CIRCADIAN RHYTHMS in Synechococcus Elongatus PCC 7942

Total Page:16

File Type:pdf, Size:1020Kb

CIRCADIAN RHYTHMS in Synechococcus Elongatus PCC 7942 CIRCADIAN RHYTHMS IN Synechococcus elongatus PCC 7942: INSIGHTS INTO THE REGULATORY MECHANISMS OF THE CYANOBACTERIAL CLOCK SYSTEM A Dissertation by SHANNON ROSE MACKEY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2006 Major Subject: Microbiology CIRCADIAN RHYTHMS IN Synechococcus elongatus PCC 7942: INSIGHTS INTO THE REGULATORY MECHANISMS OF THE CYANOBACTERIAL CLOCK SYSTEM A Dissertation by SHANNON ROSE MACKEY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Susan S. Golden Committee Members, Deborah Bell-Pedersen David Earnest Ryland Young Head of Department, Vincent M. Cassone August 2006 Major Subject: Microbiology iii ABSTRACT Circadian Rhythms in Synechococcus elongatus PCC 7942: Insights into the Regulatory Mechanisms of the Cyanobacterial Clock System. (August 2006) Shannon Rose Mackey, B.A., The University of Texas at Austin Chair of Advisory Committee: Dr. Susan S. Golden Circadian rhythms of behavior have been well characterized in organisms including mammals, plants, insects, fungi, and photosynthetic bacteria. Cyanobacteria, such as the unicellular Synechococcus elongatus PCC 7942, display near 24-h circadian rhythms of gene expression. These rhythms persist in the absence of external cues, can be reset by the same stimuli to which they entrain, and are relatively insensitive to changes in ambient temperature within their physiological range. Key components have been identified as belonging to the central oscillator that comprises the timekeeping units, output pathways that relay temporal information to clock-controlled processes, and input pathways that synchronize the oscillator with local time. The emerging model of the cyanobacterial clock depicts the internal timekeeping elements KaiA, KaiB, and KaiC interacting with one another to form a large, multimeric complex that assembles and disassembles over the course of a day. Information is sent into and out of the oscillator via signal transduction pathways that include proteins involved in bacterial two- component systems. The research presented in this dissertation explores the regulatory mechanisms that exist at each level of the clock system. New components were iv identified that interact with an important protein in the input pathway; these new players are involved in clock-associated phenomena, such as resetting the internal oscillation to external stimuli and maintaining proper circadian periodicity, as well as the process of cell division. The model formerly associated with the temporal, transcriptional regulation of the kai genes was redefined to reflect the unique properties of the prokaryotic oscillator. The differential output of the clock was examined by studying the circadian regulation of the psbA gene family. Overall, these data provide insight into the complex molecular events that occur to create a circadian timing circuit in S. elongatus. v ACKNOWLEDGMENTS I would like to thank my committee chair and friend, Dr. Susan Golden, for her endless support and guidance throughout this process. Her careful mentoring and undoubting faith provided the backdrop to my academic performance in both research and teaching. In addition to my chair, the members of my committee, Drs. Deb Bell-Pedersen, Dave Earnest, and Ry Young, provided great interest and insights into my research and future scientific career. Their encouragement was, and will continue to be, greatly appreciated. The many friends and colleagues I have made during my time at Texas A&M have made the experience enjoyable and unforgettable. I would especially like to thank Drs. Jayna Ditty, Eugenia Clerico, and Stan Williams for their infinite supply of humor and life lessons. And most importantly, I thank Mom, Dad, Jenny, and Peter for their immeasurable patience with, and pride in, each hurdle I jump. vi NOMENCLATURE 6xHis six adjacent histidine residues 12:12 LD 12 h light, 12 h dark Ap ampicillin ATP adenosine triphosphate BG-11M modified BG-11 medium C-6xHis six adjacent carboxy-terminal histidine residues C-terminus carboxy-terminus CI first of the tandem repeats of KaiC CII second of the tandem repeats of KaiC CikA circadian input kinase CikA-I CikA-interactor CikA~P phosphorylated CikA Cm chloramphenicol CpmA circadian phase modifier cps counts per second DAPI 4’, 6-diamidino-2-phenylindole DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone DNA deoxyribonucleic acid EMS ethyl methane sulfate FFT-NLLS fast Fourier transform–nonlinear least square FRP free-running period vii Gm gentamycin GTP guanosine triphosphate HPK histidine protein kinase Hyp-1 hypothetical protein 1 Hyp-2 hypothetical protein 