The Mechanism of Somite Segmentation in the Chick Embryo

Total Page:16

File Type:pdf, Size:1020Kb

The Mechanism of Somite Segmentation in the Chick Embryo /. Embryo/, exp. Morph. Vol. 51, pp. 227-243, 1979 227 Printed in Great Britain © Company of Biologists Limited 1979 The mechanism of somite segmentation in the chick embryo By RUTH BELLAIRS1 From the Department of Anatomy and Embryology, University College London SUMMARY The segmentation of somites in the chick embryo has been studied by transmission and scanning electron microscopy (stages 8—14). The segmental plate mesoderm consists of loosely arranged mesenchymal cells, whereas the newly formed somites are composed of elongated, spindle-shaped cells arranged radially around a lumen, the myocoele. The diameter of each somite is thus two cells plus the myocoele. Two major factors appear to be responsible for the change in cell shape at segmentation: (1) Each prospective somite cell becomes anchored at one end to the adjacent epithelia (i.e. the neural tube, the notochord, the ectoderm, the endoderm or the aorta) by means of collagen fibrils. These fibrils are already present in the segmental plate before the somites begin to form. (2) A change in cell-to-cell adhesiveness causes the free ends of these cells to adhere to one another. (Bellairs, Curtis & Sanders, .1978). This adhesion is then supplemented by the development of tight junctions proximally in the somite. Because it is anchored at both ends, each somite cell is under tension in much the same way as a fibroblast cell in tissue culture is under tension. Each somite cell therefore becomes elongated and the somite as a whole accommodates its general shape to that of the space available between the adjacent tissues. The arrangement of the cells in the more differentiated somites (stages 17-18) has also been examined and it has been found that the chick resembles Xenopus in that the myotome cells undergo rotation and become orientated in an antero- posterior direction. INTRODUCTION One of the most lively topics in developmental biology is that of how the mesoderm becomes segmented into somites. This problem has been tackled in four main ways. The first aims at disturbing the relationship between the prospective somite mesoderm and the adjacent tissues to determine which of these are necessary for segmentation. This type of experiment was originally based on the idea that the somites formed as the result of a specific embryonic induction by another tissue (e.g. by the notochord or neural tissue), but recently that idea has been modified and a more modern concept is that there is a pro- gramming of the mesoderm at an earlier stage and that the role of the notochord may be to help in 'stabilizing' the somites once they are formed (Lipton & Jacobson, 1974 a, b; Menkes & Sandor, 1977). 1 Author's address: Department of Anatomy and Embryology, University College, Gower Street, London WC1 6BT, U.K. 228 R. BELLAIRS The second approach is essentially a theoretical one and aims to solve such problems as that of how the number of somites is determined by the embryo. The most recent of these is the application of the mathematical' Catastrophe Theory' to amphibian embryos by Cooke & Zeeman (1976), which has received support from the experiments of Elsdale, Pearson & Whitehead (1976). Catastrophe Theory has also been applied to chick somitogenesis by Zeeman (1976). The third approach has been to compare the properties of unsegmented and segmented mesoderm to gain some idea of the changes that occur in the cells at segmentation. Bellairs et ah (1978), showed that as the mesoderm became segmented, its cells became more adhesive to one another. Similarly it was found that when pieces of unsegmented mesoderm were explanted in tissue culture, they behaved differently from segmented mesoderm (Bellairs & Portch, 1977; Bellairs, Sanders & Portch, 1980). The fourth approach has been to study the morphological changes that take place in somite segmentation. Although these were described by many of the earlier authors (e.g. Duval, 1889; Williams, 1910), the only recent major analysis was by Lipton & Jacobson (1974a,b) who used both light and transmission electron microscopy, but these authors were concerned with the first six pairs of somites only. No detailed account of segmentation by scanning electron microscopy has been given previously. The present paper is therefore concerned with an SEM study of somite segmentation. Particular attention will be paid to the role of the extracellular materials in somitogenesis. MATERIALS AND METHODS Hens' eggs were incubated for periods between 30 and 72 h so that the embryos were between about stages 8 and 18 of Hamburger & Hamilton (1951). Because the process of segmentation begins at the anterior end and spreads posteriorly, there is a gradient of developmental stages along the body axis, the anterior regions being in advance of the posterior ones. Four