Structure, Function, and Mechanism of the Core Circadian Clock in Cyanobacteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Modeling of Protein Interactions and Phosphoform Kinetics in the Kaiabc Cyanobacterial Circadian Clock
Computational modeling of protein interactions and phosphoform kinetics in the KaiABC cyanobacterial circadian clock Mark Byrne1 1 Physics Department, Spring Hill College, 4000 Dauphin St., Mobile AL 36608 Corresponding author: Dr. Mark Byrne Physics Dept. 4000 Dauphin St Spring Hill College Mobile, AL 36608 USA TEL: 251-380-3080 Email: [email protected] Abstract The KaiABC circadian clock from cyanobacteria is the only known three-protein oscillatory system which can be reconstituted outside the cell and which displays sustained periodic dynamics in various molecular state variables. Despite many recent experimental and theoretical studies there are several open questions regarding the central mechanism(s) responsible for creating this ~24 hour clock in terms of molecular assembly/disassembly of the proteins and site- dependent phosphorylation and dephosphorylation of KaiC monomers. Simulations of protein- protein interactions and phosphorylation reactions constrained by analytical fits to partial reaction experimental data support the central mechanism of oscillation as KaiB-induced KaiA sequestration in KaiABC complexes associated with the extent of Ser431 phosphorylation in KaiC hexamers A simple two-state deterministic model in terms of the degree of phosphorylation of Ser431 and Thr432 sites alone can reproduce the previously observed circadian oscillation in the four population monomer phosphoforms in terms of waveform, amplitude and phase. This suggests that a cyclic phosphorylation scheme (involving cooperativity between adjacent Ser431 and Thr432 sites) is not necessary for creating oscillations. Direct simulations of the clock predict the minimum number of serine-only monomer subunits associated with KaiA sequestration and release, highlight the role of monomer exchange in rapid synchronization, and predict the average number of KaiA dimers sequestered per KaiC hexamer. -
The Thioredoxin Trx-1 Regulates the Major Oxidative Stress Response Transcription Factor, Skn-1, in Caenorhabditis Elegans
The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2016 THE THIOREDOXIN TRX-1 REGULATES THE MAJOR OXIDATIVE STRESS RESPONSE TRANSCRIPTION FACTOR, SKN-1, IN CAENORHABDITIS ELEGANS Katie C. McCallum Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Cellular and Molecular Physiology Commons, Medicine and Health Sciences Commons, Molecular Genetics Commons, and the Organismal Biological Physiology Commons Recommended Citation McCallum, Katie C., "THE THIOREDOXIN TRX-1 REGULATES THE MAJOR OXIDATIVE STRESS RESPONSE TRANSCRIPTION FACTOR, SKN-1, IN CAENORHABDITIS ELEGANS" (2016). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 655. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/655 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE THIOREDOXIN TRX-1 REGULATES THE MAJOR OXIDATIVE STRESS RESPONSE TRANSCRIPTION FACTOR, SKN-1, IN CAENORHABDITIS ELEGANS A DISSERTATION Presented to the Faculty of The University of Texas Health Science Center at Houston and The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Katie Carol McCallum, B.S. -
Structure of the Thioredoxin-Fold Domain of Human Phosducin-Like
protein structure communications Acta Crystallographica Section F Structural Biology Structure of the thioredoxin-fold domain of human and Crystallization phosducin-like protein 2 Communications ISSN 1744-3091 Xiaochu Lou,a Rui Bao,a Human phosducin-like protein 2 (hPDCL2) has been identified as belonging to Cong-Zhao Zhoub and subgroup II of the phosducin (Pdc) family. The members of this family share an Yuxing Chena,b* N-terminal helix domain and a C-terminal thioredoxin-fold (Trx-fold) domain. The X-ray crystal structure of the Trx-fold domain of hPDCL2 was solved at ˚ aInstitute of Protein Research, Tongji University, 2.70 A resolution and resembled the Trx-fold domain of rat phosducin. Shanghai 200092, People’s Republic of China, Comparative structural analysis revealed the structural basis of their putative and bHefei National Laboratory for Physical functional divergence. Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China Correspondence e-mail: [email protected] 1. Introduction The thioredoxin-fold (Trx-fold) protein-structure classification (SCOP; Received 21 October 2008 http://scop.mrc-lmb.cam.ac.uk; Murzin et al., 1995) was characterized Accepted 11 November 2008 based on the structure of Escherichia coli Trx1 (Holmgren et al., 1975). The classic Trx fold consists of a single domain with a central PDB Reference: thioredoxin-fold domain of five-stranded mixed -sheet flanked by two -helices on each side. human phosducin-like protein 2, 3evi, r3evisf. The secondary-structure elements are arranged in the order - , with 4 antiparallel to the other strands. -
Robust and Tunable Circadian Rhythms from Differentially Sensitive Catalytic Domains Connie Phonga, Joseph S
Robust and tunable circadian rhythms from differentially sensitive catalytic domains Connie Phonga, Joseph S. Marksonb, Crystal M. Wilhoitea, and Michael J. Rusta,1 aDepartment of Molecular Genetics and Cell Biology, Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637; and bGraduate Committee on Higher Degrees in Biophysics, Departments of Molecular and Cellular Biology and Chemistry and Chemical Biology, Harvard University Center for Systems Biology, Cambridge, MA 02138 Edited by Joseph S. Takahashi, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, and approved November 27, 2012 (received for review July 15, 2012) Circadian clocks are ubiquitous biological oscillators that coordi- reaction buffer. This manipulation simulates the metabolic nate an organism’s behavior with the daily cycling of the external changes that occur in vivo in response to a dark pulse and results environment. To ensure synchronization with the environment, in a modulation of KaiC phosphorylation (6). the period of the clock must be maintained near 24 h even as amplitude and phase are altered by input signaling. We show that, Results in a reconstituted circadian system from cyanobacteria, these con- Period of the KaiABC Oscillator Is Robust Against Changes in ATP/ADP flicting requirements are satisfied by distinct functions for two Signaling. To dissect the mechanism of the oscillator’s response fi domains of the central clock protein KaiC: the C-terminal autoki- to input signaling through the ATP/ADP ratio, we rst isolated nase domain integrates input signals through the ATP/ADP ratio, its effect on KaiC’s kinase activity by studying nonoscillatory and the slow N-terminal ATPase acts as an input-independent KaiA-KaiC reactions, where the absence of KaiB removes the timer. -
The Kaia Protein of the Cyanobacterial Circadian Oscillator Is Modulated by a Redox-Active Cofactor
The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor Thammajun L. Wooda,1, Jennifer Bridwell-Rabbb,1, Yong-Ick Kimc,1, Tiyu Gaoa, Yong-Gang Changd, Andy LiWangd, David P. Barondeaub, and Susan S. Goldena,c,2,3 aThe Center for Biological Clocks Research, Department of Biology, and bDepartment of Chemistry, Texas A&M University, College Station, TX 77843; cCenter for Chronobiology and Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093-0116; and dSchool of Natural Sciences, University of California, Merced, CA 95340 Edited by Steven L. McKnight, The University of Texas Southwestern, Dallas, TX, and approved February 12, 2010 (received for review September 9, 2009) The circadian rhythms exhibited in the cyanobacterium Synechococ- varies inversely with light intensity, with the highest levels in cus elongatus are generated by an oscillator comprised of the the dark; in an ldpA mutant, CikA abundance is locked at its proteins KaiA, KaiB, and KaiC. An external signal that commonly lowest level independent of light intensity, and KaiA, whose affects the circadian clock is light. Previously, we reported that levels are not light dependent, is elevated (17, 20). the bacteriophytochrome-like protein CikA passes environmental We previously used the photosynthetic electron transport signals to the oscillator by directly binding a quinone and using inhibitor 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone cellular redox state as a measure of light in this photosynthetic (DBMIB), a water-soluble halogenated analog of native plasto- organism. Here, we report that KaiA also binds the quinone analog quinone (PQ) (21), in experiments designed to manipulate the 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), and redox state of the PQ pool in cyanobacterial cells (21). -