2 I&A Import and Analysis IPTG isopropyl-beta-D-thiogalactopyranoside kb kilobase kDa kiloDalton Km kanamycin LD light/dark LdpA light-dependent period LL constant light mRNA messenger ribonucleic acid N-6xHis six adjacent amino-terminal histidine residues N-terminus amino terminus NHT-1 aminotransferase Ni-NTA nickel-nitriloacetic acid NS1 neutral site I NS2 neutral site II OD optical density ORF open reading frame viii Pex period extender PSII photosystem II PsR pseudo-receiver RR response regulator SasA Synechococcus adaptive sensor Sm streptomycin Sp spectinomycin Spk serine-threonine protein kinase WT wild type ix TABLE OF CONTENTS Page ABSTRACT................................................................................................... iii ACKNOWLEDGMENTS .............................................................................. v NOMENCLATURE ....................................................................................... vi TABLE OF CONTENTS................................................................................ ix LIST OF FIGURES........................................................................................ xii LIST OF TABLES.......................................................................................... xiv CHAPTER I INTRODUCTION ............................................................................. 1 The circadian clock.................................................................... 1 A cyanobacterial model system for circadian rhythms................ 5 The Kai oscillator: keeping track of time.................................... 9 The input pathways: keeping in sync with the environment........ 17 The output pathways: regulating cellular processes .................... 22 The periodosome ....................................................................... 27 II DETECTION OF RHYTHMIC BIOLUMINESCENCE FROM LUCIFERASE REPORTERS IN CYANOBACTERIA ..................... 31 Introduction ............................................................................... 31 Description of luxAB, luxCDE, and luc vectors .......................... 32 Transformation, chromosomal segregation, and clonal propagation................................................................................ 34 TopCount measurement ............................................................. 37 Plate preparation ................................................................. 37 Sample preparation ............................................................. 38 TopCount protocol and interpretation of results................... 38 III STABILITY OF THE CIRCADIAN CLOCK UNDER DIRECTED ANTI-PHASE EXPRESSION OF THE kai GENES ...... 45 Introduction ............................................................................... 45 x CHAPTER Page Methods..................................................................................... 47 Bacterial strains and plasmids ............................................. 47 Media and growth conditions .............................................. 47 DNA manipulations and sequencing ................................... 50 Construction of kai mutant strains....................................... 50 Construction of a neutral site I Gateway vector ................... 52 Construction of ectopic kai alleles....................................... 52 Measurement and analysis of in vivo bioluminescence ........ 54 Whole-cell extract preparation and immunoblot analyses .... 55 Results....................................................................................... 58 Construction and characterization of kai gene mutant strains...................................................................... 58 Complementation of ∇kaiA with class 2 PpurF::kaiA restores WT circadian rhythms............................................ 61 PpurF::kaiBC can restore WT rhythms to a ∆kaiBC strain.. 63 Pervasive effects of PpurF::kaiBC expression on both class 1 and class 2 reporters......................................... 65 Discussion ................................................................................. 67 IV DIFFERENTIAL CIRCADIAN REGULATION OF psbA GENES IN Synechococcus elongatus PCC 7942................................ 70 Introduction ............................................................................... 70 Methods..................................................................................... 73 Bacterial strains and growth conditions ............................... 73 Measurement and analysis of in vivo bioluminescence ........ 73 Results....................................................................................... 75 Discussion ................................................................................
