Drugs-Biologicals FORMULARY for INTERNET PAGE 12 26 18
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ophthalmic Adverse Effects of Nasal Decongestants on an Experimental
A RQUIVOS B RASILEIROS DE ORIGINAL ARTICLE Ophthalmic adverse effects of nasal decongestants on an experimental rat model Efeitos oftálmicos adversos de descongestionantes nasais em modelo experimental com ratos Ayse Ipek Akyuz Unsal1, Yesim Basal2, Serap Birincioglu3, Tolga Kocaturk1, Harun Cakmak1, Alparslan Unsal4, Gizem Cakiroz5, Nüket Eliyatkın6, Ozden Yukselen7, Buket Demirci5 1. Department of Ophthalmology, Medical Faculty, Adnan Menderes University, Aydin, Turkey. 2. Department of Otorhinolaringology, Medical Faculty, Adnan Menderes University, Aydin, Turkey. 3. Department of Pathology, Veterinary Faculty, Adnan Menderes University, Aydin, Turkey. 4. Department of Radiology, Medical Faculty, Adnan Menderes University, Aydin, Turkey. 5. Department of Medical Pharmacology, Medical Faculty, Adnan Menderes University, Aydin, Turkey. 6. Department of Medical Pathology, Medical Faculty, Adnan Menderes University, Aydin, Turkey. 7. Department of Pathology, Aydin State Hospital, Aydin, Turkey. ABSTRACT | Purpose: To investigate the potential effects of cause ophthalmic problems such as dry eyes, corneal edema, chronic exposure to a nasal decongestant and its excipients cataracts, retinal nerve fiber layer, and vascular damage in on ocular tissues using an experimental rat model. Methods: rats. Although these results were obtained from experimental Sixty adult male Wistar rats were randomized into six groups. animals, ophthalmologists should keep in mind the potential The first two groups were control (serum physiologic) and ophthalmic adverse effects of this medicine and/or its excipients Otrivine® groups. The remaining four groups received the and exercise caution with drugs containing xylometazoline, Otrivine excipients xylometazoline, benzalkonium chloride, ethylene diamine tetra acetic acid, benzalkonium chloride and sorbitol, and ethylene diamine tetra acetic acid. Medications sorbitol for patients with underlying ocular problems. -
(CD-P-PH/PHO) Report Classification/Justifica
COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of medicines belonging to the ATC group R01 (Nasal preparations) Table of Contents Page INTRODUCTION 5 DISCLAIMER 7 GLOSSARY OF TERMS USED IN THIS DOCUMENT 8 ACTIVE SUBSTANCES Cyclopentamine (ATC: R01AA02) 10 Ephedrine (ATC: R01AA03) 11 Phenylephrine (ATC: R01AA04) 14 Oxymetazoline (ATC: R01AA05) 16 Tetryzoline (ATC: R01AA06) 19 Xylometazoline (ATC: R01AA07) 20 Naphazoline (ATC: R01AA08) 23 Tramazoline (ATC: R01AA09) 26 Metizoline (ATC: R01AA10) 29 Tuaminoheptane (ATC: R01AA11) 30 Fenoxazoline (ATC: R01AA12) 31 Tymazoline (ATC: R01AA13) 32 Epinephrine (ATC: R01AA14) 33 Indanazoline (ATC: R01AA15) 34 Phenylephrine (ATC: R01AB01) 35 Naphazoline (ATC: R01AB02) 37 Tetryzoline (ATC: R01AB03) 39 Ephedrine (ATC: R01AB05) 40 Xylometazoline (ATC: R01AB06) 41 Oxymetazoline (ATC: R01AB07) 45 Tuaminoheptane (ATC: R01AB08) 46 Cromoglicic Acid (ATC: R01AC01) 49 2 Levocabastine (ATC: R01AC02) 51 Azelastine (ATC: R01AC03) 53 Antazoline (ATC: R01AC04) 56 Spaglumic Acid (ATC: R01AC05) 57 Thonzylamine (ATC: R01AC06) 58 Nedocromil (ATC: R01AC07) 59 Olopatadine (ATC: R01AC08) 60 Cromoglicic Acid, Combinations (ATC: R01AC51) 61 Beclometasone (ATC: R01AD01) 62 Prednisolone (ATC: R01AD02) 66 Dexamethasone (ATC: R01AD03) 67 Flunisolide (ATC: R01AD04) 68 Budesonide (ATC: R01AD05) 69 Betamethasone (ATC: R01AD06) 72 Tixocortol (ATC: R01AD07) 73 Fluticasone (ATC: R01AD08) 74 Mometasone (ATC: R01AD09) 78 Triamcinolone (ATC: R01AD11) 82 -
Review of the Existing Recommendations for Essential Medicines for Ear, Nose and Throat Conditions in Adults and Children and Suggested Modifications
