Pigment Composition in Four Dinophysis Species (Dinophyceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dinophyceae), Including the Calcareous
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Protist, Vol. 163, 15–24, January 2012 provided by Electronic Publication Information Center http://www.elsevier.de/protis Published online date 8 July 2011 ORIGINAL PAPER Delimitation of the Thoracosphaeraceae (Dinophyceae), Including the Calcareous Dinoflagellates, Based on Large Amounts of Ribosomal RNA Sequence Data a,1 a a b Marc Gottschling , Sylvia Soehner , Carmen Zinssmeister , Uwe John , c d e f Jörg Plötner , Michael Schweikert , Katerina Aligizaki , and Malte Elbrächter a Department Biologie I, Bereich Biodiversitätsforschung, Organismische Biologie, Systematische Botanik und Mykologie, Ludwig-Maximilians-Universität München, GeoBio-Center, Menzinger Str. 67, 80638 Munich, Germany b Department Chemical Ecology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany c Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität Berlin, Berlin, Germany d Biologisches Institut – Abteilung Zoologie, Universität Stuttgart, Stuttgart, Germany e Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece f Wattenmeerstation Sylt, Alfred Wegener Institute for Polar and Marine Research, List/Sylt, Germany Submitted November 4, 2010; Accepted May 21, 2011 Monitoring Editor: Hervé Philippe The phylogenetic relationships of the Dinophyceae (Alveolata) are not sufficiently resolved at present. The Thoracosphaeraceae (Peridiniales) are the only group of the Alveolata that include members with calcareous coccoid stages; this trait is considered apomorphic. Although the coccoid stage appar- ently is not calcareous, Bysmatrum has been assigned to the Thoracosphaeraceae based on thecal morphology. We tested the monophyly of the Thoracosphaeraceae using large sets of ribosomal RNA sequence data of the Alveolata including the Dinophyceae. -
Cryptophyte Farming by Symbiotic Ciliate Host Detected in Situ
Cryptophyte farming by symbiotic ciliate host detected in situ Dajun Qiua, Liangmin Huanga, and Senjie Linb,1 aChinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; and bDepartment of Marine Sciences, University of Connecticut, Groton, CT 06340 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved September 8, 2016 (received for review July 28, 2016) Protist–alga symbiosis is widespread in the ocean, but its character- as the causative species of the bloom, with no detectable crypto- istics and function in situ remain largely unexplored. Here we report phytes and hardly any other organisms present in the bloom water − the symbiosis of the ciliate Mesodinium rubrum with cryptophyte (Fig. 1B). At 1.03 × 106 cells L 1, M. rubrum abundance in the bloom cells during a red-tide bloom in Long Island Sound. In contrast to was over 100-fold higher than the annual peak in Long Island Sound the current notion that Mesodinium retains cryptophyte chloroplasts (15). Each Mesodinium cell harbored 20 to 30 cryptophyte cells (n = or organelles, our multiapproach analyses reveal that in this bloom 16), which packed the peripheral region of the M. rubrum cells (Fig. the endosymbiotic Teleaulax amphioxeia cells were intact and 1E), with complete cell structures, including cell membranes, nuclei, expressing genes of membrane transporters, nucleus-to-cytoplasm and chloroplasts (Fig. 1C). Taking advantage of the large cell size of RNA transporters, and all major metabolic pathways. Among the Mesodinium spp. (width, 20 to 23 μm; length, 25 to 26 μm), we most highly expressed were ammonium transporters in both organ- picked M. -
Growth, Behaviour and Cell Toxin Quota of Dinophysis Acuta During a Daily Cycle
Vol. 353: 89–105, 2008 MARINE ECOLOGY PROGRESS SERIES Published January 17 doi: 10.3354/meps07179 Mar Ecol Prog Ser Growth, behaviour and cell toxin quota of Dinophysis acuta during a daily cycle G. Pizarro1, 3,*, L. Escalera1, S. González-Gil1, J. M. Franco2, B. Reguera1 1Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Aptdo. 