Ningaloo Reef Marine Park Benthic Biodiversity Survey

Total Page:16

File Type:pdf, Size:1020Kb

Ningaloo Reef Marine Park Benthic Biodiversity Survey WAMSI NODE 3 PROJECT 1 SUBPROJECT 3.1.1: DEEPWATER COMMUNITIES AT NINGALOO MARINE PARK Ningaloo Reef Marine Park Benthic Biodiversity Survey Jamie Colquhoun, Andrew Heyward, Max Rees, Emily Twiggs, Ben Fitzpatrick, Felicity McAllister, Peter Speare PRODUCED FOR Western Australian Marine Science Institution Perth 2007 NINGALOO REEF MARINE PARK BENTHIC BIODIVERSITY SURVEY ISBN info Australian Institute of Marine Science PMB No 3 (M096) Botany Biology Building Townsville Qld 4810. University of Western Australia Crawley WA 6009 ISBN: <number> © The Australian Institute of Marine Science This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. DISCLAIMER This report has been produced for the sole use of the party who requested it. The application or use of this report and of any data or information (including results of experiments, conclusions, and recommendations) contained within it shall be at the sole risk and responsibility of that party. AIMS does not provide any warranty or assurance as to the accuracy or suitability of the whole or any part of the report, for any particular purpose or application. Subject only to any contrary non-excludable statutory obligations neither AIMS nor its personnel will be responsible to the party requesting the report, or any other person claiming through that party, for any consequences of its use or application (whether in whole or part). NINGALOO REEF MARINE PARK BENTHIC BIODIVERSITY SURVEY CONTRIBUTORS Jamie Colquhoun (AIMS) – Benthic Ecologist – Biodiversity Assessment and Trends Team - Australian Institute of Marine Science, M096 Botany Biology Building, The University of Western Australia, 35 Stirling Highway, Crawley 6009, W.A. Australia, [email protected] Max Rees (AIMS) – Experimental Scientist – Benthic Ecology – Biodiversity Assessment and Trends Team - Australian Institute of Marine Science, M096 Botany Biology Building, The University of Western Australia, 35 Stirling Highway, Crawley 6009, W.A. Australia, [email protected] Dr Andrew Heyward (AIMS) – Principal Research Scientist - Biodiversity Assessment and Trends Team - Australian Institute of Marine Science, M096 Botany Biology Building, The University of Western Australia, 35 Stirling Highway, Crawley 6009, W.A. Australia, [email protected] Felicity McAllister (AIMS) – Experimental Scientist - Oceanography – Biodiversity Assessment and Trends Team - Australian Institute of Marine Science, PMB 3, Townsville MC Townsville 4810, Queensland, Australia, [email protected] Peter Speare (AIMS) – Experimental Scientist – Biodiversity Sustainable Use Team - Australian Institute of Marine Science, PMB 3, Townsville MC Townsville 4810, Queensland, Australia, [email protected] Ray Lawrie (DEC) – Senior Information Officer – Marine Policy and Planning Branch – Department of Environment and Conservation, 47 Henry St, Fremantle, 6160 W.A. Australia, [email protected] Dr Euan Harvey (UWA) – Lecturer – Marine Ecology Group - School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009 W.A. Australia, [email protected] Ben Fitzpatrick (UWA) – PhD Candidate – School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009 W.A. Australia, [email protected] i NINGALOO REEF MARINE PARK BENTHIC BIODIVERSITY SURVEY Associate Professor Lindsay Collins (CUT) - Applied Sedimentology & Marine Geoscience Group Department of Applied Geology, Curtin University of Technology, Bentley, GPO Box U 1987, Perth 6845 W.A., Australia, [email protected] Emily Twiggs (CUT) – PhD Candidate - Applied Sedimentology & Marine Geoscience Group Department of Applied Geology, Curtin University of Technology, Bentley, GPO Box U 1987 Perth 6845 W.A., Australia, [email protected] Dr Jane Fromont (MWA) – Curator of Marine Invertebrates, Western Australian Museum, Locked Bag 49, Welshpool DC W.A. 6986 Australia, [email protected] Mark Salotti (MWA) – Technical Officer – Marine Invertebrates Section, Department of Aquatic Zoology, West Australian Museum, Locked Bag 49, Welshpool DC W.A. 6986 Australia, [email protected] Dr Rob McCauley (CUT) – Marine Biologist - Centre of Marine Science and Technology, Curtin University of Technology, Bentley GPO Box U 1987 Perth 6845 W.A., Australia, [email protected] Miles Parsons (CUT) – PhD Candidate - Centre of Marine Science and Technology, Curtin University of Technology, Bentley GPO Box U 1987 Perth 6845 W.A., Australia, [email protected] Dr Thomas Stieglitz (AIMS@JCU) – Research Fellow – James Cook University and Australian Institute of Marine Science, School of Mathematics, Physics and IT, James Cook University Q 4811. Australia. [email protected] ii NINGALOO REEF MARINE PARK BENTHIC BIODIVERSITY SURVEY CONTENTS CONTRIBUTORS .............................................................................................................. I LIST OF FIGURES ............................................................................................................V LIST OF TABLES ........................................................................................................... VII EXECUTIVE SUMMARY................................................................................................ IX INTRODUCTION ............................................................................................................. 