REVIEW OF THE EXISTING RECOMMENDATIONS FOR ESSENTIAL MEDICINES FOR EAR, NOSE AND THROAT CONDITIONS IN ADULTS AND CHILDREN AND SUGGESTED MODIFICATIONS 2012 Shelly Chadha, Andnet Kebede Prevention of Blindness and Deafness, World Health Organization REVIEW OF THE EXISTING RECOMMENDATIONS FOR ESSENTIAL MEDICINES (Ear, Nose and Throat conditions) FOR USE IN ADULTS AND CHILDREN AND SUGGESTED MODIFICATIONS Context: The WHO Essential Medicines List includes a section for ENT conditions in children. The current section does not make any reference to medicines and dosages recommended for adults. As most of the conditions for which the listed medicines are indicated, are common in adults, the list needs to be appropriately reviewed in that context. Methodology: Each of the medicines listed in the EML for children was reviewed to consider its appropriateness for inclusion in the EML for adults. The recommended dosages for adults and children were also considered. Recommendations: The medicine list should include a list for adults as well as children. The list for adults should include Xylometazoline hydrochloride nasal spray 0.1%. It should be stated that the medicine (xylometazoline nasal spray) should not be used for prolonged periods of time, unless specifically advised and under medical supervision. The adult list should also include the other medicines mentioned in the list of children, i.e.: o Ciprofloxacin ear drops: 0.3%, as hydrochloride, for tropical use. o Aectic acid ear drops, 2% in alcohol, for topical use. Budesonide nasal spray listed in the EML for children needs greater, in depth review, which may be considered for the next EML update. 1 Xylometazoline Hydrochloride nasal spray Indications: Nasal congestion is obstruction of nasal passages, mainly caused by mucosal inflammation due to increased venous engorgement, nasal secretions and tissue swelling. -
Conceptual Model for Using Imidazoline Derivative Solutions in Pulpal Management
Journal of Clinical Medicine Review Conceptual Model for Using Imidazoline Derivative Solutions in Pulpal Management Robert S. Jones Division of Pediatric Dentistry, Department of Developmental & Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] Abstract: Alpha-adrenergic agonists, such as the Imidazoline derivatives (ImDs) of oxymetazoline and xylometazoline, are highly effective hemostatic agents. ImDs have not been widely used in dentistry but their use in medicine, specifically in ophthalmology and otolaryngology, warrants consideration for pulpal hemostasis. This review presents dental healthcare professionals with an overview of ImDs in medicine. ImD solutions have the potential to be more effective and biocompatible than existing topical hemostatic compounds in pulpal management. Through a comprehensive analysis of the pharmacology of ImDs and the microphysiology of hemostasis regulation in oral tissues, a conceptual model of pulpal management by ImD solutions is presented. Keywords: hemostasis; alpha-adrenergic agonists; imidazoline; oxymetazoline; nasal; dental pulp; mucosa; apexogenesis; pulpotomy; direct pulp cap; dentistry 1. Overview Citation: Jones, R.S. Conceptual The purpose of this review is to formulate a conceptual model on the potential man- Model for Using Imidazoline agement of pulpal tissue by imidazoline derivatives (ImDs) based on a review of the Derivative Solutions in Pulpal literature that examines the hemostatic properties and mechanistic actions of these com- Management. J. Clin. Med. 2021, 10, 1212. https://doi.org/10.3390/ pounds in other human tissues. Commercial ImDs are formulated in solution with an- jcm10061212 timicrobial preservatives in order to act as ‘parenteral topical agents’ and used to manage ophthalmic inflammation, nasal congestion, and to control bleeding during otolaryngology Academic Editor: Rosalia surgery [1,2]. -
Anti-Hypotensive Effects of M6434, an Orally Active a 1-Adrenoceptor Agonist, in Rats
Anti-Hypotensive Effects of M6434, an Orally Active a 1-Adrenoceptor Agonist, in Rats Tatsuroh Dabasaki, Masato Shimojo, Hiroshi Ishikawa and Akio Uemura Fuji Central Research Laboratory, Mochida Pharmaceutical Co., Ltd., 722 Jimba-aza-Uenohara, Gotemba, Shizuoka 412, Japan Received December 19, 1991 Accepted February 17, 1992 ABSTRACT-The anti-hypotensive effects of M6434 were evaluated and compared with those of other orally active sympathomimetics in rats. Oral administration of M6434 (0.5-2.0 mg/kg) and midodrine (1.0 5.0 mg/kg) also produced a dose-related increase in mean arterial pressure in normotensive rats. The pressor effect of M6434 was about 4 times more potent than that of midodrine. Both M6434 and midodrine caused a dose-dependent decrease in heart rate. The pressor effect of M6434 (1.0 mg/kg) did not diminish after its repeated administration for 7 days. The