Profile of Susan S. Golden

Total Page:16

File Type:pdf, Size:1020Kb

Profile of Susan S. Golden PROFILE Profile of Susan S. Golden Sujata Gupta Science Writer Susan Golden did not set out to become Golden pursued other passions. She loved an expert in biological clocks, the internal literature, she says, an interest gleaned timepieces that keep life on Earth adjusted from her mother, an avid reader. And she to a 24-hour cycle. Instead, Golden, elected played the bassoon in the school band— in 2010 to the National Academy of Sci- where she made most of her friends. “That ences, wanted to identify the genes that un- turned out to be a social bifurcation. I did derpin photosynthesis. However, her focus not realize that the band route is the nerd changed in 1986 with the discovery of route. You can’t break over into the other biological clocks in cyanobacteria (1). [cool] group,” Golden says. She also worked Because cyanobacteria are among Earth’s on the school newspaper as a photographer, earliest living organisms, the discovery made one, she is quick to note, without any formal clear that biological clocks are evolutionarily training. By the time she graduated high ancient. Golden had been studying photosyn- school in 1976 as salutatorian of her 600- thesis in cyanobacteria since graduate school. student class, Golden harbored dreams of Her reason was simple: Cyanobacteria are becoming a photojournalist for Life maga- single-celled, and thus they are much easier zine or National Geographic. to manipulate in a laboratory than plants. Golden’s main consideration in selecting a With her expertise in cyanobacteria, Golden college, though, was not prestige or program found herself well-positioned to identify the of study but money. By this point, Golden’s genes and proteins that make the clock tick. parents were divorced and her mother “Cyanobacteria are present in niches and shouldered her expenses. “When I found Susan S. Golden. habitats all over the planet,” she says. out how much my mother made, I was “They’re very good at adapting to their shocked by how poor we were,” Golden habitat and that adaptation involves doing says. So when Mississippi University for wanted to perform molecular biology re- things at the right time.” Their timekeeping Women in Columbus offered her a place, search. So Golden joined the laboratory ability, she adds, helps cyanobacteria gen- Golden welcomed the opportunity. How- of Lou Sherman, who had earlier invited erate about 30% of atmospheric oxygen. ever, after only a day of classes, Golden her to enter UMC. Over the years, Golden and her collabo- realized that she didn’t want to be a jour- Besides providing her with academic focus, rators have revealed that the clock in cyano- nalist. Instead, Golden found herself loving graduate school brought Golden another surprise: a husband. James Golden, another bacteria works like a mechanical clock, introductory biology and soon switched her ’ complete with oscillators, gears, and hands. major to biology with a minor in chemistry. NIH trainee, soon became Golden srole In her recent research, including her In- With several advanced placement credits model. Despite decades of running adja- augural Article, Golden has shown how from high school and packed course loads cent laboratories, only recently have their clock proteins interact to synchronize the in college, Golden graduated from college lines of research converged. When they internal clock with the external 24-hour in just 2 years, unsure of her future. For- moved to the University of California at cycle (2, 3). To Golden’s own surprise, this tunately, she was accepted into a PhD San Diego in 2008, says Golden, their lab- recent line of inquiry has taken her back to program at the University of Missouri- oratories joined forces in researching cya- fi ’ nobacteria’s potential as a biofuel. her roots in photosynthesis. Her ndings Columbia. She became one of the school s ’ ’ show that cyanobacteria don’t use sensory first trainees in a new cell and molecular In Sherman s laboratory, Golden scharge was to develop a genetic system that could be photoreceptors, proteins that convey light- biology training program funded by the fi related information into the body in mam- National Institutes of Health. used to nd the proteins that make up the mals, to set their clocks. Instead, cyanobacteria photosynthetic reaction center in cyano- bacteria. The approach relied on a strategy integrate the ability to tell time with their For the Love of Chloroplasts photosynthetic apparatus. In retrospect, says of identifying mutant photosynthesis pro- fi As an undergraduate student, Golden had teins that cause cells to become resistant to Golden, this nding makes sense: In the pro- eagerly followed a once-fervent debate about karyote’sworld,shesays,“If photosynthesis is herbicides like atrazine (5). Golden con- ’ whether or not to allow recombinant DNA tinued the work when she entered Robert running, the lights are on. It s daytime. If research to continue. Despite the potential ’ photosynthesis is not running, it’s dark.” Haselkorn s laboratory at the University to fundamentally alter the course of genetic of Chicago in Illinois in 1983. By then, research, many researchers feared that An Unlikely Path to the Academy genetic engineering could inadvertently fi ’ This is a Pro le of a recently elected member of the National The roots of Golden s career in plant biology change innocuous microbes into pathogens Academy of Sciences to accompany the member’s Inaugural Article were not formed at an early age. Instead, (4). At Missouri, Golden realized that she on page 17765 in issue 44 of volume 109. 