different developmental stages of somitic mesoderm (Fig. 1) were therefore distinguishable: (a) Unsegmented mesoderm, which is a thick band of tissue, the segmental or paraxial plate, which runs longitudinally down either side of the neural tube and notochord in the trunk region. (b) Transitional mesoderm, which is partly segmented; for example, two pairs of partly formed somites are present at stage 12. (c) Newly formed somites, which lie just anterior to the transitional mesoderm, and which have not yet begun to form dermo-myotomes and sclerotomes. (d) Mature somites, which are the most anteriorly situated somites and which have begun to form dermo-myotomes and sclerotomes. At stage 12, 16 pairs of somites are present but by stage 18 a further 20 or more pairs have differentiated and there is little unsegmented mesoderm Somite segmentation in the chick embryo 229 Differentiated somites Newly segmented somites Transitional region Lateral plate Segmental plate Fig. 1. Diagram to show the different regions of somitic mesoderm and lateral plate in a stage-14 embryo. remaining. The differentiation of most of the somites into dermo-myotomes and sclerotomes is well advanced in these older embryos. Fourteen specimens were prepared for transmission electron microscopy (TEM) and sixteen for scanning electron microscopy (SEM). Specimens for TEM were fixed in 2-5 % glutaraldehyde in 0-1M sodium cacodylate at a pH of 7-2 for 1-4 h and then washed three times in 0-1 M sodium cacodylate contain- ing 0-333 g CaCl2 for a total of l|h. They were treated with 1 % osmium tetroxide in phosphate buffer (pH 7-2 for 1 h at 4 °C then rinsed in phosphate buffer. After dehydration in graded ethanols, followed by two changes of propylene oxide, they were embedded in Araldite. Sections were stained with 2 % uranyl acetate at 38 °C for 2 min then counterstained with lead citrate. Twenty-seven specimens were fixed for periods of 4-24 h in 3 % glutaraldehyde in cacodylate buffer, at pH 7-2. After washing in cacodylate buffer, the specimens were immersed in 1 % osmium tetroxide for 30 min, washed again in buffer and dehydrated in graded ethanols. They were dried in a Polaron critical point drying apparatus from liquid CO2, mounted on stubs with UHU glue (Fishmar, Ltd, Waterford, Eire) and coated with gold. 230 R. BELLAIRS Somite segmentation in the chick embryo 231 RESULTS Figure 2 shows a recently formed somite cut transversely and viewed by SEM. It is triangular in section and comparable to the specimen illustrated with a light micrograph by Lipton & Jacobson (1974a; their fig. 8). Those cells which lie on the dorso-medial side of the somite and beneath the neural plate are arranged in a columnar manner, but the cells of the more ventral region are less well organized. There are many contacts between the somite and the neural plate and these consist mainly of extracellular materials (Fig. 3). Similar materials are present between the somite and the endoderm. A large part of these extracellular materials consists of fibrils which are probably collagenous (see Discussion). Similar fibrils are also present between the lateral plate mesoderm and the underlying endoderm. It is well known that soon after the first somites have formed, the neural folds rise up towards one another, and the dorso-medial wall of each somite rises with it (Lipton & Jacobson, 1974a) eventually becoming the vertically orientated medial wall of each somite (Williams, 1910). In this way these first formed somites change shape and acquire the rosette shape which is generally considered to be a characteristic of all somites. When seen in longitudinal section a somite is typically rosette-shaped (Fig. 4) though in transverse section it is box or wedge-shaped (Fig. 5). Lipton & Jacobson (1974a) have already pointed out that only the first three pairs of somites are formed in association with a flat neural plate, and that these are FIGURES 2-7 Fig. 2. SEM micrograph of part of a stage-8 embryo. The specimen has been fractured across the 3rd somite. Note the collagen fibrils (/) which lie between the dorsal side of the somite (s) and the neural plate (/?). e, Endoderm; Ip, lateral plate, x 650. Fig. 3. Enlargement of part of Fig. 2 to show the collagen fibrils. Fig. 4. SEM micrograph of a longitudinal section through a somite of a stage-1.1 embryo. Spindle-shaped cells are arranged around a lumen (/) which contains other cells. Extracellular materials cover the surface of the somite, n, Neural plate; no, Notochord. x 585. Fig. 5. SEM micrograph of a transverse section through a somite and the associated lateral plate mesoderm of a stage-] 2 embryo. The aorta (a) and endoderm (e) are visible but other tissues have been removed, x 780. Fig. 6. SEM micrograph of the centre of a transversely broken somite from a stage-14 embryo. The myocoele is packed loosely with mesenchymal cells (arrowed), which make contact with the spindle-shaped cells of the somite (sp).
