Monitoring, Assessing and Evaluating the Pollinator

Total Page:16

File Type:pdf, Size:1020Kb

Monitoring, Assessing and Evaluating the Pollinator MONITORING, ASSESSING AND EVALUATING THE POLLINATOR SPECIES (HYMENOPTERA: APOIDEA) FOUND ON A NATIVE BRUSH SITE, A REVEGETATED SITE AND AN URBAN GARDEN A Dissertation by CARRIE ANN CATE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2007 Major Subject: Entomology MONITORING, ASSESSING AND EVALUATING THE POLLINATOR SPECIES (HYMENOPTERA: APOIDEA) FOUND ON A NATIVE BRUSH SITE, A REVEGETATED SITE AND AN URBAN GARDEN A Dissertation by CARRIE ANN CATE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, S. Bradleigh Vinson Committee Members, Marvin Harris Stephan L. Hatch Steven G. Whisenant Head of Department, Kevin M. Heinz May 2007 Major Subject: Entomology iii ABSTRACT Monitoring, Assessing and Evaluating the Pollinator Species (Hymenoptera: Apoidea) Found on a Native Brush Site, a Revegetated Site and an Urban Garden. (May 2007) Carrie Ann Cate, B. S., West Texas State University; M. S., Midwestern State University Chair of Advisory Committee: Dr. S. Bradleigh Vinson This research presents the findings of a pollinator diversity study that took place at three study sites. Although variation in pollinator diversity occurred between the three sites, fewer pollinators than expected were recorded from the La Joya Tract (revegetated site). Numerous genera and species were recorded from the Havana Tract (native site) as well as the Valley Nature Center (urban garden). In contrast, the La Joya Tract had a comparatively depauperate pollinator fauna. The numbers of pollinator genera and species recorded from the three study sites were decreased in comparison to the total number of genera and species recorded from Hidalgo County. Hidalgo County has 35 known genera and 75 species of bees documented to date. About 40% of the genera and 23% of the species recorded from Hidalgo County were recorded from the Havana Tract in this study, while a mere 8.5% of the genera and 4% of the species were reported from the La Joya Tract and 34% of the genera and 16% of the species were reported from the Valley Nature Center. Although the vascular plant species identified from these study sites were iv diverse, the floral rewards they provided yielded an insight as to what was going on in terms of pollinator diversity. Plants may yield nectar or pollen floral rewards or both in some cases to pollinators. The current study provides evidence that revegetation of land with plants that primarily provide nectar rewards will result in fewer observed bee taxa than from land revegetated with plants that provide a mix of nectar and pollen floral rewards. v DEDICATION Johnathan Nathan Cate beloved child vi ACKNOWLEDGMENTS I wish to thank my committee for their understanding, encouragement, input and endurance throughout this project. I would like to thank Dr. Marvin Harris, Dr. Stephan Hatch and Dr. Steven Whisenant for all of their support and knowledge. Above all, I owe a great deal of thanks to my chairman, Dr. S. Bradleigh Vinson. He always believed in me and kept pushing me to see this project come to fruition. Many thanks for all his time and efforts spent on my behalf. This gave me the strength and perseverance to press forward. One professor who had a lot of influence over my career choice of Entomology was Dr. Horace Burke. He provided plenty of challenges while encouraging me throughout every aspect of taxonomy. My sincere thanks are extended to Dr. Burke. Thanks are given to my good friends, Allen and Susan Dean, who have helped me in so many ways throughout the years. They edited the manuscript, provided technical support, map scans and moral support throughout this entire endeavor. The Texas A&M University Entomology Collection, curated by Ed Riley, provided much needed background information on the genera and species of bees anticipated to be encountered at the onset of this work. Thanks to the Entomology Department for such excellent resources. Thanks are given to Dr. Frank Eishen with the USDA Honey Bee Lab facility in Weslaco for allowing access and usage of their high powered microscope to determine preliminary bee identifications. vii Dr. Jack Neff with the Central Texas Melittological Institute in Austin performed the final bee species identifications. He also provided the county records for bee species found in Hidalgo County. He gave of his time and expertise freely and I am indebted to him. POPAL, the pollen listserv, provided an excellent forum for much needed information as well as useful references and resources. Thanks to all who responded to my questions and requests. The director of the Valley Nature Center, Martin Hagne, gave me full access to the