SMALL-MOLECULE CATALYSIS of NATIVE DISULFIDE BOND FORMATION in PROTEINS by Kenneth J. Woycechowsky a Dissenation Submitted in Pa
SMALL-MOLECULE CATALYSIS OF NATIVE DISULFIDE BOND FORMATION IN PROTEINS by Kenneth J. Woycechowsky A dissenation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biochemistry) at the UNIVERSITY OF WISCONSIN-MADISON 2002 A dissertation entitled Small-Molecule Ca~alysis of Na~ive Disulfide Bond Formation in Proteins submitted to the Graduate School of the University of Wisconsin-Madison in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Kenneth J. Woycechowsky Date of Final Oral Examination: 19 September 2002 Month & Year Degree to be awarded: December 2002 May August **** .... **************** .... ** ...... ************** ........... "1"II_Ir'IIII;;IISIJii:iAh;;;;;?f~D~i:s:sertation Readers: Signature, Dean of Graduate School , 1 Abstract Native disulfide bond formation is essential for the folding of many proteins. The enzyme protein disulfide isomerase (POI) catalyzes native disulfide bond formation using a Cys-Gly-His Cys active site. The active-site properties of POI (thiol pK. =6.7 and disulfide E;O' =-180 mY) are critical for efficient catalysis. This Dissertation describes the design, synthesis, and characterization of small-molecule catalysts that mimic the active-site properties of POI. Chapter Two describes a small-molecule dithiol that has disulfide bond isomerization activity both in vitro and in vivo. The dithiol trans-I,2-bis(mercaptoacetamido)cyclohexane (BMC) has a thiol pKa value of 8.3 and a disulfide E;O' value of -240 mV.ln vitro, BMC increases the folding efficiency of disulfide--scrambled ribonuclease A (sRNase A). Addition of BMC to the growth medium of yeast cells causes an increase in the heterologous secretion of Schizosaccharomyces pombe acid phosphatase. -
Cooperative Kaia–Kaib–Kaic Interactions Affect Kaib/Sasa Competition in the Circadian Clock of Cyanobacteria
UC Merced UC Merced Previously Published Works Title Cooperative KaiA-KaiB-KaiC interactions affect KaiB/SasA competition in the circadian clock of cyanobacteria. Permalink https://escholarship.org/uc/item/71t4r3th Journal Journal of molecular biology, 426(2) ISSN 0022-2836 Authors Tseng, Roger Chang, Yong-Gang Bravo, Ian et al. Publication Date 2014 DOI 10.1016/j.jmb.2013.09.040 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Article Cooperative KaiA–KaiB–KaiC Interactions Affect KaiB/SasA Competition in the Circadian Clock of Cyanobacteria Roger Tseng 1,2, Yong-Gang Chang 1, Ian Bravo 1, Robert Latham 1, Abdullah Chaudhary 3, Nai-Wei Kuo 1 and Andy LiWang 1,2,4,5 1 - School of Natural Sciences, University of California, Merced, CA 95343, USA 2 - Quantitative and Systems Biology Graduate Group, University of California, Merced, CA 95343, USA 3 - School of Engineering, University of California, Merced, CA 95343, USA 4 - Chemistry and Chemical Biology, University of California, Merced, CA 95343, USA 5 - Center for Chronobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA Correspondence to Andy LiWang: 5200 North Lake Road, Merced, CA 95340, USA. Telephone: (209) 777-6341. [email protected] http://dx.doi.org/10.1016/j.jmb.2013.09.040 Edited by A. G. Palmer III Abstract The circadian oscillator of cyanobacteria is composed of only three proteins, KaiA, KaiB, and KaiC. Together, they generate an autonomous ~24-h biochemical rhythm of phosphorylation of KaiC. KaiA stimulates KaiC phosphorylation by binding to the so-called A-loops of KaiC, whereas KaiB sequesters KaiA in a KaiABC complex far away from the A-loops, thereby inducing KaiC dephosphorylation. -
Global Gene Repression by Kaic As a Master Process of Prokaryotic Circadian System