Recommended publications
  • Kaic Cii Ring Flexibility Governs the Rhythm of The
    KAIC CII RING FLEXIBILITY GOVERNS THE RHYTHM OF THE CIRCADIAN CLOCK OF CYANOBACTERIA A Dissertation by NAI-WEI KUO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2011 Major Subject: Biochemistry KAIC CII RING FLEXIBILITY GOVERNS THE RHYTHM OF THE CIRCADIAN CLOCK OF CYANOBACTERIA A Dissertation by NAI-WEI KUO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Co-Chairs of Committee, Andy LiWang Pingwei Li Committee Members, Deborah Bell-Pedersen Frank Raushel Head of Department, Gregory Reinhart May 2011 Major Subject: Biochemistry iii ABSTRACT KaiC CII Ring Flexibility Governs the Rhythm of the Circadian Clock of Cyanobacteria. (May 2011) Nai-Wei Kuo, B.S.; M.S., National Tsing Hua University, Taiwan Co-Chairs of Advisory Committee: Dr. Andy LiWang, Dr. Pingwei Li The circadian clock orchestrates metabolism and cell division and imposes important consequences to health and diseases, such as obesity, diabetes, and cancer. It is well established that phosphorylation-dependent circadian rhythms are the result of circadian clock protein interactions, which regulate many intercellular processes according to time of day. The phosphorylation-dependent circadian rhythm undergoes a succession of phases: Phosphorylation Phase → Transition Phase → Dephosphorylation Phase. Each phase induces the next phase. However, the mechanism of each phase and how the phosphorylation and dephosphorylation phases are prevented from interfering with each other remain elusive. In this research, we used a newly developed isotopic labeling strategy in combination with a new type of nuclear magnetic resornance (NMR) experiment to obtain the structural and dynamic information of the cyanobacterial KaiABC oscillator system.
    [Show full text]
  • Profile of Susan S. Golden
    PROFILE Profile of Susan S. Golden Sujata Gupta Science Writer Susan Golden did not set out to become Golden pursued other passions. She loved an expert in biological clocks, the internal literature, she says, an interest gleaned timepieces that keep life on Earth adjusted from her mother, an avid reader. And she to a 24-hour cycle. Instead, Golden, elected played the bassoon in the school band— in 2010 to the National Academy of Sci- where she made most of her friends. “That ences, wanted to identify the genes that un- turned out to be a social bifurcation. I did derpin photosynthesis. However, her focus not realize that the band route is the nerd changed in 1986 with the discovery of route. You can’t break over into the other biological clocks in cyanobacteria (1). [cool] group,” Golden says. She also worked Because cyanobacteria are among Earth’s on the school newspaper as a photographer, earliest living organisms, the discovery made one, she is quick to note, without any formal clear that biological clocks are evolutionarily training. By the time she graduated high ancient. Golden had been studying photosyn- school in 1976 as salutatorian of her 600- thesis in cyanobacteria since graduate school. student class, Golden harbored dreams of Her reason was simple: Cyanobacteria are becoming a photojournalist for Life maga- single-celled, and thus they are much easier zine or National Geographic. to manipulate in a laboratory than plants. Golden’s main consideration in selecting a With her expertise in cyanobacteria, Golden college, though, was not prestige or program found herself well-positioned to identify the of study but money.
    [Show full text]
  • CCB Annual Report 2010–2011
    Report http://research.ucsd.edu/orureporting/revandsub.aspx?ReportID=825&rep... CCB Annual Review of the Organized Research Unit Fiscal Year 2011 The University of California, San Diego Center for Chronobiology 1 of 33 11/30/2011 3:44 PM Report http://research.ucsd.edu/orureporting/revandsub.aspx?ReportID=825&rep... 825 Director's Statement Director’s Statement During our second year as an ORU, the Center for Chronobiology had immediate goals of increasing the visibility of CCB on campus and around the world as a premier center for chronobiology research and facilitating interactions among members. We met these goals by: hosting local activities and outfitting facilities to engage our members and encourage interaction; expanding the content on an attractive and informative website; and hosting a symposium with top chronobiologist speakers from within CCB and around the world. Staffing section ‐ We have merged the External Advisory Committee and Executive Committee members into the Advisory Committee section since this report does not have a field for Executive Committee Members. All people included in the staffing section participate and contribute to the Center for Chronobiology. The Facilities section lists 12,568 square feet for CCB. Most of this space belongs to the Division of Biological Sciences. The actual space allocation for CCB is 551 square feet. This includes two administrative offices and one small conference room. Goals Met: · Expanded the membership of the Center for Chronobiology ORU to 32 UCSD faculty members as of June 30, 2011. · Hosted subgroups of members for research collaboration meetings · Held monthly meetings of the CCB Executive Committee · Recruited outstanding external academic and business professionals to serve as member of a CCB External Advisory Committee, which will meet on February 15, 2012.