1552, 36280 Vigo, Spain 2Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36080 Vigo, Spain 3Present address: Instituto de Fomento Pesquero-CEQUA, Enrique Abello 0552, Casilla 101, Punta Arenas, Chile ABSTRACT: In 2005, a bloom of the Diarrhoetic Shellfish Poisoning (DSP) causative agent Dino- physis acuta Ehrenberg in the Galician Rías Baixas (NW Spain) started in early August and reached maximum densities (up to 2 × 104 cell l–1) in mid November. A cell cycle study was carried out over a 22 h period on 9 and 10 November to describe the physiological status and the short-term variability in cell toxin quota of D. acuta at the time of the annual maximum of lipophilic toxins in shellfish. At that time, the population of D. acuta showed an extremely low division rate (μ = 0.03 d–1), a high frequency of dead cells (up to 15%) and cells with starch granules (up to 93%), and no evidence of recent mixotrophic behaviour. Still, the cells, which did not perform vertical migration, aggregated around salinity-driven density discontinuities in the top 5 m and had a high cell toxin quota (deter- mined by liquid chromatography-mass spectrometry) for this species. A 3.5-fold difference was found between maximum (during the night) and minimum values of cell toxin quota. -
Ultrastructure and Molecular Phylogenetic Position of a New Marine Sand-Dwelling Dinoflagellate from British Columbia, Canada: Pseudadenoides Polypyrenoides Sp
European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: http://www.tandfonline.com/loi/tejp20 Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae) Mona Hoppenrath, Naoji Yubuki, Rowena Stern & Brian S. Leander To cite this article: Mona Hoppenrath, Naoji Yubuki, Rowena Stern & Brian S. Leander (2017) Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae), European Journal of Phycology, 52:2, 208-224, DOI: 10.1080/09670262.2016.1274788 To link to this article: http://dx.doi.org/10.1080/09670262.2016.1274788 View supplementary material Published online: 03 Mar 2017. Submit your article to this journal Article views: 25 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tejp20 Download by: [The University of British Columbia] Date: 13 April 2017, At: 11:37 EUROPEAN JOURNAL OF PHYCOLOGY, 2017 VOL. 52, NO. 2, 208–224 http://dx.doi.org/10.1080/09670262.2016.1274788 Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae) Mona Hoppenratha,b, Naoji Yubukia,c, Rowena Sterna,d and Brian S. Leandera aDepartments of Botany and Zoology, -
The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years. -
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
Grazing Impacts of the Heterotrophic Dinoflagellate Polykrikos Kofoidii on a Bloom of Gymnodinium Catenatum
AQUATIC MICROBIAL ECOLOGY Published April 30 Aquat Microb Ecol NOTE Grazing impacts of the heterotrophic dinoflagellate Polykrikos kofoidii on a bloom of Gymnodinium catenatum Yukihiko Matsuyama'f*,Masahide Miyamoto2, Yuichi ~otani' 'National Research Institute of Fisheries and Environment of Inland Sea, Maruishi, Ohno, Saeki, Hiroshima 739-0452, Japan 2KumamotoAriake Fisheries Direction Office, Iwasaki, Tamana, Kumamoto 865-0016, Japan ABSTRACT: In 1998, a red tide of the paralytic shellfish an assessment of the natural population of G. catena- poisoning (PSP)-producing dinoflagellate Gymnodinium cate- turn coupled with a laboratory incubation experiment naturn Graham occurred in Yatsushiro Sea, western Japan. to evaluate the bloom fate. We present data showing The dramatic decline of dominant G. catenatum cells oc- curred during the field and laboratory assessments, accompa- considerable predation by the pseudocolonial hetero- nied with growth of the heterotrophic dinoflagellate Poly- trophic dinoflagellate Polykrikos kofoidii Chatton on knkos kofoidii Chatton. Microscopic observations on both the dominant G. catenatum population, and discuss field and laboratory cultured bloom water revealed that the ecological importance of the genus Polykrikos and >50% of P. kofoidii predated on the natural population of G. catenaturn, and 1 to 8 G. catenatum cells were found in its grazing impact on harmful algal blooms. food vacuoles of P. kofoidii pseudocolonies. Our results sug- Materials and methods. Filed population surveys: gest that predation by P. kofoidii contributes to the cessation The Gymnodinium catenatum bloom occurred from 19 of a G. catenatum bloom. January to 5 February in Miyano-Gawachi Bay, west- ern Yatsushiro Sea, Kyushu Island (Fig. 1). Five cruises KEY WORDS: PSP - Gymnodimurn catenatum . -
A Parasite of Marine Rotifers: a New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae)