nature park (urban garden) during the period of study. Many thanks are given to him and the staff at the VNC. United States Fish and Wildlife Service (USFWS) cooperated completely with this project by allowing two of their tracts to be used in this study. Ken Merritt encouraged biological research to be performed on refuge lands. Dave Blankinship helped shape this research with his biological knowledge. Jeff Rupert toured me through a number of prospective sites and gave of his time. Chris Best provided much knowledge with regards to the revegetation efforts and data of the La Joya tract. Thanks to USFWS for being such a great partner in this endeavor. Dr. Norman Horner and Dr. Rodney Cate of Midwestern State University must be given credit for instilling in me the need to know more and to go the distance. Thanks to them for all they gave to me. Thanks to my good friend and colleague, Dr. Frank Benton, who encouraged me to finish this work. There were numerous stumbling blocks and Dr. Benton was always viii quick to provide moral support when I felt like giving up. He also gave suggestions and edited my earlier drafts. My family has always been a source of great strength and support. Many thanks are extended to them just for being there. Last but not least, I would not be finishing this project but for the grace of God and his strength. ix TABLE OF CONTENTS Page ABSTRACT....................................................................................................... iii DEDICATION ................................................................................................... v ACKNOWLEDGMENTS.................................................................................. vi TABLE OF CONTENTS................................................................................... ix LIST OF FIGURES............................................................................................ xi LIST OF TABLES ............................................................................................. xiii CHAPTER I INTRODUCTION .......................................................................... 1 II REVIEW OF THE LITERATURE ................................................ 6 Pollinators and Pollination Ecology – Significance and Importance.................................................................................. 6 Bee Taxa: Overview (Condensed from Michener, 2000) .......... 10 Restoration Ecology and Land Mosaics..................................... 13 Biotic Communities of South Texas .......................................... 18 III MATERIALS AND METHODS.................................................... 20 Habitat Measurements................................................................ 35 Bee Sampling Protocol............................................................... 36 IV RESULTS ....................................................................................... 37 Observational Data..................................................................... 65 V DISCUSSION................................................................................. 66 VI CONCLUSION AND RECOMMENDATIONS........................... 73 LITERATURE CITED ...................................................................................... 75 x TABLE OF CONTENTS (continued) Page APPENDIX A .................................................................................................... 79 APPENDIX B .................................................................................................... 82 VITA .................................................................................................................. 91 xi LIST OF FIGURES FIGURE Page 1 Overview Map of the South Texas Study Sites....................................... 21 2A Location Map of the Havana and La Joya Tracts.................................... 23 2B Location Map of the Valley Nature Center (VNC)................................. 25 3A Satellite Image of Havana Tract (between Arrows)................................ 27 3B Satellite Image of La Joya Tract (between Arrows)................................ 29 3C Satellite Image of Valley Nature Center (between Arrows) ................... 30 4A Representation of Typical Vegetation of the Havana Tract.................... 32 4B Representation of Typical Vegetation of the La Joya Tract.................... 33 4C Representation of Typical Vegetation of the Valley Nature Center ....... 34 5A Havana Site Observations 1999-2000..................................................... 54 5B Havana Site Observations 2000-2001..................................................... 55 5C Havana Site Observations 2001-2002....................................................