    [Show full text]
  • Precise Circadian Clocks in Prokaryotic Cyanobacteria
    Curr. Issues Mol. Biol. (2004) 6: 103-110. Circadian ClocksOnline in journal Cyanobacteria at www.cimb.org 103 Precise Circadian Clocks in Prokaryotic Cyanobacteria Carl Hirschie Johnson* was a stroke of luck. Subsequent experiments using other strains/species of cyanobacteria have found rhythms (Aoki Department of Biological Sciences, Vanderbilt University, et al., 1997), but the reporters in those strains are not Nashville, TN 37235, USA bright. And even in S. elongatus, other promoters do not show such a robust rhythm of luminescence (see Class 3-5 rhythms in Figure 1– psbAIp is a strong Class 1 promoter; Abstract Liu et al., 1995). The combination of the psbAIp::luxAB reporter and the S. elongatus strain remains one of the Prokaryotic cyanobacteria express robust circadian most robustly rhythmic combinations in cyanobacteria, (daily) rhythms under the control of a timing even after ten years of intensive research. Dr. Kondo was mechanism that is independent of the cell division able to exploit the bright and robust luminescence rhythm cycle. This biological clock orchestrates global by designing clever apparatuses to monitor the rhythms. regulation of gene expression and controls the timing For liquid cultures, Dr. Kondo enlisted and modifi ed the of cell division. Proteins that may be involved in input automated photomultiplier apparatus that was originally pathways have been identifi ed. Mutational screening designed for endogenously bioluminescent algae (Kondo et has identifi ed three clock genes that are organized al., 1993). For monitoring colonies, Drs. Kondo and Ishiura as a gene cluster. The structure of cyanobacterial discovered that the rhythms of single colonies could be clock proteins, their phosphorylation, and regulation tracked with a CCD camera (Kondo and Ishiura, 1994).
    [Show full text]
  • Cellular Function and Localization of Circadian Clock Proteins in Cyanobacteria
    CELLULAR FUNCTION AND LOCALIZATION OF CIRCADIAN CLOCK PROTEINS IN CYANOBACTERIA A Dissertation by GUOGANG DONG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2008 Major Subject: Microbiology ii CELLULAR FUNCTION AND LOCALIZATION OF CIRCADIAN CLOCK PROTEINS IN CYANOBACTERIA A Dissertation by GUOGANG DONG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Susan S. Golden Committee Members, Deborah Bell-Pedersen Andy LiWang Deborah Siegele Head of Department, Thomas D. McKnight December 2008 Major Subject: Microbiology iii ABSTRACT Cellular Function and Localization of Circadian Clock Proteins in Cyanobacteria. (December 2008) Guogang Dong, B.S., Peking University Chair of Advisory Committee: Dr. Susan S. Golden The cyanobacterium Synechococcus elongatus builds a circadian clock on an oscillator comprised of three proteins, KaiA, KaiB, and KaiC, which can recapitulate a circadian rhythm of KaiC phosphorylation in vitro. The molecular structures of all three proteins are known, and the phosphorylation steps of KaiC, the interaction dynamics among the three Kai proteins, and a weak ATPase activity of KaiC have all been characterized. A mutant of a clock gene in the input pathway, cikA , has a cell division defect, and the circadian clock inhibits the cell cycle for a short period of time during each cycle. However, the interaction between the circadian cycle and the cell cycle and the molecular mechanisms underlying it have been poorly understood.