pretreatment with M6434 (0.5 1.0 mg/kg) and midodrine (2.0 5.0 mg/kg) improved the orthostatic index in the experimental model of postural hypotension in rats. The effect of M6434 on postural hypotension was about 5 times more po tent than that of midodrine. Intravenously injected M6434 (3-300pg/kg) produced a dose-dependent increase in the blood pressure of pithed rats. These results suggest that M6434 possesses a potent anti hypotensive activity which is superior to that of midodrine, and M6434 may be useful in the treatment of essential and postural hypotension. Keywords: M6434, a 1-Agonist, Midodrine, Postural hypotension, Orthostatic index M6434, 2-[(5-chloro-2-methoxyphenyl)azo]-1H-imida in clinical therapy. -
M2021: Pharmacogenetic Testing
Pharmacogenetic Testing Policy Number: AHS – M2021 – Pharmacogenetic Prior Policy Name and Number, as applicable: Testing • M2021 – Cytochrome P450 Initial Presentation Date: 06/16/2021 Revision Date: N/A I. Policy Description Pharmacogenetics is defined as the study of variability in drug response due to heredity (Nebert, 1999). Cytochrome (CYP) P450 enzymes are a class of enzymes essential in the synthesis and breakdown metabolism of various molecules and chemicals. Found primarily in the liver, these enzymes are also essential for the metabolism of many medications. CYP P450 are essential to produce many biochemical building blocks, such as cholesterol, fatty acids, and bile acids. Additional cytochrome P450 are involved in the metabolism of drugs, carcinogens, and internal substances, such as toxins formed within cells. Mutations in CYP P450 genes can result in the inability to properly metabolize medications and other substances, leading to increased levels of toxic substances in the body. Approximately 58 CYP genes are in humans (Bains, 2013; Tantisira & Weiss, 2019). Thiopurine methyltransferase (TPMT) is an enzyme that methylates azathioprine, mercaptopurine and thioguanine into active thioguanine nucleotide metabolites. Azathioprine and mercaptopurine are used for treatment of nonmalignant immunologic disorders; mercaptopurine is used for treatment of lymphoid malignancies; and thioguanine is used for treatment of myeloid leukemias (Relling et al., 2011). Dihydropyrimidine dehydrogenase (DPD), encoded by the gene DPYD, is a rate-limiting enzyme responsible for fluoropyrimidine catabolism. The fluoropyrimidines (5-fluorouracil and capecitabine) are drugs used in the treatment of solid tumors, such as colorectal, breast, and aerodigestive tract tumors (Amstutz et al., 2018). A variety of cell surface proteins, such as antigen-presenting molecules and other proteins, are encoded by the human leukocyte antigen genes (HLAs). -
Effectiveness of Midodrine Treatment in Patients with Recurrent Vasovagal
Europace (2011) 13, 1639–1647 CLINICAL RESEARCH doi:10.1093/europace/eur200 Syncope and Implantable Loop Recorders Effectiveness of Midodrine treatment in patients with recurrent vasovagal syncope not responding to non-pharmacological treatment (STAND-trial) Downloaded from Jacobus J.C.M. Romme1, Nynke van Dijk2, Ingeborg K. Go-Scho¨ n3,4, Johannes B. Reitsma1, and Wouter Wieling3* 1Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands; 2Department of General Practice/ Family Medicine, 3 4 Academic Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands; and Bmeye Cardiovascular http://europace.oxfordjournals.org/ Monitoring B.V., Academic Medical Center, Amsterdam, The Netherlands Received 26 January 2011; accepted after revision 2 June 2011; online publish-ahead-of-print 13 July 2011 Aims Initial treatment of vasovagal syncope (VVS) consists of advising adequate fluid and salt intake, regular exercise, and physical counterpressure manoeuvres. Despite this treatment, up to 30% of patients continue to experience regular episodes of VVS. We investigated whether additional Midodrine treatment is effective in these patients. ..................................................................................................................................................................................... Methods In our study, patients with at least three syncopal and/or severe pre-syncopal recurrences during non-pharmacologi- and results cal treatment were eligible to receive double-blind cross-over treatment starting either with Midodrine or placebo. at Universiteit van Amsterdam on November 15, 2011 Treatment periods lasted for 3 months with a wash-out period of 1 week in-between. At baseline and after each treatment period, we collected data about the recurrence of syncope and pre-syncope, side effects, and quality of life (QoL). -