Recommended publications
  • Research Advances on Experimental Biology of Woody Plants of a Tamaulipan Thorn Scrub, Northeastern Mexico and Research Needs
    International Journal of Bio-resource and Stress Management 2016, 7(5):1197-1205 HTTPS://DOI.ORG/10.23910/IJBSM/2016.7.5.1632a Review Article Research Advances on Experimental Biology of Woody Plants of A Tamaulipan Thorn Scrub, Northeastern Mexico and Research Needs Ratikanta Maiti1, Humberto Gonzalez Rodriguez2*, Aruna Kumari3 and N. C. Sarkar4 1,2Universidad Autónoma de Nuevo Leon, Facultad de Ciencias Forestales, Carr. Nac. No. 85 Km. 45, Linares, Nuevo Leon (67 700), Mexico 3Crop Physiology, Professor Jaya Shankar Telangana State Agricultural University, Agricultural College, Polasa, Jagtial, Karimnagar (505 529), India 4Dept. of Agronomy, Institute of Agriculture, Visva-Bharati, PO- Sriniketan, Birbhum (Dist), West Bengal (731 236), India Article History Abstract Manuscript No. AR1632a The present review makes a synthesis of various aspects of applied biology of more Received in 1st July, 2016 than 30 woody plant species of a Tamaulipan Thorn scrub, Northeastern Mexico. This Received in revised form 25th September, 2016 deals with the biodiversity of leaf traits, leaf anatomy, plant characteristics, wood Accepted in final form th6 October, 2016 anatomy, wood density, phenology and few aspects of physiology and biochemistry viz., leaf pigments, leaf epicuticular wax, trees with high nutritional values, carbon fixation, nitrogen and protein contents. The results show a large variability of all the Correspondence to morpho-physiological traits of the woody species related to the co-existence and *E-mail: [email protected] adaptation
    [Show full text]
  • Coreopsideae Daniel J
    Chapter42 Coreopsideae Daniel J. Crawford, Mes! n Tadesse, Mark E. Mort, "ebecca T. Kimball and Christopher P. "andle HISTORICAL OVERVIEW AND PHYLOGENY In a cladistic analysis of morphological features of Heliantheae by Karis (1993), Coreopsidinae were reported Morphological data to be an ingroup within Heliantheae s.l. The group was A synthesis and analysis of the systematic information on represented in the analysis by Isostigma, Chrysanthellum, tribe Heliantheae was provided by Stuessy (1977a) with Cosmos, and Coreopsis. In a subsequent paper (Karis and indications of “three main evolutionary lines” within "yding 1994), the treatment of Coreopsidinae was the the tribe. He recognized ! fteen subtribes and, of these, same as the one provided above except for the follow- Coreopsidinae along with Fitchiinae, are considered ing: Diodontium, which was placed in synonymy with as constituting the third and smallest natural grouping Glossocardia by "obinson (1981), was reinstated following within the tribe. Coreopsidinae, including 31 genera, the work of Veldkamp and Kre# er (1991), who also rele- were divided into seven informal groups. Turner and gated Glossogyne and Guerreroia as synonyms of Glossocardia, Powell (1977), in the same work, proposed the new tribe but raised Glossogyne sect. Trionicinia to generic rank; Coreopsideae Turner & Powell but did not describe it. Eryngiophyllum was placed as a synonym of Chrysanthellum Their basis for the new tribe appears to be ! nding a suit- following the work of Turner (1988); Fitchia, which was able place for subtribe Jaumeinae. They suggested that the placed in Fitchiinae by "obinson (1981), was returned previously recognized genera of Jaumeinae ( Jaumea and to Coreopsidinae; Guardiola was left as an unassigned Venegasia) could be related to Coreopsidinae or to some Heliantheae; Guizotia and Staurochlamys were placed in members of Senecioneae.
    [Show full text]
  • The Disastrous Impacts of Trump's Border Wall on Wildlife
    a Wall in the Wild The Disastrous Impacts of Trump’s Border Wall on Wildlife Noah Greenwald, Brian Segee, Tierra Curry and Curt Bradley Center for Biological Diversity, May 2017 Saving Life on Earth Executive Summary rump’s border wall will be a deathblow to already endangered animals on both sides of the U.S.-Mexico border. This report examines the impacts of construction of that wall on threatened and endangered species along the entirety of the nearly 2,000 miles of the border between the United States and Mexico. TThe wall and concurrent border-enforcement activities are a serious human-rights disaster, but the wall will also have severe impacts on wildlife and the environment, leading to direct and indirect habitat destruction. A wall will block movement of many wildlife species, precluding genetic exchange, population rescue and movement of species in response to climate change. This may very well lead to the extinction of the jaguar, ocelot, cactus ferruginous pygmy owl and other species in the United States. To assess the impacts of the wall on imperiled species, we identified all species protected as threatened or endangered under the Endangered Species Act, or under consideration for such protection by the U.S. Fish and Wildlife Service (“candidates”), that have ranges near or crossing the border. We also determined whether any of these species have designated “critical habitat” on the border in the United States. Finally, we reviewed available literature on the impacts of the existing border wall. We found that the border wall will have disastrous impacts on our most vulnerable wildlife, including: 93 threatened, endangered and candidate species would potentially be affected by construction of a wall and related infrastructure spanning the entirety of the border, including jaguars, Mexican gray wolves and Quino checkerspot butterflies.