    [Show full text]
  • UCSD Center for Chronobiology
    Center for Chronobiology CCB 5 year Review of the Organized Research Unit Fiscal Year 2010 thru 2013 The University of California, San Diego Center for Chronobiology Director’s Statement Center for Chronobiology (CCB) The UCSD Center for Chronobiology (CCB) was established as an Organized Research Unit in 2009 to leverage the exceptional strength and breadth of circadian biology research that is conducted at UCSD. The Center brings together faculty from diverse disciplinary areas of the campus, including the Biological, Physical, and Social Sciences, Engineering, and the Schools of Medicine and Pharmacy. CCB focuses on questions in chronobiology - the study of biological timing – found at all levels of biological complexity and central to the organization of life, with an emphasis on circadian (~24 h) biological rhythms. With 34 members at UCSD, and affiliate members at the Scripps Research Institute, UC Santa Cruz, and UC Merced, CCB is the largest aggregate of circadian rhythms researchers in the world. CCB members span an exceptional range of research approaches and organisms, from in vitro rhythms and synthetic biology in micro-organisms, through plant and animal model organisms, to human clinical research. Moreover, members are, as individuals, leaders in their specific areas. Since the establishment of CCB, three members have been elected to the National Academy of Sciences (Golden, Sejnowski, and Spitzer). The establishment of this ORU in 2009 had the immediate effect of focusing both internal and international attention on our unique concentration of strength in circadian biology and placing UCSD on the map as a major center of research in this broad field.
    [Show full text]
  • DOE Energy Biosciences Projects Supported in FY 2002 (NOTE: Dollar Amounts Are for a Twelve-Month Period Using FY 2002 Funds Unless Otherwise Stated)
    DOE Energy Biosciences Projects Supported in FY 2002 (NOTE: Dollar amounts are for a twelve-month period using FY 2002 funds unless otherwise stated) U.S. Department of Agriculture Urbana, IL 61801 Biochemical and molecular analysis of a new control pathway in assimilate partitioning Daniel R. Bush, USDA-ARS and Department of Plant Biology, University of Illinois at Urbana- Champaign $72,666 (FY 01 funds – 21 months) U. S. Department of Agriculture Raleigh, NC 27695-7631 Molecular Analysis of the Role of Sucrose Synthase in Sugar Sensing and Assimilate Partitioning Steven C. Huber, USDA/ARS and Departments of Crop Science and Botany, NCSU $100,000 U.S. Department of Agriculture Urbana, IL 61801-3838 Consequences of Altering Rubisco Regulation Archie R. Portis, Jr., USDA/ARS and Departments of Crop Sciences/Plant Biology, University of Illinois $66,368 U.S. Department of Agriculture Madison, WI 53706-1108 What is the Extent of Metabolic Plasticity in the Lignification Process, and Can it be Exploited? John Ralph and Ronald Hatfield, USDA Agricultural Research Service; US Dairy Forage Research Center $96,000 University of Alabama Tuscaloosa, AL 35487-0336 A Combined Genetic, Biochemical, and Biophysical Analysis of the A1 Phylloquinone Binding Site of Photosystem I from Green Plants Kevin Redding, Department of Chemistry $87,000 Arizona State University Tempe, AZ 85287-1604 Structure, Function and Reconstitution of Antenna Complexes of Green Photosynthetic Bacteria Robert E. Blankenship, Department of Chemistry and Biochemistry $246,000 (FY 01 funds - two years) Arizona State University Tempe, AZ 85287-1601 Regulation of Chlorophyll a and b Biosynthesis Willem F.J.