Hindawi Publishing Corporation Journal of Marine Biology Volume 2015, Article ID 614609, 5 pages http://dx.doi.org/10.1155/2015/614609 Research Article A Parasite of Marine Rotifers: A New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae) Fernando Gómez1 and Alf Skovgaard2 1 Laboratory of Plankton Systems, Oceanographic Institute, University of Sao˜ Paulo, Prac¸a do Oceanografico´ 191, Cidade Universitaria,´ 05508-900 Butanta,˜ SP, Brazil 2Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 7, 1870 Frederiksberg C, Denmark Correspondence should be addressed to Fernando Gomez;´ [email protected] Received 11 July 2015; Accepted 27 August 2015 Academic Editor: Gerardo R. Vasta Copyright © 2015 F. Gomez´ and A. Skovgaard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dinoflagellate infections have been reported for different protistan and animal hosts. We report, for the first time, the association between a dinoflagellate parasite and a rotifer host, tentatively Synchaeta sp. (Rotifera), collected from the port of Valencia, NW Mediterranean Sea. The rotifer contained a sporangium with 100–200 thecate dinospores that develop synchronically through palintomic sporogenesis. This undescribed dinoflagellate forms a new and divergent fast-evolved lineage that branches amongthe dinokaryotic dinoflagellates. 1. Introduction form independent lineages with no evident relation to other dinoflagellates [12]. In this study, we describe a new lineage of The alveolates (or Alveolata) are a major lineage of protists an undescribed parasitic dinoflagellate that largely diverged divided into three main phyla: ciliates, apicomplexans, and from other known dinoflagellates. -
Metagenomic Characterization of Unicellular Eukaryotes in the Urban Thessaloniki Bay
Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay George Tsipas SCHOOL OF ECONOMICS, BUSINESS ADMINISTRATION & LEGAL STUDIES A thesis submitted for the degree of Master of Science (MSc) in Bioeconomy Law, Regulation and Management May, 2019 Thessaloniki – Greece George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ Student Name: George Tsipas SID: 268186037282 Supervisor: Prof. Dr. Savvas Genitsaris I hereby declare that the work submitted is mine and that where I have made use of another’s work, I have attributed the source(s) according to the Regulations set in the Student’s Handbook. May, 2019 Thessaloniki - Greece Page 2 of 63 George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ 1. Abstract The present research investigates through metagenomics sequencing the unicellular protistan communities in Thermaikos Gulf. This research analyzes the diversity, composition and abundance in this marine environment. Water samples were collected monthly from April 2017 to February 2018 in the port of Thessaloniki (Harbor site, 40o 37’ 55 N, 22o 56’ 09 E). The extraction of DNA was completed as well as the sequencing was performed, before the downstream read processing and the taxonomic classification that was assigned using PR2 database. A total of 1248 Operational Taxonomic Units (OTUs) were detected but only 700 unicellular eukaryotes were analyzed, excluding unclassified OTUs, Metazoa and Streptophyta. In this research-based study the most abundant and diverse taxonomic groups were Dinoflagellata and Protalveolata. Specifically, the most abundant groups of all samples are Dinoflagellata with 190 OTUs (27.70%), Protalveolata with 139 OTUs (20.26%) Ochrophyta with 73 OTUs (10.64%), Cercozoa with 67 OTUs (9.77%) and Ciliophora with 64 OTUs (9.33%). -
Metabolomic Profiles of Dinophysis Acuminata and Dinophysis Acuta
Metabolomic Profiles of Dinophysis acuminata and Dinophysis acuta Using Non- Targeted High-Resolution Mass Spectrometry Effect of Nutritional Status and Prey García-Portela, María; Reguera, Beatriz; Sibat, Manoella; Altenburger, Andreas; Rodríguez, Francisco; Hess, Philipp Published in: Marine Drugs DOI: 10.3390/md16050143 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): García-Portela, M., Reguera, B., Sibat, M., Altenburger, A., Rodríguez, F., & Hess, P. (2018). Metabolomic Profiles of Dinophysis acuminata and Dinophysis acuta Using Non-Targeted High-Resolution Mass Spectrometry: Effect of Nutritional Status and Prey. Marine Drugs, 16(5), [143]. https://doi.org/10.3390/md16050143 Download date: 24. Sep. 2021 marine drugs Article Metabolomic Profiles of Dinophysis acuminata and Dinophysis acuta Using Non-Targeted High-Resolution Mass Spectrometry: Effect