Supporting Information a Analysed Substances
Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2020 List of contents: Tab. A1 Detailed list and classification of analysed substances. Tab. A2 List of selected MS/MS parameters for the analytes. Tab. A1 Detailed list and classification of analysed substances. drug of therapeutic doping agent analytical standard substance abuse drug (WADA class)* supplier (+\-)-amphetamine ✓ ✓ S6 stimulants LGC (+\-)-methamphetamine ✓ S6 stimulants LGC (+\-)-3,4-methylenedioxymethamphetamine (MDMA) ✓ S6 stimulants LGC methylhexanamine (4-methylhexan-2-amine, DMAA) S6 stimulants Sigma cocaine ✓ ✓ S6 stimulants LGC methylphenidate ✓ ✓ S6 stimulants LGC nikethamide (N,N-diethylnicotinamide) ✓ S6 stimulants Aldrich strychnine S6 stimulants Sigma (-)-Δ9-tetrahydrocannabinol (THC) ✓ ✓ S8 cannabinoids LGC (-)-11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) S8 cannabinoids LGC morphine ✓ ✓ S7 narcotics LGC heroin (diacetylmorphine) ✓ ✓ S7 narcotics LGC hydrocodone ✓ ✓ Cerillant® oxycodone ✓ ✓ S7 narcotics LGC (+\-)-methadone ✓ ✓ S7 narcotics Cerillant® buprenorphine ✓ ✓ S7 narcotics Cerillant® fentanyl ✓ ✓ S7 narcotics LGC ketamine ✓ ✓ LGC phencyclidine (PCP) ✓ S0 non-approved substances LGC lysergic acid diethylamide (LSD) ✓ S0 non-approved substances LGC psilocybin ✓ S0 non-approved substances Cerillant® alprazolam ✓ ✓ LGC clonazepam ✓ ✓ Cerillant® flunitrazepam ✓ ✓ LGC zolpidem ✓ ✓ LGC VETRANAL™ boldenone (Δ1-testosterone / 1-dehydrotestosterone) ✓ S1 anabolic agents (Sigma-Aldrich) -
Oxymetazoline
Oxymetazoline This sheet talks about exposure to oxymetazoline pregnancy and while breastfeeding. This information should not take the place of medical care and advice from your healthcare provider. What is oxymetazoline? Oxymetazoline is a medication that is used in nasal sprays (sprayed into nostrils) and topical preparations (applied to skin). Oxymetazoline has been used to treat nasal congestion, eye inflammation, and skin redness. Oxymetazoline works by constricting blood vessels (makes the blood vessels smaller). Oxymetazoline can be found in prescription products and in many over the counter products. Some examples are: Afrin®, Dristan®, Nostrilla®, Rhofade®, and Vicks®. I use oxymetazoline. Can it make it harder for me to get pregnant? Studies have not been done in women to see if oxymetazoline could make it harder to get pregnant. I just found out that I am pregnant. Should I stop taking oxymetazoline? Talk with your healthcare providers before making any changes to this medication. Does taking oxymetazoline increase the chance for miscarriage? Miscarriage can occur in any pregnancy. Studies have not been done to see if oxymetazoline increases the chance for a miscarriage. Does taking oxymetazoline in the first trimester increase the chance of birth defects? In every pregnancy, a woman starts out with a 3-5% chance of having a baby with a birth defect. This is called her background risk. A small number of studies on oxymetazoline use have not found that oxymetazoline increases the chance of birth defects. Could taking oxymetazoline in the second or third trimester cause other pregnancy complications? Oxymetazoline did not affect uterine blood flow in 12 pregnancies when the healthy mother was given a one-time nasal spray dose. -
Vasoconstrictive Decongestants: the Authorities’ Poisoning in Children