1 Ningaloo Marine Park.................................................................................................................................... 2 Dominant Benthic Communities................................................................................................................ 5 Project Aims.................................................................................................................................................... 6 2006 Survey ..................................................................................................................................................... 6 METHOD AND DESIGN.................................................................................................. 7 ACOUSTIC SURVEYS ..................................................................................................... 8 FUGRO Habitat Mapping Hydro Acoustic Survey (Multibeam) 10-18 April 2006 ....................... 8 Singlebeam Acoustic Survey ......................................................................................................................10 GEOMORPHOLOGY AND SEDIMENTS .................................................................... 13 Long Term Goal ...........................................................................................................................................13 Introduction...................................................................................................................................................13 Methods..........................................................................................................................................................16 Results.............................................................................................................................................................19 Discussion ......................................................................................................................................................39 Future Analysis..............................................................................................................................................40 BENTHIC COMMUNITIES............................................................................................ 41 Towed Video.................................................................................................................................................41 Method............................................................................................................................................................41 Benthic Sled ...................................................................................................................................................44 Future Analysis..............................................................................................................................................47 GIS Data Management.................................................................................................................................47 FIN FISH .......................................................................................................................... 51 Introduction...................................................................................................................................................51 Methods..........................................................................................................................................................52 Results.............................................................................................................................................................54
Recommended publications
  • CAESIONIDAE Fusiliers by K.E
    click for previous page Perciformes: Percoidei: Caesonidae 2919 CAESIONIDAE Fusiliers by K.E. Carpenter iagnostic characters: Oblong to fusiform, moderately compressed, medium-sized to small (to about D50 cm) lutjanoid fishes; longitudinal axis from tip of snout to middle of caudal fin passing through centre of eye. Eye moderately large, its diameter longer than snout length. Mouth small and highly protrusible; 1 or 2 finger-like postmaxillary processes on dorsoposterior surface of premaxilla (Figs 1 and 2); angle of jaw oblique, about 40° to horizontal. Dentition variously reduced; small or minute conical teeth; premaxillae, vomer, and palatines with or without teeth. Caudal fin deeply forked. Margin of dorsal and anal fins more or less evenly sloping; third or fourth dorsal-fin spines longest; second or third anal-fin spines longest, remaining spines and rays gradually decreasing in length (except in Dipterygonotus with dorsal fin profile not evenly sloping, last IV-V dorsal-fin spines small and nearly separate, connected only at their bases by membrane, and dorsal-fin rays much longer than these spines). Dorsal fin with X to XV slender weak spines and 8 to 22 soft rays; anal fin with III spines and 9 to 13 soft rays;pelvicfins with I spine and 5 soft rays; pectoral fins with 16 to 24 rays; caudal fin distinctly forked, with pointed lobes. Branchiostegal rays 7. Scales moderate to small, weakly ctenoid; lateral-line scales 45 to 88; scale rows on body running horizontally; dorsal and anal fins with scales except for Gymnocaesio gymnoptera and Dipterygonotus balteatus. Ascending premaxillary process a separate ossification from premaxilla; ethmo-maxillary ligament absent; a separate A1’ section of the adductor mandibulae which originates on the subocular shelf.