of Nutritional Status and Prey María García-Portela 1,* ID , Beatriz Reguera 1 ID , Manoella Sibat 2 ID , Andreas Altenburger 3 ID , Francisco Rodríguez 1 and Philipp Hess 2 ID 1 IEO, Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain; [email protected] (B.R.); [email protected] (F.R.) 2 IFREMER, Phycotoxins Laboratory, rue de l’Ile d’Yeu, BP 21105, F-44311 Nantes, France; [email protected] (M.S.); [email protected] (P.H.) 3 Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark; [email protected] * Correspondence: [email protected]; Tel.: +34-986-462-273 Received: 14 February 2018; Accepted: 20 April 2018; Published: 26 April 2018 Abstract: Photosynthetic species of the genus Dinophysis are obligate mixotrophs with temporary plastids (kleptoplastids) that are acquired from the ciliate Mesodinium rubrum, which feeds on cryptophytes of the Teleaulax-Plagioselmis-Geminigera clade. -
The Florida Red Tide Dinoflagellate Karenia Brevis
G Model HARALG-488; No of Pages 11 Harmful Algae xxx (2009) xxx–xxx Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Review The Florida red tide dinoflagellate Karenia brevis: New insights into cellular and molecular processes underlying bloom dynamics Frances M. Van Dolah a,*, Kristy B. Lidie a, Emily A. Monroe a, Debashish Bhattacharya b, Lisa Campbell c, Gregory J. Doucette a, Daniel Kamykowski d a Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Resarch, Charleston, SC, United States b Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, IA, United States c Department of Oceanography, Texas A&M University, College Station, TX, United States d Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States ARTICLE INFO ABSTRACT Article history: The dinoflagellate Karenia brevis is responsible for nearly annual red tides in the Gulf of Mexico that Available online xxx cause extensive marine mortalities and human illness due to the production of brevetoxins. Although the mechanisms regulating its bloom dynamics and toxicity have received considerable attention, Keywords: investigation into these processes at the cellular and molecular level has only begun in earnest during Bacterial–algal interactions the past decade. This review provides an overview of the recent advances in our understanding of the Cell cycle cellular and molecular biology on K. brevis. Several molecular resources developed for K. brevis, including Dinoflagellate cDNA and genomic DNA libraries, DNA microarrays, metagenomic libraries, and probes for population Florida red tide genetics, have revolutionized our ability to investigate fundamental questions about K. -
Mixotrophic Protists Among Marine Ciliates and Dinoflagellates: Distribution, Physiology and Ecology
FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN PhD thesis Woraporn Tarangkoon Mixotrophic Protists among Marine Ciliates and Dinoflagellates: Distribution, Physiology and Ecology Academic advisor: Associate Professor Per Juel Hansen Submitted: 29/04/10 Contents List of publications 3 Preface 4 Summary 6 Sammenfating (Danish summary) 8 สรุป (Thai summary) 10 The sections and objectives of the thesis 12 Introduction 14 1) Mixotrophy among marine planktonic protists 14 1.1) The role of light, food concentration and nutrients for 17 the growth of marine mixotrophic planktonic protists 1.2) Importance of marine mixotrophic protists in the 20 planktonic food web 2) Marine symbiont-bearing dinoflagellates 24 2.1) Occurrence of symbionts in the order Dinophysiales 24 2.2) The spatial distribution of symbiont-bearing dinoflagellates in 27 marine waters 2.3) The role of symbionts and phagotrophy in dinoflagellates with symbionts 28 3) Symbiosis and mixotrophy in the marine ciliate genus Mesodinium 30 3.1) Occurrence of symbiosis in Mesodinium spp. 30 3.2) The distribution of marine Mesodinium spp. 30 3.3) The role of symbionts and phagotrophy in marine Mesodinium rubrum 33 and Mesodinium pulex Conclusion and future perspectives 36 References 38 Paper I Paper II Paper III Appendix-Paper IV Appendix-I Lists of publications The thesis consists of the following papers, referred to in the synthesis by their roman numerals. Co-author statements are attached to the thesis (Appendix-I). Paper I Tarangkoon W, Hansen G Hansen PJ (2010) Spatial distribution of symbiont-bearing dinoflagellates in the Indian Ocean in relation to oceanographic regimes. Aquat Microb Ecol 58:197-213.