Adverse Effects Editors’ Opinion Translated from Rev Prescrire January 2013; 33 (351): 25 Translated from Rev Prescrire February 2013; 33 (352): 103 Vasoconstrictive drugs: Vasoconstrictive decongestants: the authorities’ poisoning in children dithering leaves patients in danger FDA review. The cardiovascular and neurological criminately to all vasoconstrictors. How- In October 2012 the U.S. adverse effects of vasoconstrictive ever, it could be applied to certain prod- Food and Drug Administra- decongestants (ephedrine, naphazoline, ucts prone to misuse” (our translation) tion published an analysis of oxymetazoline, phenylephrine, pseudo- (4,6). 96 cases of accidental ephedrine and tuaminoheptane) used to While measures aimed at limiting mis- ingestion of vasoconstrictive nasal decon- relieve symptoms of the common cold use of medicines are welcome, they are gestants and eyedrops by children, report- are well known (1,2). In France, nasal in no way sufficient in the present case. ed between 1985 and 2012. The drugs preparations have been placed on List II Patients must be protected from the life- involved were intended for the relief of of moderately dangerous substances threatening adverse effects of vasocon- nasal congestion or ocular hyper- and are therefore available by prescrip- strictive decongestants used to treat aemia (1). tion only, while oral forms are available simple colds, and simple market with- The ingested substances were tetry- without a prescription. drawal is the best option. zoline, oxymetazoline or naphazoline Since the 1990s, several pharmaco - This procrastination further illustrates (combined with methylthioninium chlo- vigilance reports on these drugs have ANSM’s incapacity to take timely deci- ride in eye drops and with prednisolone in been published in France, and all have sions on drug safety and thereby to ful- nasal solution). -
Package Leaflet: Information for the User Oxymetazoline Dr.Max 0.5 Mg
Package leaflet: Information for the user Oxymetazoline Dr.Max 0.5 mg/ml nasal spray, solution 0.5 mg/ml nasal spray, solution Oxymetazoline hydrochloride Read all of this leaflet carefully before you start using this medicine because it contains important information for you. Always use this medicine exactly as described in this leaflet or as your doctor or pharmacist have told you. - Keep this leaflet. You may need to read it again. - Ask your pharmacist if you need more information or advice. - If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. See section 4. - You must talk to a doctor if you do not feel better or if you feel worse after 3 days. What is in this leaflet 1. What Oxymetazoline Dr.Max is and what it is used for 2. What you need to know before you use Oxymetazoline Dr.Max 3. How to use Oxymetazoline Dr.Max 4. Possible side effects 5. How to store Oxymetazoline Dr.Max 6. Contents of the pack and other information 1. What Oxymetazoline Dr.Max is and what it is used for Oxymetazoline Dr.Max belongs to a group of medicines called sympathomimetics which acts producing local vasoconstriction and nasal decongestion. This medicine is indicated for local and temporary relief of nasal congestion produced by rhinitis. You must talk to a doctor if you do not feel better or if you feel worse after 3 days. 2. What you need to know before you use Oxymetazoline Dr.Max Do not use Oxymetazoline Dr.Max - if you are allergic to oxymetazoline or any of the other -
Midodrine As Adjunctive Support for Treatment of Refractory Hypotension
Midodrine as adjunctive support for treatment of refractory hypotension in the intensive care unit: a multicenter, randomized, placebo controlled trial (the MIDAS trial) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Anstey, Matthew H., Bradley Wibrow, Tharusan Thevathasan, Brigit Roberts, Khushi Chhangani, Pauline Yeung Ng, Alexander Levine, Alan DiBiasio, Todd Sarge, and Matthias Eikermann. 2017. “Midodrine as adjunctive support for treatment of refractory hypotension in the intensive care unit: a multicenter, randomized, placebo controlled trial (the MIDAS trial).” BMC Anesthesiology 17 (1): 47. doi:10.1186/s12871-017-0339-x. http://dx.doi.org/10.1186/ s12871-017-0339-x. Published Version doi:10.1186/s12871-017-0339-x Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:32072012 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Anstey et al. BMC Anesthesiology (2017) 17:47 DOI 10.1186/s12871-017-0339-x STUDY PROTOCOL Open Access Midodrine as adjunctive support for treatment of refractory hypotension in the intensive care unit: a multicenter, randomized, placebo controlled trial (the MIDAS trial) Matthew H. Anstey1,2, Bradley Wibrow1,2, Tharusan Thevathasan3, Brigit Roberts1, Khushi Chhangani3, Pauline Yeung Ng3, Alexander Levine4, Alan DiBiasio5, Todd Sarge6 and Matthias Eikermann3,7* Abstract Background: Patients admitted to intensive care units (ICU) are often treated with intravenous (IV) vasopressors.