    [Show full text]
  • Circadian Rhythms of Superhelical Status of DNA in Cyanobacteria
    Circadian rhythms of superhelical status of DNA in cyanobacteria Mark A. Woelfle, Yao Xu, Ximing Qin, and Carl Hirschie Johnson* Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235 Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved September 17, 2007 (received for review June 27, 2007) The cyanobacterium Synechococcus elongatus expresses robust cir- using only purified KaiA, KaiB, and KaiC proteins and ATP (25). cadian (daily) rhythms under the control of the KaiABC-based core Taken together, these observations indicate that the core circadian clockwork. Unlike eukaryotic circadian systems characterized thus far, oscillator of cyanobacteria does not require a transcription– the cyanobacterial clockwork modulates gene expression patterns translation feedback loop. globally and specific clock gene promoters are not necessary in Several observations suggest a global mechanism for clock con- mediating the circadian feedback loop. The oscilloid model postulates trol of promoter activities in cyanobacteria. Continuous overex- that global rhythms of transcription are based on rhythmic changes pression of KaiC represses rhythmic transcription of all cyanobac- in the status of the cyanobacterial chromosome that are ultimately terial promoters (26), including of its own kaiBC promoter (14). controlled by the KaiABC oscillator. By using a nonessential, cryptic Furthermore, the replacement of the kaiA and/or kaiBC promoters plasmid (pANS) as a reporter of the superhelical state of DNA in with a heterologous promoter, the inducible Escherichia coli trcp cyanobacteria, we show that the supercoiling status of this plasmid promoter, permits rhythmic transcription of the kaiABC cluster, changes in a circadian manner in vivo. The rhythm of topological global gene expression, and repression by KaiC (23, 26).
    [Show full text]
  • Oscillations in Supercoiling Drive Circadian Gene Expression in Cyanobacteria
    Oscillations in supercoiling drive circadian gene expression in cyanobacteria Vikram Vijayana,b, Rick Zuzowb, and Erin K. O’Sheaa,b,1 aGraduate Program in Systems Biology and bHoward Hughes Medical Institute, Harvard Faculty of Arts and Sciences Center for Systems Biology, Departments of Molecular and Cellular Biology and Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 Contributed by Erin K. O’Shea, November 3, 2009 (sent for review October 14, 2009) The cyanobacterium Synechococcus elongatus PCC 7942 exhibits darkness, oscillations in KaiC phosphorylation persist for several oscillations in mRNA transcript abundance with 24-h periodicity cycles, but transcriptional activity is greatly reduced and no under continuous light conditions. The mechanism underlying longer appears circadian (3, 7). these oscillations remains elusive—neither cis nor trans-factors Although a role for the Kai proteins in circadian gene expres- controlling circadian gene expression phase have been identified. sion is evident, the mechanism of promoter control is unclear. Here, we show that the topological status of the chromosome is Circadian gene expression in S. elongatus is primarily divided highly correlated with circadian gene expression state. We also into two phases—one subset of transcripts peaks at subjective demonstrate that DNA sequence characteristics of genes that dawn and the other subset at subjective dusk (2, 3). Systematic appear monotonically activated and monotonically repressed by analysis of single promoters has yet to identify specific cis- chromosomal relaxation during the circadian cycle are similar to elements controlling expression phase (8, 9), and neither random those of supercoiling-responsive genes in Escherichia coli. Further- mutagenesis nor transposon insertion screens have identified more, perturbation of superhelical status within the physiological trans-factors responsible for expression phase (10).
    [Show full text]
  • Program and Abstracts
    Revised 5/3/2019 4:25 pm MST Program and Abstracts 13th Workshop on Cyanobacteria University of Colorado-Boulder Renewable and Sustainable Energy Institute National Renewable Energy Laboratory June 6-9, 2019 Boulder, CO 1 Revised 5/3/2019 4:25 pm MST Foreword and Acknowledgements Welcome to the 13th Workshop on Cyanobacteria! This student and postdoc centered meeting is held in North America every three years and covers all aspects of cyanobacteriology. The Renewable and Sustainable Energy Institute (RASEI) is a joint institute between the University of Colorado-Boulder and the National Renewable Energy Laboratory (NREL). We thank RASEI and NREL for their generous administrative and financial support. In particular, we thank Carlyla Dawson for her major role in organization of the conference. We gratefully acknowledge the financial support provided by the International Society of Photosynthesis Research and the US Department of Energy Bioenergy Technologies Office (BETO). These funds will be used to cover the registration fees of several students and postdocs at this workshop. We also thank the committee of students and postdocs involved in selection of oral presentations and registration fellowships. Organizers: Jianping Yu, NREL Jeffrey Cameron, CU/RASEI/NREL Carlyla Dawson, RASEI Cover Image: Jeffrey Cameron 2 Revised 5/3/2019 4:25 pm MST Table of Contents Page Number Locations 4 Campus Accommodations 4 Oral Presentation Info 13 Poster Presentation Info 13 Program 14 Poster list 20 Abstracts 26 Keynote abstracts 26 Oral abstracts 30 Poster abstracts 55 Addendum 101 Abstract Author Index 103 Restaurant Guide 109 3 Revised 5/3/2019 4:25 pm MST Locations All oral presentations and poster sessions are located in the Sustainability, Energy, and Environment Complex (SEEC).