8758–8760 | PNAS | May 28, 2013 | vol. 110 | no. 22 www.pnas.org/cgi/doi/10.1073/pnas.1305064110 Downloaded by guest on September 25, 2021 PROFILE researchers had isolated the gene thought Golden’s work caught the attention of Carl to a 24-hour cycle? Ultimately, the work to be responsible for herbicide resistance, Johnson, a circadian rhythm researcher at led to Golden’s suite of findings detailing but they could not genetically engineer chlo- Vanderbilt University in Nashville, Ten- how the clock and photosynthesis are in- roplasts to confirm their theory. Golden, nessee. Johnson wanted to know whether tertwined in cyanobacteria. however, was able to mutate the suspected Golden had ever studied circadian rhythms Golden knew that she could change time gene, psbA, and reinsert it into cyanobac- in cyanobacteria. Golden recalled that a zones in her cyanobacteria by exposing them teria. She then exposed the mutants to the graduate student of hers had noticed to constant light, followed by a pulse of herbicide and, sure enough, they withstood “funny oscillations” in gene expression of darkness. However, when Golden mutated the assault. “We could show ... that this re- cyanobacteria grown for several days. “We a gene called cikA, the dark pulse caused no ally is the herbicide resistance gene,” Golden might have actually seen some evidence of change (13). “If you don’t have CikA, you says (6). that,” Golden informed Johnson. She sent still have a pretty good clock, but you can’t The findings demonstrated that genetic him a strain of the luciferase-tagged cya- reset it,” Golden says. “The cells have per- manipulation is easy in cyanobacteria, mak- nobacteria, and Johnson, together with manent jet lag.” ing it a suitable model organism. During her Takao Kondo, a researcher now at Nagoya Next, Golden analyzed the structure of postdoctoral fellowship in Chicago, when she University in Japan, observed biolumines- CikA, revealing that CikA contained a began studying gene regulation, Golden cence from the cyanobacteria increase protein domain that resembled another found that cyanobacteria housed a family during the day and drop at night. The domain in KaiA (14, 15). Golden realized of three psbA genes (7). The three genes cyanobacteria’s light production continued that KaiA might also play a fundamental coded for two forms of the protein, one to oscillate even outside the day-night cy- role in setting the clock. Golden found that mutated to confer resistance to the cle. The researchers were ecstatic. At first, that CikA and KaiA bind to quinones, mol- herbicide, and two that seemed to code for Golden failed to understand the excitement. ecules that carry electrons. In photosynthesis, the same protein. Why, Golden wondered, It didn’t take long, though, for Golden quinones have few electrons (oxidized) when did cyanobacteria house those redundant to become enamored of the world of cir- the lights are off but gain electrons (reduced) genes? Over the next several years her re- cadian biology. Johnson and Kondo ex- when the lights come on. Golden showed search group found that the genes encoding plained that they had fashioned the first that the redox state of quinones influences one form of the protein were expressed known bacterial system in which they KaiA activity: When oxidized, as is the only under high luminance and the other couldisolateandstudythecomponents case when cells go into the dark, KaiA dis- expressed only under low luminance (8). of the clock. The team published their lodges from KaiC—the master protein of Further analysis revealed that cells optimize findings in 1993, noting that the discovery the clock—and binds quinones, thus re- their physiology by using the more efficient of the clock in a prokaryote could explain setting the clock. The clock behaves “just as version of the protein under low stress con- how biological clocks evolved (9). if you hit a light switch,” Golden says (2, 3). ditions and switching to the high-stress op- The three laboratories, joined by Masahiro The finding, laid out in Golden’sInaugural tion when conditions become unfavorable. Ishiura in Japan, began working together to Article, expands an earlier finding show- identify components of the clock.