    [Show full text]
  • Assessment of a 35-Mm Square-Mesh Codend Design in the Ocean Prawn
    Assessment of a 35-mm square-mesh codend and composite square-mesh panel configuration in the ocean prawn-trawl fishery of northern New South Wales William G. Macbeth, Daniel D. Johnson and Charles A. Gray NSW Department of Primary Industries Cronulla Fisheries Research Centre of Excellence P.O. Box 21, Cronulla, NSW 2230, Australia Northern Rivers Catchment Management Authority Project No. IS7-8-243-06 July 2008 NSW Department of Primary Industries – Fisheries Final Report Series No. 103 ISSN 1449-9967 Assessment of a 35-mm square-mesh codend and composite square-mesh panel configuration in the ocean prawn- trawl fishery of northern New South Wales July 2008 Authors: Macbeth, W.G., Johnson, D.D. and Gray, C.A. Published By: NSW Department of Primary Industries (now incorporating NSW Fisheries) Postal Address: Cronulla Fisheries Research Centre of Excellence, PO Box 21, NSW, 2230 Internet: www.dpi.nsw.gov.au © NSW Department of Primary Industries and the Northern Rivers Catchment Management Authority This work is copyright. Except as permitted under the Copyright Act, no part of this reproduction may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. DISCLAIMER The publishers do not warrant that the information in this report is free from errors or omissions. The publishers do not accept any form of liability, be it contractual, tortuous or otherwise, for the contents of this report for any consequences arising from its use or any reliance placed on it.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Report Re Report Title
    ASSESSMENT OF CORAL REEF BIODIVERSITY IN THE CORAL SEA Edgar GJ, Ceccarelli DM, Stuart-Smith RD March 2015 Report for the Department of Environment Citation Edgar GJ, Ceccarelli DM, Stuart-Smith RD, (2015) Reef Life Survey Assessment of Coral Reef Biodiversity in the Coral Sea. Report for the Department of the Environment. The Reef Life Survey Foundation Inc. and Institute of Marine and Antarctic Studies. Copyright and disclaimer © 2015 RLSF To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of RLSF. Important disclaimer RLSF advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, RLSF (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Cover Image: Wreck Reef, Rick Stuart-Smith Back image: Cato Reef, Rick Stuart-Smith Catalogue in publishing details ISBN ……. printed version ISBN ……. web version Chilcott Island Contents Acknowledgments ........................................................................................................................................ iv Executive summary........................................................................................................................................ v 1 Introduction ...................................................................................................................................
    [Show full text]
  • Annotated Checklist of the Fishes of Lord Howe Island
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Allen, Gerald R., Douglass F. Hoese, John R. Paxton, J. E. Randall, C. Russell, W. A. Starck, F. H. Talbot, and G. P. Whitley, 1977. Annotated checklist of the fishes of Lord Howe Island. Records of the Australian Museum 30(15): 365–454. [21 December 1976]. doi:10.3853/j.0067-1975.30.1977.287 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia ANNOTATED CHECKLIST OF THE FISHES OF LORD HOWE ISLAND G. R. ALLEN, 1,2 D. F. HOESE,1 J. R. PAXTON,1 J. E. RANDALL, 3 B. C. RUSSELL},4 W. A. STARCK 11,1 F. H. TALBOT,1,4 AND G. P. WHITlEy5 SUMMARY lord Howe Island, some 630 kilometres off the northern coast of New South Wales, Australia at 31.5° South latitude, is the world's southern most locality with a well developed coral reef community and associated lagoon. An extensive collection of fishes from lord Howelsland was made during a month's expedition in February 1973. A total of 208 species are newly recorded from lord Howe Island and 23 species newly recorded from the Australian mainland. The fish fauna of lord Howe is increased to 447 species in 107 families. Of the 390 species of inshore fishes, the majority (60%) are wide-ranging tropical forms; some 10% are found only at lord Howe Island, southern Australia and/or New Zealand.
