spin echo giving high-quality spectral information, and a small effective tip angle that preserves the magnetization for a sufficient duration. -
The Impact of NMR and MRI
WELLCOME WITNESSES TO TWENTIETH CENTURY MEDICINE _____________________________________________________________________________ MAKING THE HUMAN BODY TRANSPARENT: THE IMPACT OF NUCLEAR MAGNETIC RESONANCE AND MAGNETIC RESONANCE IMAGING _________________________________________________ RESEARCH IN GENERAL PRACTICE __________________________________ DRUGS IN PSYCHIATRIC PRACTICE ______________________ THE MRC COMMON COLD UNIT ____________________________________ WITNESS SEMINAR TRANSCRIPTS EDITED BY: E M TANSEY D A CHRISTIE L A REYNOLDS Volume Two – September 1998 ©The Trustee of the Wellcome Trust, London, 1998 First published by the Wellcome Trust, 1998 Occasional Publication no. 6, 1998 The Wellcome Trust is a registered charity, no. 210183. ISBN 978 186983 539 1 All volumes are freely available online at www.history.qmul.ac.uk/research/modbiomed/wellcome_witnesses/ Please cite as : Tansey E M, Christie D A, Reynolds L A. (eds) (1998) Wellcome Witnesses to Twentieth Century Medicine, vol. 2. London: Wellcome Trust. Key Front cover photographs, L to R from the top: Professor Sir Godfrey Hounsfield, speaking (NMR) Professor Robert Steiner, Professor Sir Martin Wood, Professor Sir Rex Richards (NMR) Dr Alan Broadhurst, Dr David Healy (Psy) Dr James Lovelock, Mrs Betty Porterfield (CCU) Professor Alec Jenner (Psy) Professor David Hannay (GPs) Dr Donna Chaproniere (CCU) Professor Merton Sandler (Psy) Professor George Radda (NMR) Mr Keith (Tom) Thompson (CCU) Back cover photographs, L to R, from the top: Professor Hannah Steinberg, Professor -
Neutron Spin Echo Spectroscopy
Neutron Spin Echo Spectroscopy Peter Fouquet [email protected] Institut Laue-Langevin Grenoble, France September 2014 Hercules Specialized Course 17 - Grenoble What you are supposed to learn in this lecture 1. The length and time scales that can be studied using NSE spectroscopy 2. The measurement principle of NSE spectroscopy 3. Discrimination techniques for coherent, incoherent and magnetic dynamics 4. To which scientific problems can I apply NSE spectroscopy? The measurement principle of neutron spin echo spectroscopy (quantum mechanical model) The neutron wave function is split by magnetic fields magnetic coil 1 magnetic coil 2 polarised sample The 2 wave packets arrive at neutron the sample with a time difference t If the molecules move between the arrival of the first and second wave packet then coherence is lost t λ3 Bdl The intermediate ∝ scattering function I(Q,t) reflects this loss in coherence strong wavelength field integral dependence The measurement principle of neutron spin echo spectroscopy Dynamic Scattering NSE spectra for diffusive motion Function S(Q,ω) G(R,ω) I(Q,t) = e-t/τ Fourier Transforms temperature up ⇒ τ down Intermediate VanHove Correlation Scattering Function Function I(Q,t) G(R,t) Measured with Neutron Spin Echo (NSE) Spectroscopy Neutron spin echo spectroscopy in the time/space landscape NSE is the neutron spectroscopy with the highest energy resolution The time range covered is 1 ps < t < 1 µs (equivalent to neV energy resolution) The momentum transfer range is 0.01 < Q < 4 Å-1 Spin Echo The measurement principle -
BIOLOGY 639 SCIENCE ONLINE the Unexpected Brains Behind Blood Vessel Growth 641 THIS WEEK in SCIENCE 668 U.K
4 February 2005 Vol. 307 No. 5710 Pages 629–796 $10 07%.'+%#%+& 2416'+0(70%6+10 37#06+6#6+8' 51(69#4' #/2.+(+%#6+10 %'..$+1.1); %.10+0) /+%41#44#;5 #0#.;5+5 #0#.;5+5 2%4 51.76+105 Finish first with a superior species. 