Recommended publications
  • Computational Modeling of Protein Interactions and Phosphoform Kinetics in the Kaiabc Cyanobacterial Circadian Clock
    Computational modeling of protein interactions and phosphoform kinetics in the KaiABC cyanobacterial circadian clock Mark Byrne1 1 Physics Department, Spring Hill College, 4000 Dauphin St., Mobile AL 36608 Corresponding author: Dr. Mark Byrne Physics Dept. 4000 Dauphin St Spring Hill College Mobile, AL 36608 USA TEL: 251-380-3080 Email: [email protected] Abstract The KaiABC circadian clock from cyanobacteria is the only known three-protein oscillatory system which can be reconstituted outside the cell and which displays sustained periodic dynamics in various molecular state variables. Despite many recent experimental and theoretical studies there are several open questions regarding the central mechanism(s) responsible for creating this ~24 hour clock in terms of molecular assembly/disassembly of the proteins and site- dependent phosphorylation and dephosphorylation of KaiC monomers. Simulations of protein- protein interactions and phosphorylation reactions constrained by analytical fits to partial reaction experimental data support the central mechanism of oscillation as KaiB-induced KaiA sequestration in KaiABC complexes associated with the extent of Ser431 phosphorylation in KaiC hexamers A simple two-state deterministic model in terms of the degree of phosphorylation of Ser431 and Thr432 sites alone can reproduce the previously observed circadian oscillation in the four population monomer phosphoforms in terms of waveform, amplitude and phase. This suggests that a cyclic phosphorylation scheme (involving cooperativity between adjacent Ser431 and Thr432 sites) is not necessary for creating oscillations. Direct simulations of the clock predict the minimum number of serine-only monomer subunits associated with KaiA sequestration and release, highlight the role of monomer exchange in rapid synchronization, and predict the average number of KaiA dimers sequestered per KaiC hexamer.
    [Show full text]
  • Kaic Cii Ring Flexibility Governs the Rhythm of The
    KAIC CII RING FLEXIBILITY GOVERNS THE RHYTHM OF THE CIRCADIAN CLOCK OF CYANOBACTERIA A Dissertation by NAI-WEI KUO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2011 Major Subject: Biochemistry KAIC CII RING FLEXIBILITY GOVERNS THE RHYTHM OF THE CIRCADIAN CLOCK OF CYANOBACTERIA A Dissertation by NAI-WEI KUO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Co-Chairs of Committee, Andy LiWang Pingwei Li Committee Members, Deborah Bell-Pedersen Frank Raushel Head of Department, Gregory Reinhart May 2011 Major Subject: Biochemistry iii ABSTRACT KaiC CII Ring Flexibility Governs the Rhythm of the Circadian Clock of Cyanobacteria. (May 2011) Nai-Wei Kuo, B.S.; M.S., National Tsing Hua University, Taiwan Co-Chairs of Advisory Committee: Dr. Andy LiWang, Dr. Pingwei Li The circadian clock orchestrates metabolism and cell division and imposes important consequences to health and diseases, such as obesity, diabetes, and cancer. It is well established that phosphorylation-dependent circadian rhythms are the result of circadian clock protein interactions, which regulate many intercellular processes according to time of day. The phosphorylation-dependent circadian rhythm undergoes a succession of phases: Phosphorylation Phase → Transition Phase → Dephosphorylation Phase. Each phase induces the next phase. However, the mechanism of each phase and how the phosphorylation and dephosphorylation phases are prevented from interfering with each other remain elusive. In this research, we used a newly developed isotopic labeling strategy in combination with a new type of nuclear magnetic resornance (NMR) experiment to obtain the structural and dynamic information of the cyanobacterial KaiABC oscillator system.