    [Show full text]
  • Visualizing Assemblies of the Proteins That Direct Cyanobacterial Circadian Rhythms 17 March 2017, by Lorena Anderson
    Visualizing assemblies of the proteins that direct cyanobacterial circadian rhythms 17 March 2017, by Lorena Anderson sleep when it's evening—dictated by our circadian clocks. How that inner clock works is still being discovered. "Imagine if you wanted to see how a mechanical Swiss watch works, but all you had were the individual gears and springs and no instructions about how they went together," LiWang said. "You wouldn't know how the watch runs. You have to see all the parts interacting." Operational in the Earth's oldest living creatures Professor Andy LiWang shows his 3-D-printed model of The researchers use cyanobacteria, which are are the proteins that drive cyanobacterial circadian clocks. among Earth's oldest living creatures. Through Credit: UC Merced photosynthesis and oxygen production, these bacteria are likely the reason all other aerobic organisms exist. Their circadian clock orchestrates gene expression for the majority of the genome to In finding a way to see assemblies of the proteins regulate daytime and nighttime metabolic that direct cyanobacterial circadian rhythms, or processes that enhance fitness and acutely affect biological clocks, UC Merced biochemistry their survival. professor Andy LiWang and his colleagues have done what no one else has been able to, despite Cyanobacteria make a perfect subject for structural more than 15 years of trying. studies because their circadian clocks can be isolated and studied in test tubes outside their living A new paper released in the prestigious journal cells. The research is funded by the National Science today explains how the labs of LiWang Institutes of Health, and LiWang also receives and his colleagues—professor Carrie Partch in the funding from the U.S.
    [Show full text]
  • Bioluminescent and Fluorescent Reporters in Circadian Rhythm Studies
    Bioluminescent and fluorescent reporters in circadian rhythm studies Takako Noguchi and Susan Golden *This review article assumes basic knowledge of gene expression and light wavelengths Abstract Various organisms create fascinating “glow-in-the-dark” proteins in nature. Scientists introduce these special proteins into organisms that they study and use the emitted light to report where, when, and how much genes or proteins of interest are expressed. Two major kinds of reporters, luciferases and fluorescent proteins, are often confused with each other because they have common characteristics: (1) they can be used to make it easy to track the expression of genes or proteins of interest by fusing a reporter gene to a gene of interest (genetically encoded reporters), and (2) they glow in the dark. However, there are fundamental differences between these reporters. Generally, luciferases, which catalyze a reaction with a substrate luciferin and generate light as a product (bioluminescence), are dim, but highly quantitative reporters and suitable to measure how much and when a gene or protein is expressed. Fluorescent proteins, which require an external light source to stimulate emission of a different wavelength of light, are bright reporters and suitable to locate in which cells a gene is activated or where in a cell a protein is expressed. In this review, we introduce basic mechanisms of bioluminescence and fluorescence, and how they are used in circadian rhythm research. Entry Level Intermediate Level Advanced Level Mechanisms to glow in the dark As you study biological science, you encounter experiments using “bioluminescence” and “fluorescence.” Both bioluminescence and fluorescence appear as specimens glowing in the dark.
    [Show full text]