50% faster real-time results with FullVelocity™ QPCR Kits! Our FullVelocity™ master mixes use a novel enzyme species to deliver Superior Performance vs. Taq -Based Reagents FullVelocity™ Taq -Based real-time results faster than conventional reagents. With a simple change Reagent Kits Reagent Kits Enzyme species High-speed Thermus to the thermal profile on your existing real-time PCR system, the archaeal Fast time to results FullVelocity technology provides you high-speed amplification without Enzyme thermostability dUTP incorporation requiring any special equipment or re-optimization. SYBR® Green tolerance Price per reaction $$$ • Fast, economical • Efficient, specific and • Probe and SYBR® results sensitive Green chemistries Need More Information? Give Us A Call: Ask Us About These Great Products: Stratagene USA and Canada Stratagene Europe FullVelocity™ QPCR Master Mix* 600561 Order: (800) 424-5444 x3 Order: 00800-7000-7000 FullVelocity™ QRT-PCR Master Mix* 600562 Technical Services: (800) 894-1304 Technical Services: 00800-7400-7400 FullVelocity™ SYBR® Green QPCR Master Mix 600581 FullVelocity™ SYBR® Green QRT-PCR Master Mix 600582 Stratagene Japan K.K. *U.S. Patent Nos. 6,528,254, 6,548,250, and patents pending. Order: 03-5159-2060 Purchase of these products is accompanied by a license to use them in the Polymerase Chain Reaction (PCR) Technical Services: 03-5159-2070 process in conjunction with a thermal cycler whose use in the automated performance of the PCR process is YYYUVTCVCIGPGEQO covered by the up-front license fee, either by payment to Applied Biosystems or as purchased, i.e., an authorized thermal cycler. -
Echo-Detected Electron Paramagnetic Resonance Spectra of Spin-Labeled Lipids in Membrane Model Systems Denis A
Subscriber access provided by MPI FUR BIOPHYS CHEM Article Echo-Detected Electron Paramagnetic Resonance Spectra of Spin-Labeled Lipids in Membrane Model Systems Denis A. Erilov, Rosa Bartucci, Rita Guzzi, Derek Marsh, Sergei A. Dzuba, and Luigi Sportelli J. Phys. Chem. B, 2004, 108 (14), 4501-4507• DOI: 10.1021/jp037249y • Publication Date (Web): 16 March 2004 Downloaded from http://pubs.acs.org on March 24, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Links to the 1 articles that cite this article, as of the time of this article download • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article The Journal of Physical Chemistry B is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 J. Phys. Chem. B 2004, 108, 4501-4507 4501 Echo-Detected Electron Paramagnetic Resonance Spectra of Spin-Labeled Lipids in Membrane Model Systems Denis A. Erilov,†,| Rosa Bartucci,*,† Rita Guzzi,† Derek Marsh,§ Sergei A. Dzuba,‡ and Luigi Sportelli† Dipartimento di Fisica and Unita` INFM, UniVersita` della Calabria, I-87036 ArcaVacata di Rende (CS), Italy, Abteilung Spektroskopie, Max-Planck-Institut fur biophysikalische Chemie, 37077 Gottingen, Germany, and Institute of Chemical Kinetics and Combustion, Russian Academy of Science, 630090 NoVosibirsk, Russian Federation ReceiVed: October 28, 2003; In Final Form: February 5, 2004 The dynamics of spin-labeled lipid chains in the low-temperature phases of dipalmitoyl phosphatidylcholine (DPPC) membranes, with and without equimolar cholesterol, have been investigated by pulsed electron paramagnetic resonance (EPR) spectroscopy. -
A New Mechanism for Electron Spin Echo Envelope Modulation ͒ John J
THE JOURNAL OF CHEMICAL PHYSICS 122, 174504 ͑2005͒ A new mechanism for electron spin echo envelope modulation ͒ John J. L. Mortona Department of Materials, Oxford University, Oxford OX1 3PH, United Kingdom Alexei M. Tyryshkin Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 Arzhang Ardavan Clarendon Laboratory, Department of Physics, Oxford University, Oxford OX1 3PU, United Kingdom Kyriakos Porfyrakis Department of Materials, Oxford University, Oxford OX1 3PH, United Kingdom S. A. Lyon Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 G. Andrew D. Briggs Department of Materials, Oxford University, Oxford OX1 3PH, United Kingdom ͑Received 21 January 2005; accepted 18 February 2005; published online 2 May 2005͒ Electron spin echo envelope modulation ͑ESEEM͒ has been observed for the first time from a coupled heterospin pair of electron and nucleus in liquid solution. Previously, modulation effects in spin-echo experiments have only been described in liquid solutions for a coupled pair of homonuclear spins in nuclear magnetic resonance or a pair of resonant electron spins in electron paramagnetic resonance. We observe low-frequency ESEEM ͑26 and 52 kHz͒ due to a new mechanism present for any electron spin with SϾ1/2 that is hyperfine coupled to a nuclear spin. In ͑ ͒ ͑ ͒ our case these are electron spin S=3/2 and nuclear spin I=1 in the endohedral fullerene N@C60. The modulation is shown to arise from second-order effects in the isotropic hyperfine coupling of an electron and 14N nucleus. © 2005 American Institute of Physics. ͓DOI: 10.1063/1.1888585͔ I. INTRODUCTION electron spins with different Larmor frequencies͒ results in no modulation effects from this mechanism: The heterospin Measuring the modulation of a spin echo in pulsed coupling energy changes its sign upon application of the re- magnetic-resonance experiments has become a popular tech- focusing pulse ͑because only one spin flips͒, and the magne- nique for studying weak spin-spin couplings. -