    [Show full text]
  • Kaib–Kaic Interactions Affect Kaib/Sasa Competition in the Circadian Clock of Cyanobacteria
    Article Cooperative KaiA–KaiB–KaiC Interactions Affect KaiB/SasA Competition in the Circadian Clock of Cyanobacteria Roger Tseng 1,2, Yong-Gang Chang 1, Ian Bravo 1, Robert Latham 1, Abdullah Chaudhary 3, Nai-Wei Kuo 1 and Andy LiWang 1,2,4,5 1 - School of Natural Sciences, University of California, Merced, CA 95343, USA 2 - Quantitative and Systems Biology Graduate Group, University of California, Merced, CA 95343, USA 3 - School of Engineering, University of California, Merced, CA 95343, USA 4 - Chemistry and Chemical Biology, University of California, Merced, CA 95343, USA 5 - Center for Chronobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA Correspondence to Andy LiWang: 5200 North Lake Road, Merced, CA 95340, USA. Telephone: (209) 777-6341. [email protected] http://dx.doi.org/10.1016/j.jmb.2013.09.040 Edited by A. G. Palmer III Abstract The circadian oscillator of cyanobacteria is composed of only three proteins, KaiA, KaiB, and KaiC. Together, they generate an autonomous ~24-h biochemical rhythm of phosphorylation of KaiC. KaiA stimulates KaiC phosphorylation by binding to the so-called A-loops of KaiC, whereas KaiB sequesters KaiA in a KaiABC complex far away from the A-loops, thereby inducing KaiC dephosphorylation. The switch from KaiC phosphorylation to dephosphorylation is initiated by the formation of the KaiB–KaiC complex, which occurs upon phosphorylation of the S431 residues of KaiC. We show here that formation of the KaiB–KaiC complex is promoted by KaiA, suggesting cooperativity in the initiation of the dephosphorylation complex. In the KaiA–KaiB interaction, one monomeric subunit of KaiB likely binds to one face of a KaiA dimer, leaving the other face unoccupied.
    [Show full text]
  • Structure, Function, and Mechanism of the Core Circadian Clock in Cyanobacteria
    Structure, function, and mechanism of the core circadian clock in cyanobacteria Jeffrey A. Swan1, Susan S. Golden2,3, Andy LiWang3,4, Carrie L. Partch1,3* 1Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064 2Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093 3Center for Circadian Biology and Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093 4Chemistry and Chemical Biology, University of California Merced, Merced, CA 95343 *Correspondence to: [email protected] Running title: Structural review of the cyanobacterial clock Keywords: structural biology, circadian rhythm, circadian clock, cyanobacteria, protein dynamic, protein-protein interaction, post-translational modification, post-translational-oscillator, KaiABC Abbreviations: TTFL, transcription-translation feedback loop; PTO, post-translational oscillator; ATP, adenosine triphosphate; ADP, adenosine diphosphate; PsR, pseudo-receiver; HK, histidine kinase; RR, response regulator ______________________________________________________________________________ Abstract intertwined functions: timekeeping, entrainment Circadian rhythms enable cells and and output signaling. organisms to coordinate their physiology with the Timekeeping is achieved through a cycle of cyclic environmental changes that come as a result slow biochemical processes that together set the of Earth’s light/dark cycles. Cyanobacteria make period of oscillation close to 24 hours. For this use of a post-translational
    [Show full text]
  • A Circadian Clock Nanomachine That Runs Without Transcription Or Translation
    Available online at www.sciencedirect.com A circadian clock nanomachine that runs without transcription or translation 1 2 Martin Egli and Carl Hirschie Johnson The biochemical basis of circadian timekeeping is best clocks in eukaryotes — a search that has recently culmi- characterized in cyanobacteria. The structures of its key nated in the discovery of circadian metabolic/redox oscil- molecular players, KaiA, KaiB, and KaiC are known and these lations that can operate in eukaryotes in the absence of proteins can reconstitute a remarkable circadian oscillation in a transcription [9], and which resurrects an old literature on test tube. KaiC is rhythmically phosphorylated and its phospho- circadian clocks in enucleated algal cells [4]. Because we status is a