Global gene repression by KaiC as a master process of prokaryotic circadian system Yoichi Nakahira*, Mitsunori Katayama†, Hiroshi Miyashita‡, Shinsuke Kutsuna§, Hideo Iwasaki, Tokitaka Oyama, and Takao Kondo¶ Division of Biological Science, Graduate School of Science, Nagoya University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Furo-cho, Chikusa, Nagoya 464-8602, Japan Communicated by J. Woodland Hastings, Harvard University, Cambridge, MA, November 18, 2003 (received for review August 24, 2003) A kaiABC clock gene cluster was previously identified from cya- site of pTS2KPtrc::kaiC (pTS2KPtrc::kaiCB). NUC0203 was nobacterium Synechococcus elongatus PCC 7942, and the feedback transformed with pTS2KPtrc::kaiCB to generate cells harboring regulation of kai genes was proposed as the core mechanism an IPTG-inducible kaiCB cassette in the neutral site II site generating circadian oscillation. In this study, we confirmed that (NUC0204: PkaiBC::luxAB͞kaiBCϪϩPtrc::kaiCB). NUC0205 the Kai-based oscillator is the dominant circadian oscillator func- (complemented kaiABC), NUC0206 (kaiBC-inactivated), and tioning in cyanobacteria. We probed the nature of this regulation NUC0207 (kaiBC-inactivated and Ptrc-driven kaiCB), all carry- and found that excess KaiC represses not only kaiBC but also the ing the Ptrc::luxAB reporter in NSI, were constructed by the rhythmic components of all genes in the genome. This result same methods used to create the PkaiBC::luxAB reporter strains. strongly suggests that the KaiC protein primarily coordinates The Ptrc-driven, kaiA strain (NUC0209: kaiAϪϩPtrc::kaiA) was genomewide gene expression, including its own expression. We generated by the transformation of a kaiA-inactivated strain (5) also found that a promoter derived from E. -
Kaic Cii Ring Flexibility Governs the Rhythm of The
KAIC CII RING FLEXIBILITY GOVERNS THE RHYTHM OF THE CIRCADIAN CLOCK OF CYANOBACTERIA A Dissertation by NAI-WEI KUO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2011 Major Subject: Biochemistry KAIC CII RING FLEXIBILITY GOVERNS THE RHYTHM OF THE CIRCADIAN CLOCK OF CYANOBACTERIA A Dissertation by NAI-WEI KUO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Co-Chairs of Committee, Andy LiWang Pingwei Li Committee Members, Deborah Bell-Pedersen Frank Raushel Head of Department, Gregory Reinhart May 2011 Major Subject: Biochemistry iii ABSTRACT KaiC CII Ring Flexibility Governs the Rhythm of the Circadian Clock of Cyanobacteria. (May 2011) Nai-Wei Kuo, B.S.; M.S., National Tsing Hua University, Taiwan Co-Chairs of Advisory Committee: Dr. Andy LiWang, Dr. Pingwei Li The circadian clock orchestrates metabolism and cell division and imposes important consequences to health and diseases, such as obesity, diabetes, and cancer. It is well established that phosphorylation-dependent circadian rhythms are the result of circadian clock protein interactions, which regulate many intercellular processes according to time of day. The phosphorylation-dependent circadian rhythm undergoes a succession of phases: Phosphorylation Phase → Transition Phase → Dephosphorylation Phase. Each phase induces the next phase. However, the mechanism of each phase and how the phosphorylation and dephosphorylation phases are prevented from interfering with each other remain elusive. In this research, we used a newly developed isotopic labeling strategy in combination with a new type of nuclear magnetic resornance (NMR) experiment to obtain the structural and dynamic information of the cyanobacterial KaiABC oscillator system. -
A Shape-Shifting Redox Foldase Contributes to Proteus Mirabilis Copper Resistance
ARTICLE Received 7 Oct 2016 | Accepted 24 May 2017 | Published 19 Jul 2017 DOI: 10.1038/ncomms16065 OPEN A shape-shifting redox foldase contributes to Proteus mirabilis copper resistance Emily J. Furlong1, Alvin W. Lo2,3, Fabian Kurth1,w, Lakshmanane Premkumar1,2,w, Makrina Totsika2,3,w, Maud E.S. Achard2,3,w, Maria A. Halili1, Begon˜a Heras4, Andrew E. Whitten1,w, Hassanul G. Choudhury1,w, Mark A. Schembri2,3 & Jennifer L. Martin1,5 Copper resistance is a key virulence trait of the uropathogen Proteus mirabilis. Here we show that P. mirabilis ScsC (PmScsC) contributes to this defence mechanism by enabling swarming in the presence of copper. We also demonstrate that PmScsC is a thioredoxin-like disulfide isomerase but, unlike other characterized proteins in this family, it is trimeric. PmScsC trimerization and its active site cysteine are required for wild-type swarming activity in the presence of copper. Moreover, PmScsC exhibits unprecedented motion as a consequence of a shape-shifting motif linking the catalytic and trimerization domains. The linker accesses strand, loop and helical conformations enabling the sampling of an enormous folding land- scape by the catalytic domains. Mutation of the shape-shifting motif abolishes disulfide isomerase activity, as does removal of the trimerization domain, showing that both features are essential to foldase function. More broadly, the shape-shifter peptide has the potential for ‘plug and play’ application in protein engineering. 