    [Show full text]
  • Fao Species Catalogue
    FAO Fisheries Synopsis No. 125, Volume 8 FIR/S125 Vol. 8 FAO SPECIES CATALOGUE VOL. 8. FUSILIER FISHES OF THE WORLD AN ANNOTATED AND ILLUSTRATED CATALOGUE OF CAESIONID SPECIES KNOWN TO DATE xxxXXXX u n vA/yyvw 'Avvï^r / X)(x//Æ ^^m ■/ ^ / ¡1A r / y 1/ ¡/I XX y A A /V h*/Í/ WÜ* XW x7/JLíVY I b X A \ vV ^v\ v jX a r t i n i f "2 S 9 l ^ ' ! / • s i l « ) « ® ' ^ 'IW Ífc g i " '•'Aí'&fl * '» w ;« > 5 s M ÏÏXKXXXY, X V vTTW \ \ \ / * V vV *V vV \M A ® 3 ® & ''Vv'/F A A í / I * ürywi/íAU; y y x/yvy , 'A* » i \ '( v\Á#»/ / Y¥[ a/\/) WY y v v ¡£i¿W ' * ■ ^'M 'V v^rW 1 UNITED NATIONS DEVELOPMENT PROGRAMME ^ 5 ^ FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS FAQ Fisheries Synopsis No. 125, Volume 8 FIR/S125 Vol. 8 FAO SPECIES CATALOGUE VOL. 8 FUSILIER FISHES OF THE WORLD An Annotated and Illustrated Catalogue of Caesionid Species Known to Date prepared by Kent E. Carpenter Mariculture and Fisheries Department Kuwait Institute for Scientific Research P.O. Box 1638 Salmiya 22017 K u w a it FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1988 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city of area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Tracing the Genetic Footprints of the Redbelly Yellowtail Fusilier, Caesio
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Fall 2017 Tracing the Genetic Footprints of the Redbelly Yellowtail Fusilier, Caesio Cuning, Across Multiple Spatial and Evolutionary Scales Amanda Susanne Ackiss Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Genetics Commons Recommended Citation Ackiss, Amanda S.. "Tracing the Genetic Footprints of the Redbelly Yellowtail Fusilier, Caesio Cuning, Across Multiple Spatial and Evolutionary Scales" (2017). Doctor of Philosophy (PhD), dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/t8md-tf35 https://digitalcommons.odu.edu/biology_etds/20 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. TRACING THE GENETIC FOOTPRINTS OF THE REDBELLY YELLOWTAIL FUSILIER, CAESIO CUNING, ACROSS MULTIPLE SPATIAL AND EVOLUTIONARY SCALES by Amanda Susanne Ackiss B.A. May 2002, University of Virginia A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY ECOLOGICAL SCIENCES OLD DOMINION UNIVERSITY December 2017 Approved by: Kent E. Carpenter (Director) Daniel Barshis (Member) David Gauthier (Member) Christopher Bird (Member) ABSTRACT TRACING THE GENETIC FOOTPRINTS OF THE REDBELLY YELLOWTAIL FUSILIER, CAESIO CUNING, ACROSS MULTIPLE SPATIAL AND EVOLUTIONARY SCALES Amanda Susanne Ackiss Old Dominion University, 2017 Director: Dr. Kent E. Carpenter Overfishing is one of the most pervasive threats to coral reef ecosystems, and management of these multi-species resources is hampered by limited species-specific population level information.