Recommended publications
  • 3 Embryology and Development
    BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation.
    [Show full text]
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • The Migration of Neural Crest Cells and the Growth of Motor Axons Through the Rostral Half of the Chick Somite
    /. Embryol. exp. Morph. 90, 437-455 (1985) 437 Printed in Great Britain © The Company of Biologists Limited 1985 The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite M. RICKMANN, J. W. FAWCETT The Salk Institute and The Clayton Foundation for Research, California division, P.O. Box 85800, San Diego, CA 92138, U.S.A. AND R. J. KEYNES Department of Anatomy, University of Cambridge, Downing St, Cambridge, CB2 3DY, U.K. SUMMARY We have studied the pathway of migration of neural crest cells through the somites of the developing chick embryo, using the monoclonal antibodies NC-1 and HNK-1 to stain them. Crest cells, as they migrate ventrally from the dorsal aspect of the neural tube, pass through the lateral part of the sclerotome, but only through that part of the sclerotome which lies in the rostral half of each somite. This migration pathway is almost identical to the path which pre- sumptive motor axons take when they grow out from the neural tube shortly after the onset of neural crest migration. In order to see whether the ventral root axons are guided along this pathway by neural crest cells, we surgically excised the neural crest from a series of embryos, and examined the pattern of axon outgrowth approximately 24 h later. In somites which contained no neural crest cells, ventral root axons were still found only in the rostral half of the somite, although axonal growth was slightly delayed. These axons were surrounded by sheath cells, which had presumably migrated out of the neural tube, to a point about 50 jan proximal to the growth cones.
    [Show full text]
  • Comparing the Differentiation Potential of Brachyury+ Mesodermal Cells
    bioRxiv preprint doi: https://doi.org/10.1101/239913; this version posted December 26, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 of 44 + 1 Comparing the differentiation potential of Brachyury mesodermal 2 cells generated from 3-D and 2-D culture systems 3 Jing Zhou 1, Antonius Plagge 1 and Patricia Murray 1,* 4 1 Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; E-mails: 5 [email protected] (J.Z.); [email protected] (A.P.); [email protected] 6 (P.M.) 7 * Correspondence: [email protected] 8 Abstract 9 Mesodermal populations can be generated in vitro from mouse embryonic stem cells (mESCs) using 10 three-dimensional (3-D) aggregates called embryoid bodies or two-dimensional (2-D) monolayer 11 culture systems. Here, we investigated whether Brachyury-expressing mesodermal cells generated 12 using 3-D or 2-D culture systems are equivalent, or instead, have different properties. Using a 13 Brachyury-GFP/E2-Crimson reporter mESC line, we isolated Brachyury-GFP+ mesoderm cells using 14 flow-activated cell sorting and compared their gene expression profiles and ex vivo differentiation 15 patterns. Quantitative RT-PCR analysis showed significant up-regulation of Cdx2, Foxf1 and Hoxb1 in 16 the Brachyury-GFP+ cells isolated from the 3-D system compared with those isolated from the 2-D 17 system.