marker of circadian phase that regulates ATPase know the 3D-structures of the major protein players and activity and the oscillating assembly of a nanomachine. the oscillator can be reconstituted in vitro, the cyanobac- Analyses of the nanomachines have revealed how their timing terial system constitutes a unique preparation to study the circuit is ratcheted to be unidirectional and how they stay in biochemistry, biophysics, and structural biology of post- synch to ensure a robust oscillator. These insights are likely to translational circadian timekeeping. elucidate circadian timekeeping in higher organisms, including how transcription and translation could appear to be a core To set the stage for the information that we summarize circadian timer when the true pacemaker is an embedded
    [Show full text]
  • CCB Annual Report 2010–2011
    Report http://research.ucsd.edu/orureporting/revandsub.aspx?ReportID=825&rep... CCB Annual Review of the Organized Research Unit Fiscal Year 2011 The University of California, San Diego Center for Chronobiology 1 of 33 11/30/2011 3:44 PM Report http://research.ucsd.edu/orureporting/revandsub.aspx?ReportID=825&rep... 825 Director's Statement Director’s Statement During our second year as an ORU, the Center for Chronobiology had immediate goals of increasing the visibility of CCB on campus and around the world as a premier center for chronobiology research and facilitating interactions among members. We met these goals by: hosting local activities and outfitting facilities to engage our members and encourage interaction; expanding the content on an attractive and informative website; and hosting a symposium with top chronobiologist speakers from within CCB and around the world. Staffing section ‐ We have merged the External Advisory Committee and Executive Committee members into the Advisory Committee section since this report does not have a field for Executive Committee Members. All people included in the staffing section participate and contribute to the Center for Chronobiology. The Facilities section lists 12,568 square feet for CCB. Most of this space belongs to the Division of Biological Sciences. The actual space allocation for CCB is 551 square feet. This includes two administrative offices and one small conference room. Goals Met: · Expanded the membership of the Center for Chronobiology ORU to 32 UCSD faculty members as of June 30, 2011. · Hosted subgroups of members for research collaboration meetings · Held monthly meetings of the CCB Executive Committee · Recruited outstanding external academic and business professionals to serve as member of a CCB External Advisory Committee, which will meet on February 15, 2012.
    [Show full text]
  • Structural Mimicry Confers Robustness in the Cyanobacterial Circadian Clock
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.158394; this version posted June 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structural mimicry confers robustness in the cyanobacterial circadian clock Joel Heisler1,2†, Jeffrey A. Swan3†, Joseph G. Palacios3, Cigdem Sancar4, Dustin C. Ernst4, 5 Rebecca K. Spangler3, Clive R. Bagshaw3, Sarvind Tripathi3, Priya Crosby3, Susan S. Golden4,5, Carrie L. Partch3,5*, Andy LiWang1,2,5,6,7,8,9* 1Graduate Program in Chemistry and Chemical Biology, University of California, Merced, CA 95343. 10 2Center for Cellular and Biomolecular Machines, University of California, Merced, CA 95343. 3Department of Chemistry & Biochemistry, University of California, Santa Cruz, CA 95064. 4Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093. 5Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093. 6School of Natural Sciences, University of California, Merced, CA 95343. 15 7Quantitative & Systems Biology, University of California, Merced, CA 95343. 8Center for Cellular and Biomolecular Machines, University of California, Merced, CA 95343. 9Health Sciences Research Institute, University of California, Merced, CA 95343. †These authors contributed equally to this work 20 *Correspondence should be addressed to A.L. ([email protected]) or C.L.P. ([email protected]). Short title: SasA-KaiB mimicry and circadian rhythms 25 30 35 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.158394; this version posted June 19, 2020.