1 Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia. 2 School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia. -
The Day/Night Switch in Kaic, a Central Oscillator Component of the Circadian Clock of Cyanobacteria
The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria Yong-Ick Kim*, Guogang Dong†‡, Carl W. Carruthers, Jr.*, Susan S. Golden†‡, and Andy LiWang§¶ *Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128; †Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843; ‡Department of Biology, Texas A&M University, College Station, TX 77843-3258; and §School of Natural Sciences, University of California at Merced, 4225 North Hospital Road, Atwater, CA 95301 Edited by Joseph S. Takahashi, Northwestern University, Evanston, IL, and approved June 25, 2008 (received for review January 18, 2008) The circadian oscillator of the cyanobacterium Synechococcus elon- KaiC is dominant; KaiA shifts the balance of activities from gatus is composed of only three proteins, KaiA, KaiB, and KaiC, autophosphatase to autokinase (10, 17, 19). However, the pST- which, together with ATP, can generate a self-sustained Ϸ24 h KaiC phosphoform recruits KaiB, and, together, they inactivate oscillation of KaiC phosphorylation for several days. KaiA induces KaiA in KaiABC complexes (23–25). With insufficient levels of KaiC to autophosphorylate, whereas KaiB blocks the stimulation of active KaiA in solution, the ensemble of KaiC molecules begins KaiC by KaiA, which allows KaiC to autodephosphorylate. We to dephosphorylate. KaiA activity resumes once enough pST- propose and support a model in which the C-terminal loops of KaiC, KaiC has decayed to ST-KaiC [implying that not all KaiC the ‘‘A-loops’’, are the master switch that determines overall KaiC molecules make it back to the ST-KaiC state before being activity. -
Kaib–Kaic Interactions Affect Kaib/Sasa Competition in the Circadian Clock of Cyanobacteria
Article Cooperative KaiA–KaiB–KaiC Interactions Affect KaiB/SasA Competition in the Circadian Clock of Cyanobacteria Roger Tseng 1,2, Yong-Gang Chang 1, Ian Bravo 1, Robert Latham 1, Abdullah Chaudhary 3, Nai-Wei Kuo 1 and Andy LiWang 1,2,4,5 1 - School of Natural Sciences, University of California, Merced, CA 95343, USA 2 - Quantitative and Systems Biology Graduate Group, University of California, Merced, CA 95343, USA 3 - School of Engineering, University of California, Merced, CA 95343, USA 4 - Chemistry and Chemical Biology, University of California, Merced, CA 95343, USA 5 - Center for Chronobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA Correspondence to Andy LiWang: 5200 North Lake Road, Merced, CA 95340, USA. Telephone: (209) 777-6341. [email protected] http://dx.doi.org/10.1016/j.jmb.2013.09.040 Edited by A. G. Palmer III Abstract The circadian oscillator of cyanobacteria is composed of only three proteins, KaiA, KaiB, and KaiC. Together, they generate an autonomous ~24-h biochemical rhythm of phosphorylation of KaiC. KaiA stimulates KaiC phosphorylation by binding to the so-called A-loops of KaiC, whereas KaiB sequesters KaiA in a KaiABC complex far away from the A-loops, thereby inducing KaiC dephosphorylation. The switch from KaiC phosphorylation to dephosphorylation is initiated by the formation of the KaiB–KaiC complex, which occurs upon phosphorylation of the S431 residues of KaiC. We show here that formation of the KaiB–KaiC complex is promoted by KaiA, suggesting cooperativity in the initiation of the dephosphorylation complex. In the KaiA–KaiB interaction, one monomeric subunit of KaiB likely binds to one face of a KaiA dimer, leaving the other face unoccupied.