    [Show full text]
  • The Genetic Basis of Mammalian Neurulation
    REVIEWS THE GENETIC BASIS OF MAMMALIAN NEURULATION Andrew J. Copp*, Nicholas D. E. Greene* and Jennifer N. Murdoch‡ More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects. 6 ECTODERM Neurulation is a fundamental event of embryogenesis distinct locations in the brain and spinal cord .By The outer of the three that culminates in the formation of the neural tube, contrast, the mechanisms that underlie the forma- embryonic (germ) layers that which is the precursor of the brain and spinal cord. A tion, elevation and fusion of the neural folds have gives rise to the entire central region of specialized dorsal ECTODERM, the neural plate, remained elusive. nervous system, plus other organs and embryonic develops bilateral neural folds at its junction with sur- An opportunity has now arisen for an incisive analy- structures. face (non-neural) ectoderm. These folds elevate, come sis of neurulation mechanisms using the growing battery into contact (appose) in the midline and fuse to create of genetically targeted and other mutant mouse strains NEURAL CREST the neural tube, which, thereafter, becomes covered by in which NTDs form part of the mutant phenotype7.At A migratory cell population that future epidermal ectoderm.
    [Show full text]
  • Segmentation and Specification of the Drosophila Mesoderm
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Segmentation and specification of the Drosophila mesoderm Natalia Azpiazu, 1,3 Peter A. Lawrence, 2 Jean-Paul Vincent, 2 and Manfred Frasch 1'4 1Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029 USA; 2Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, UK Patterning of the developing mesoderm establishes primordia of the visceral, somatic, and cardiac tissues at defined anteroposterior and dorsoventral positions in each segment. Here we examine the mechanisms that locate and determine these primordia. We focus on the regulation of two mesodermal genes: bagpipe (hap), which defines the anlagen of the visceral musculature of the midgut, and serpent (srp), which marks the anlagen of the fat body. These two genes are activated in specific groups of mesodermal cells in the anterior portions of each parasegment. Other genes mark the anlagen of the cardiac and somatic mesoderm and these are expressed mainly in cells derived from posterior portions of each parasegment. Thus the parasegments appear to be subdivided, at least with respect to these genes, a subdivision that depends on pair-rule genes such as even-skipped (eve). We show with genetic mosaics that eve acts autonomously within the mesoderm. We also show that hedgehog (hh) and wingless (wg) mediate pair-rule gene functions in the mesoderm, probably partly by acting within the mesoderm and partly by inductive signaling from the ectoderm, hh is required for the normal activation of hap and srp in anterior portions of each parasegment, whereas wg is required to suppress bap and srp expression in posterior portions.
    [Show full text]
  • Mesoderm Induction and the Control of Gastrulation in Xenopus Laevis:The
    Development 108, 229-238 (1990) 229 Printed in Great Britain ©The Company of Biologists Limited 1990 Mesoderm induction and the control of gastrulation in Xenopus laevis: the roles of fibronectin and integrins J. C. SMITH1, K. SYMESH, R. O. HYNES2'3 and D. DeSIMONE3* ' Laboratory of Embryogenesis, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK ^Howard Hughes Medical Institute and ^Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA * Present address: University of Virginia, Health Sciences Center, Department of Anatomy and Cell Biology, Box 439, School of Medicine, Charlottesville, VA 22908, USA t Present address: Department of Cell and Molecular Biology, 385 LSA, University of California, Berkeley, CA 94720, USA Summary Exposure of isolated Xenopus animal pole ectoderm to diated cell migration is not required for convergent the XTC mesoderm-inducing factor (XTC-MIF) causes extension. the tissue to undergo gastrulation-like movements. In We have investigated the molecular basis of XTC- this paper, we take advantage of this observation to MIF-induced gastrulation-like movements by measuring investigate the control of various aspects of gastrulation rates of synthesis of fibronectin and of the integrin f}y in Xenopus. chain in induced and control explants. No significant Blastomcres derived from induced animal pole regions differences were observed, and this suggests that gastru- are able, like marginal zone cells, but unlike control lation is not initiated simply by control of synthesis of animal pole blastomeres, to spread and migrate on a these molecules. In future work, we intend to investigate fibronectin-coated surface.