    [Show full text]
  • Introduced Marine Species in Pago Pago Harbor, Fagatele Bay and the National Park Coast, American Samoa
    INTRODUCED MARINE SPECIES IN PAGO PAGO HARBOR, FAGATELE BAY AND THE NATIONAL PARK COAST, AMERICAN SAMOA December 2003 COVER Typical views of benthic organisms from sampling areas (clockwise from upper left): Fouling organisms on debris at Pago Pago Harbor Dry Dock; Acropora hyacinthus tables in Fagetele Bay; Porites rus colonies in Fagasa Bay; Mixed branching and tabular Acropora in Vatia Bay INTRODUCED MARINE SPECIES IN PAGO PAGO HARBOR, FAGATELE BAY AND THE NATIONAL PARK COAST, AMERICAN SAMOA Final report prepared for the U.S. Fish and Wildlife Service, Fagetele Bay Marine Sanctuary, National Park of American Samoa and American Samoa Department of Marine and Natural Resources. S. L. Coles P. R. Reath P. A. Skelton V. Bonito R. C. DeFelice L. Basch Bishop Museum Pacific Biological Survey Bishop Museum Technical Report No 26 Honolulu Hawai‘i December 2003 Published by Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright © 2003 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2003-007 to the Pacific Biological Survey EXECUTIVE SUMMARY The biological communities at ten sites around the Island of Tutuila, American Samoa were surveyed in October 2002 by a team of four investigators. Diving observations and collections of benthic observations using scuba and snorkel were made at six stations in Pago Pago Harbor, two stations in Fagatele Bay, and one station each in Vatia Bay and Fagasa Bay. The purpose of this survey was to determine the full complement of organisms greater than 0.5 mm in size, including benthic algae, macroinvertebrates and fishes, occurring at each site, and to evaluate the presence and potential impact of nonindigenous (introduced) marine species.
    [Show full text]
  • TUVALU MARINE LIFE PROJECT Phase 1: Literature Review
    TUVALU MARINE LIFE PROJECT Phase 1: Literature review Project funded by: Tuvalu Marine Biodiversity – Literature Review Table of content TABLE OF CONTENT 1. CONTEXT AND OBJECTIVES 4 1.1. Context of the survey 4 1.1.1. Introduction 4 1.1.2. Tuvalu’s national adaptation programme of action (NAPA) 4 1.1.3. Tuvalu national biodiversity strategies and action plan (NBSAP) 5 1.2. Objectives 6 1.2.1. General objectives 6 1.2.2. Specific objectives 7 2. METHODOLOGY 8 2.1. Gathering of existing data 8 2.1.1. Contacts 8 2.1.2. Data gathering 8 2.1.3. Documents referencing 16 2.2. Data analysis 16 2.2.1. Data verification and classification 16 2.2.2. Identification of gaps 17 2.3. Planning for Phase 2 18 2.3.1. Decision on which survey to conduct to fill gaps in the knowledge 18 2.3.2. Work plan on methodologies for the collection of missing data and associated costs 18 3. RESULTS 20 3.1. Existing information on Tuvalu marine biodiversity 20 3.1.1. Reports and documents 20 3.1.2. Data on marine species 24 3.2. Knowledge gaps 41 4. WORK PLAN FOR THE COLLECTION OF FIELD DATA 44 4.1. Meetings in Tuvalu 44 4.2. Recommendations on field surveys to be conducted 46 4.3. Proposed methodologies 48 4.3.1. Option 1: fish species richness assessment 48 4.3.2. Option 2: valuable fish stock assessment 49 4.3.3. Option 3: fish species richness and valuable fish stock assessment 52 4.3.4.