PHYS 212 James Scholar Assignment #4
Name ________________________ Net ID_______________ TA Name____________________ Discussion Section________ PHYS 212 James Scholar Assignment #4 Due: 5:00 pm Friday, October 28, 2011 The problems are to be done on paper, showing all work . Again, the presentation should be neat, legible , and easy to follow . {Remember to include your name, netID, and Discussion section and ideally TA name on the top of the page! Please turn in your assignment into the Grading Box labeled “Physics 212 James Scholars”, located on the 2 nd floor, in the interpass between Loomis and MRL (Materials Research Lab). The interpass is down the hall about 10 meters east of Room 262 Loomis, where half of you have your Lab.} In this assignment you will learn all about magnetic resonance imaging (MRI), or as it used to be called, nuclear magnetic resonance (NMR) imaging (the name was changed because the average Joe was afraid of anything with the word nuclear, or 'nucular', as George W. would say!). UIUC Chemistry professor Paul Lauterbur (who passed away in March 2007) won the 2003 Nobel Prize in Medicine for his development of MRI. Lauterbur shared the Prize with Sir Peter Mansfield of the University of Nottingham in England. Mansfield was a research associate in the department of physics at Illinois from 1962-1964. Adding to these two the Physics Nobel Prize awarded that year to UIUC Physicist Anthony Leggett ( http://www.news.uiuc.edu/NEWS/03/1007nobelphys.html) makes a total of three Nobel winners for UIUC in 2003. (Also, it should be not be overlooked that UIUC microbiologist Professor Carl Woese received the 2003 Crafoord Prize, awarded annually by the Royal Swedish Academy of Sciences to recognize accomplishments in scientific fields not covered by the Nobel Prizes; for details see http://www.news.uiuc.edu/news/03/0925woeseaward.html .) There are many excellent MRI references and tutorials available. -
Lesion Enhancement in Radio-Frequency Spoiled Gradient-Echo Imaging: Theory, Experimental Evaluation, and Clinical Implications
Lesion Enhancement in Radio-Frequency Spoiled Gradient-Echo Imaging: Theory, Experimental Evaluation, and Clinical Implications 1 1 2 1 Scott Rand, Kenneth R. Maravilla, • and Udo Schmiedl PURPOSE: To investigate the lesser lesion conspicuity after gadolinium contrast infusion with radio-frequency spoiled gradient-echo (SPGR) sequences relative to conventional T1-weighted spin-echo techniques. METHODS: The influences of repetition time, echo time, and flip angle on spin-echo and SPGR signal were studied with mathematical modeling of the image signal amplitude for concentrations of gadopentetate dimeglumine solute from 0 to 10 mM. Predictions of signal strength were verified in vitro by imaging of a doped water phantom. The effects of standard (0.1 mmol/kg) and high-dose (0.3 mmol/kg) gadoteridol on spin-echo and SPGR images were also investigated in three patients. RESULTS: The measured amplitude of undoped water and the rate of increase of doped water signal with increasing gadopentetate concentration (slope) for spin echo 600/ 11/1/ 90° (repetition time/ echo time/excitations/flip angle) and SPGR (600/11/190°) were similar and exceeded those of SPGR (35/ 5/ 145°). Greater increases in SPGR doped water signal and its slope were produced by increasing TR than by varying echo-time or flip angle. The subjective lesion conspicuity and measured lesion contrast at 0.3 mmol/kg were greater with spin echo (600/11/ 1/90°) than with SPGR (35/5/145°) in all three patients; the measured lesion enhancement was similar for both techniques in two patients and decreased for SPGR in the third patient.