    [Show full text]
  • Stages of Embryonic Development of the Zebrafish
    DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope.
    [Show full text]
  • Understanding Paraxial Mesoderm Development and Sclerotome Specification for Skeletal Repair Shoichiro Tani 1,2, Ung-Il Chung2,3, Shinsuke Ohba4 and Hironori Hojo2,3
    Tani et al. Experimental & Molecular Medicine (2020) 52:1166–1177 https://doi.org/10.1038/s12276-020-0482-1 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Understanding paraxial mesoderm development and sclerotome specification for skeletal repair Shoichiro Tani 1,2, Ung-il Chung2,3, Shinsuke Ohba4 and Hironori Hojo2,3 Abstract Pluripotent stem cells (PSCs) are attractive regenerative therapy tools for skeletal tissues. However, a deep understanding of skeletal development is required in order to model this development with PSCs, and for the application of PSCs in clinical settings. Skeletal tissues originate from three types of cell populations: the paraxial mesoderm, lateral plate mesoderm, and neural crest. The paraxial mesoderm gives rise to the sclerotome mainly through somitogenesis. In this process, key developmental processes, including initiation of the segmentation clock, formation of the determination front, and the mesenchymal–epithelial transition, are sequentially coordinated. The sclerotome further forms vertebral columns and contributes to various other tissues, such as tendons, vessels (including the dorsal aorta), and even meninges. To understand the molecular mechanisms underlying these developmental processes, extensive studies have been conducted. These studies have demonstrated that a gradient of activities involving multiple signaling pathways specify the embryonic axis and induce cell-type-specific master transcription factors in a spatiotemporal manner. Moreover, applying the knowledge of mesoderm development, researchers have attempted to recapitulate the in vivo development processes in in vitro settings, using mouse and human PSCs. In this review, we summarize the state-of-the-art understanding of mesoderm development and in vitro modeling of mesoderm development using PSCs. We also discuss future perspectives on the use of PSCs to generate skeletal tissues for basic research and clinical applications.
    [Show full text]
  • Sonic Hedgehog a Neural Tube Anti-Apoptotic Factor 4013 Other Side of the Neural Plate, Remaining in Contact with Midline Cells, RESULTS Was Used As a Control
    Development 128, 4011-4020 (2001) 4011 Printed in Great Britain © The Company of Biologists Limited 2001 DEV2740 Anti-apoptotic role of Sonic hedgehog protein at the early stages of nervous system organogenesis Jean-Baptiste Charrier, Françoise Lapointe, Nicole M. Le Douarin and Marie-Aimée Teillet* Institut d’Embryologie Cellulaire et Moléculaire, CNRS FRE2160, 49bis Avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne Cedex, France *Author for correspondence (e-mail: [email protected]) Accepted 19 July 2001 SUMMARY In vertebrates the neural tube, like most of the embryonic notochord or a floor plate fragment in its vicinity. The organs, shows discreet areas of programmed cell death at neural tube can also be recovered by transplanting it into several stages during development. In the chick embryo, a stage-matched chick embryo having one of these cell death is dramatically increased in the developing structures. In addition, cells engineered to produce Sonic nervous system and other tissues when the midline cells, hedgehog protein (SHH) can mimic the effect of the notochord and floor plate, are prevented from forming by notochord and floor plate cells in in situ grafts and excision of the axial-paraxial hinge (APH), i.e. caudal transplantation experiments. SHH can thus counteract a Hensen’s node and rostral primitive streak, at the 6-somite built-in cell death program and thereby contribute to organ stage (Charrier, J. B., Teillet, M.-A., Lapointe, F. and Le morphogenesis, in particular in the central nervous system. Douarin, N. M. (1999). Development 126, 4771-4783). In this paper we demonstrate that one day after APH excision, Key words: Apoptosis, Avian embryo, Cell death, Cell survival, when dramatic apoptosis is already present in the neural Floor plate, Notochord, Quail/chick, Shh, Somite, Neural tube, tube, the latter can be rescued from death by grafting a Spinal cord INTRODUCTION generally induces an inflammatory response.