    [Show full text]
  • Precise Circadian Clocks in Prokaryotic Cyanobacteria
    Curr. Issues Mol. Biol. (2004) 6: 103-110. Circadian ClocksOnline in journal Cyanobacteria at www.cimb.org 103 Precise Circadian Clocks in Prokaryotic Cyanobacteria Carl Hirschie Johnson* was a stroke of luck. Subsequent experiments using other strains/species of cyanobacteria have found rhythms (Aoki Department of Biological Sciences, Vanderbilt University, et al., 1997), but the reporters in those strains are not Nashville, TN 37235, USA bright. And even in S. elongatus, other promoters do not show such a robust rhythm of luminescence (see Class 3-5 rhythms in Figure 1– psbAIp is a strong Class 1 promoter; Abstract Liu et al., 1995). The combination of the psbAIp::luxAB reporter and the S. elongatus strain remains one of the Prokaryotic cyanobacteria express robust circadian most robustly rhythmic combinations in cyanobacteria, (daily) rhythms under the control of a timing even after ten years of intensive research. Dr. Kondo was mechanism that is independent of the cell division able to exploit the bright and robust luminescence rhythm cycle. This biological clock orchestrates global by designing clever apparatuses to monitor the rhythms. regulation of gene expression and controls the timing For liquid cultures, Dr. Kondo enlisted and modifi ed the of cell division. Proteins that may be involved in input automated photomultiplier apparatus that was originally pathways have been identifi ed. Mutational screening designed for endogenously bioluminescent algae (Kondo et has identifi ed three clock genes that are organized al., 1993). For monitoring colonies, Drs. Kondo and Ishiura as a gene cluster. The structure of cyanobacterial discovered that the rhythms of single colonies could be clock proteins, their phosphorylation, and regulation tracked with a CCD camera (Kondo and Ishiura, 1994).
    [Show full text]
  • Cellular Function and Localization of Circadian Clock Proteins in Cyanobacteria
    CELLULAR FUNCTION AND LOCALIZATION OF CIRCADIAN CLOCK PROTEINS IN CYANOBACTERIA A Dissertation by GUOGANG DONG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2008 Major Subject: Microbiology ii CELLULAR FUNCTION AND LOCALIZATION OF CIRCADIAN CLOCK PROTEINS IN CYANOBACTERIA A Dissertation by GUOGANG DONG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Susan S. Golden Committee Members, Deborah Bell-Pedersen Andy LiWang Deborah Siegele Head of Department, Thomas D. McKnight December 2008 Major Subject: Microbiology iii ABSTRACT Cellular Function and Localization of Circadian Clock Proteins in Cyanobacteria. (December 2008) Guogang Dong, B.S., Peking University Chair of Advisory Committee: Dr. Susan S. Golden The cyanobacterium Synechococcus elongatus builds a circadian clock on an oscillator comprised of three proteins, KaiA, KaiB, and KaiC, which can recapitulate a circadian rhythm of KaiC phosphorylation in vitro. The molecular structures of all three proteins are known, and the phosphorylation steps of KaiC, the interaction dynamics among the three Kai proteins, and a weak ATPase activity of KaiC have all been characterized. A mutant of a clock gene in the input pathway, cikA , has a cell division defect, and the circadian clock inhibits the cell cycle for a short period of time during each cycle. However, the interaction between the circadian cycle and the cell cycle and the molecular mechanisms underlying it have been poorly understood.
    [Show full text]
  • UCSD Center for Chronobiology
    Center for Chronobiology CCB 5 year Review of the Organized Research Unit Fiscal Year 2010 thru 2013 The University of California, San Diego Center for Chronobiology Director’s Statement Center for Chronobiology (CCB) The UCSD Center for Chronobiology (CCB) was established as an Organized Research Unit in 2009 to leverage the exceptional strength and breadth of circadian biology research that is conducted at UCSD. The Center brings together faculty from diverse disciplinary areas of the campus, including the Biological, Physical, and Social Sciences, Engineering, and the Schools of Medicine and Pharmacy. CCB focuses on questions in chronobiology - the study of biological timing – found at all levels of biological complexity and central to the organization of life, with an emphasis on circadian (~24 h) biological rhythms. With 34 members at UCSD, and affiliate members at the Scripps Research Institute, UC Santa Cruz, and UC Merced, CCB is the largest aggregate of circadian rhythms researchers in the world. CCB members span an exceptional range of research approaches and organisms, from in vitro rhythms and synthetic biology in micro-organisms, through plant and animal model organisms, to human clinical research. Moreover, members are, as individuals, leaders in their specific areas. Since the establishment of CCB, three members have been elected to the National Academy of Sciences (Golden, Sejnowski, and Spitzer). The establishment of this ORU in 2009 had the immediate effect of focusing both internal and international attention on our unique concentration of strength in circadian biology and placing UCSD on the map as a major center of research in this broad field.