    [Show full text]
  • The Kagoshima University Museum No
    Bulletin of the Kagoshima University Museum No. 9 A total of 1,277 species, including 129 species that represent the first reliable records from the island on the basis of Annotated Checklist of Marine and Freshwater Fishes Yaku-shima Island ISSN-L 2188-9074 collected specimens and/or underwater photographs, are listed with citation of literature, registration numbers, sizes, ANNOTATED CHECKLIST OF MARINE AND FRESHWATER FISHES OF localities in the island, and nomenclatural, taxonomic, and ecological remarks. Color photographs of all the 129 YAKU-SHIMA ISLAND IN THE OSUMI ISLANDS, species newly recorded from the island are provided. KAGOSHIMA, SOUTHERN JAPAN, WITH 129 NEW RECORDS HIROYUKI MOTOMURA AND SHIGERU HARAZAKI Hiroyuki Motomura • Shigeru Harazaki February 2017 The Kagoshima University Museum Cover photograph: Cephalopholis sonnerati in a wreck off Isso, Yaku-shima island. Photo by S. Harazaki Back cover photograph: Males of Pseudanthias hypselosoma at 15 m depth off Isso, Yaku-shima island. Photo by S. Harazaki Bulletin of the Kagoshima University Museum No. 9 ISSN-L 2188-9074 Annotated checklist of marine and freshwater fishes of Yaku-shima island in the Osumi Islands, Kagoshima, southern Japan, with 129 new records Hiroyuki Motomura1, 3 and Shigeru Harazaki2 1The Kagoshima University Museum, 1–21–30 Korimoto, Kagoshima 890–0065, Japan E-mail: [email protected] 2Yakushima Diving Service “Mori to Umi”, 2473–294 Miyanoura, Yakushima, Kumage, Kagoshima 891–4205, Japan 3Corresponding author Abstract The second edition of an annotated checklist of marine and freshwater fishes of Yaku-shima island in the Osumi Group, Kagoshima Prefecture, southern Japan, was compiled from specimen and literature surveys.
    [Show full text]
  • Description of Key Species Groups in the East Marine Region
    Australian Museum Description of Key Species Groups in the East Marine Region Final Report – September 2007 1 Table of Contents Acronyms........................................................................................................................................ 3 List of Images ................................................................................................................................. 4 Acknowledgements ....................................................................................................................... 5 1 Introduction............................................................................................................................ 6 2 Corals (Scleractinia)............................................................................................................ 12 3 Crustacea ............................................................................................................................. 24 4 Demersal Teleost Fish ........................................................................................................ 54 5 Echinodermata..................................................................................................................... 66 6 Marine Snakes ..................................................................................................................... 80 7 Marine Turtles...................................................................................................................... 95 8 Molluscs ............................................................................................................................
    [Show full text]
  • Tonga SUMA Report
    BIOPHYSICALLY SPECIAL, UNIQUE MARINE AREAS OF TONGA EFFECTIVE MANAGEMENT Marine and coastal ecosystems of the Pacific Ocean provide benefits for all people in and beyond the region. To better understand and improve the effective management of these values on the ground, Pacific Island Countries are increasingly building institutional and personal capacities for Blue Planning. But there is no need to reinvent the wheel, when learning from experiences of centuries of traditional management in Pacific Island Countries. Coupled with scientific approaches these experiences can strengthen effective management of the region’s rich natural capital, if lessons learnt are shared. The MACBIO project collaborates with national and regional stakeholders towards documenting effective approaches to sustainable marine resource management and conservation. The project encourages and supports stakeholders to share tried and tested concepts and instruments more widely throughout partner countries and the Oceania region. This report outlines the process undertaken to define and describe the special, unique marine areas of Tonga. These special, unique marine areas provide an important input to decisions about, for example, permits, licences, EIAs and where to place different types of marine protected areas, locally managed marine areas and Community Conservation Areas in Tonga. For a copy of all reports and communication material please visit www.macbio-pacific.info. MARINE ECOSYSTEM MARINE SPATIAL PLANNING EFFECTIVE MANAGEMENT SERVICE VALUATION BIOPHYSICALLY SPECIAL, UNIQUE MARINE AREAS OF TONGA AUTHORS: Ceccarelli DM1, Wendt H2, Matoto AL3, Fonua E3, Fernandes L2 SUGGESTED CITATION: Ceccarelli DM, Wendt H, Matoto AL, Fonua E and Fernandes L (2017) Biophysically special, unique marine areas of Tonga. MACBIO (GIZ, IUCN, SPREP), Suva.
    [Show full text]