    [Show full text]
  • The Derivatives of Three-Layered Embryo (Germ Layers)
    HUMANHUMAN EMBRYOLOGYEMBRYOLOGY Department of Histology and Embryology Jilin University ChapterChapter 22 GeneralGeneral EmbryologyEmbryology FourthFourth week:week: TheThe derivativesderivatives ofof trilaminartrilaminar germgerm discdisc Dorsal side of the germ disc. At the beginning of the third week of development, the ectodermal germ layer has the shape of a disc that is broader in the cephalic than the caudal region. Cross section shows formation of trilaminar germ disc Primitive pit Drawing of a sagittal section through a 17-day embryo. The most cranial portion of the definitive notochord has formed. ectoderm Schematic view showing the definitive notochord. horizon =ectoderm hillside fields =neural plate mountain peaks =neural folds Cave sinks into mountain =neural tube valley =neural groove 7.1 Derivatives of the Ectodermal Germ Layer 1) Formation of neural tube Notochord induces the overlying ectoderm to thicken and form the neural plate. Cross section Animation of formation of neural plate When notochord is forming, primitive streak is shorten. At meanwhile, neural plate is induced to form cephalic to caudal end, following formation of notochord. By the end of 3rd week, neural folds and neural groove are formed. Neural folds fuse in the midline, beginning in cervical region and Cross section proceeding cranially and caudally. Neural tube is formed & invade into the embryo body. A. Dorsal view of a human embryo at approximately day 22. B. Dorsal view of a human embryo at approximately day 23. The nervous system is in connection with the amniotic cavity through the cranial and caudal neuropores. Cranial/anterior neuropore Neural fold heart Neural groove endoderm caudal/posterior neuropore A.
    [Show full text]
  • Differential Genetic Mutations of Ectoderm, Mesoderm, And
    Gao et al. Cancer Cell Int (2020) 20:595 https://doi.org/10.1186/s12935-020-01678-x Cancer Cell International PRIMARY RESEARCH Open Access Diferential genetic mutations of ectoderm, mesoderm, and endoderm-derived tumors in TCGA database Xingjie Gao1,2*, Xiaoteng Cui1,2,3, Xinxin Zhang1,2, Chunyan Zhao1,2, Nan Zhang1,2, Yan Zhao1,2, Yuanyuan Ren1,2, Chao Su1,2, Lin Ge1,2, Shaoyuan Wu1,2 and Jie Yang1,2* Abstract Background: In terms of biological behavior, gene regulation, or signaling pathways, there is a certain similarity between tumorigenesis and embryonic development of humans. Three germ layer structure exhibits the distinct abil- ity to form specifc tissues and organs. Methods: The present study set out to investigate the genetic mutation characteristics of germ layer diferentiation- related genes using the tumor cases of the cancer genome atlas (TCGA) database. Results: These tumor samples were divided into three groups, including the ectoderm, mesoderm, and endoderm. Children cases less than 9 years old accounted for a larger proportion for the cases in the ectoderm and mesoderm groups; whereas the middle-aged and elderly individuals (from 50 to 89 years old) were more susceptible to tumors of endoderm. There was a better prognosis for the cases of mesoderm, especially the male with the race of White, compared with the other groups. A missense mutation was frequently detected for the cases of ectoderm and endo- derm, while deletion mutation was common for that of mesoderm. We could not identify the ectoderm, mesoderm, or endoderm-specifc mutated genes or variants with high mutation frequency.
    [Show full text]