    [Show full text]
  • Minimal Tool Set for a Prokaryotic Circadian Clock Nicolas M
    Schmelling et al. BMC Evolutionary Biology (2017) 17:169 DOI 10.1186/s12862-017-0999-7 RESEARCH ARTICLE Open Access Minimal tool set for a prokaryotic circadian clock Nicolas M. Schmelling1 , Robert Lehmann2, Paushali Chaudhury3, Christian Beck2, Sonja-Verena Albers3 , Ilka M. Axmann1* and Anika Wiegard1 Abstract Background: Circadian clocks are found in organisms of almost all domains including photosynthetic Cyanobacteria, whereby large diversity exists within the protein components involved. In the model cyanobacterium Synechococcus elongatus PCC 7942 circadian rhythms are driven by a unique KaiABC protein clock, which is embedded in a network of input and output factors. Homologous proteins to the KaiABC clock have been observed in Bacteria and Archaea, where evidence for circadian behavior in these domains is accumulating. However, interaction and function of non-cyanobacterial Kai-proteins as well as homologous input and output components remain mainly unclear. Results: Using a universal BLAST analyses, we identified putative KaiC-based timing systems in organisms outside as well as variations within Cyanobacteria. A systematic analyses of publicly available microarray data elucidated interesting variations in circadian gene expression between different cyanobacterial strains, which might be correlated to the diversity of genome encoded clock components. Based on statistical analyses of co-occurrences of the clock components homologous to Synechococcus elongatus PCC 7942, we propose putative networks of reduced and fully functional clock systems. Further, we studied KaiC sequence conservation to determine functionally important regions of diverged KaiC homologs. Biochemical characterization of exemplary cyanobacterial KaiC proteins as well as homologs from two thermophilic Archaea demonstrated that kinase activity is always present.
    [Show full text]
  • Japan Academy Prize To: Takao KONDO Designated Professor
    7 Japan Academy Prize to: Takao KONDO Designated Professor, Graduate School of Science and Emeritus Professor, Nagoya University for “Studies of Biological Time Measurement in Cyanobacteria by Reconstitution of the Circadian Clock” Outline of the work: To precisely fit their metabolic activities to day–night alternation of the environment, living organisms on the Earth have a biological clock (circadian clock) with a 24-hour period that originated by the rotation of the Earth. The question of the biological mechanism that generates a stable rhythm with a 24-hour period has fascinated researchers in several areas of the natural sciences. Dr. Takao Kondo devoted his graduate study to the circadian clock and, in the early 1990s, developed a new experimental system for studying the circadian clock in cyanobacteria. With this system, he isolated many clock mutants that enabled identification of the cyanobacterial clock genes kaiA, kaiB, and kaiC. By studying the expression of kai genes, the circadian clock model controlled by negative feedback of kai gene expression was proposed as the cyanobacterial circadian clock, which is similar to that for many eukaryotes. However, Dr. Kondo recognized that it was difficult to explain how the 24-hour periodicity is defined and how it compensates against ambient temperature. Therefore, he focused on biochemical analyses of KaiC activity that could alter the period length. In 2005, his group found that the phosphorylation rhythm of KaiC persisted even under conditions when no transcriptional and translational activity was permitted. This finding generated a major impact to the conventional hypothesis. Further, they found that the 24-hour rhythm of KaiC phosphorylation occur autonomously just by mixing three Kai proteins and ATP in a test tube.
    [Show full text]