    [Show full text]
  • Solanaceae) Flower–Visitor Network in an Atlantic Forest Fragment in Southern Brazil
    diversity Article Bee Diversity and Solanum didymum (Solanaceae) Flower–Visitor Network in an Atlantic Forest Fragment in Southern Brazil Francieli Lando 1 ID , Priscila R. Lustosa 1, Cyntia F. P. da Luz 2 ID and Maria Luisa T. Buschini 1,* 1 Programa de Pós Graduação em Biologia Evolutiva da Universidade Estadual do Centro-Oeste, Rua Simeão Camargo Varela de Sá 03, Vila Carli, Guarapuava 85040-080, Brazil; [email protected] (F.L.); [email protected] (P.R.L.) 2 Research Centre of Vascular Plants, Palinology Research Centre, Botanical Institute of Sao Paulo Government, Av. Miguel Stéfano, 3687 Água Funda, São Paulo 04045-972, Brazil; [email protected] * Correspondence: [email protected] Received: 9 November 2017; Accepted: 8 January 2018; Published: 11 January 2018 Abstract: Brazil’s Atlantic Forest biome is currently undergoing forest loss due to repeated episodes of devastation. In this biome, bees perform the most frequent pollination system. Over the last decade, network analysis has been extensively applied to the study of plant–pollinator interactions, as it provides a consistent view of the structure of plant–pollinator interactions. The aim of this study was to use palynological studies to obtain an understanding of the relationship between floral visitor bees and the pioneer plant S. didymum in a fragment of the Atlantic Forest, and also learn about the other plants that interact to form this network. Five hundred bees were collected from 32 species distributed into five families: Andrenidae, Apidae, Colletidae, Megachilidae, and Halictidae. The interaction network consisted of 21 bee species and 35 pollen types.
    [Show full text]
  • Coleoptera) (Excluding Anthribidae
    A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCULIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis TAMI ANNE CARLOW Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1997 Major Subject; Entomology A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCVLIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATYPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis by TAMI ANNE CARLOW Submitted to Texas AgcM University in partial fulltllment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Horace R. Burke (Chair of Committee) James B. Woolley ay, Frisbie (Member) (Head of Department) Gilbert L. Schroeter (Member) August 1997 Major Subject: Entomology A Faunal Survey and Zoogeographic Analysis of the Curculionoidea (Coleoptera) (Excluding Anthribidae, Platypodinae, and Scolytinae) of the Lower Rio Grande Valley of Texas. (August 1997) Tami Anne Carlow. B.S. , Cornell University Chair of Advisory Committee: Dr. Horace R. Burke An annotated list of the Curculionoidea (Coleoptem) (excluding Anthribidae, Platypodinae, and Scolytinae) is presented for the Lower Rio Grande Valley (LRGV) of Texas. The list includes species that occur in Cameron, Hidalgo, Starr, and Wigacy counties. Each of the 23S species in 97 genera is tteated according to its geographical range. Lower Rio Grande distribution, seasonal activity, plant associations, and biology. The taxonomic atTangement follows O' Brien &, Wibmer (I og2). A table of the species occuning in patxicular areas of the Lower Rio Grande Valley, such as the Boca Chica Beach area, the Sabal Palm Grove Sanctuary, Bentsen-Rio Grande State Park, and the Falcon Dam area is included.
    [Show full text]
  • Botanical Name: LEAFY PLANT
    LEAFY PLANT LIST Botanical Name: Common Name: Abelia 'Edward Goucher' Glossy Pink Abelia Abutilon palmeri Indian Mallow Acacia aneura Mulga Acacia constricta White-Thorn Acacia Acacia craspedocarpa Leatherleaf Acacia Acacia farnesiana (smallii) Sweet Acacia Acacia greggii Cat-Claw Acacia Acacia redolens Desert Carpet Acacia Acacia rigidula Blackbrush Acacia Acacia salicina Willow Acacia Acacia species Fern Acacia Acacia willardiana Palo Blanco Acacia Acalpha monostachya Raspberry Fuzzies Agastache pallidaflora Giant Pale Hyssop Ageratum corymbosum Blue Butterfly Mist Ageratum houstonianum Blue Floss Flower Ageratum species Blue Ageratum Aloysia gratissima Bee Bush Aloysia wrightii Wright's Bee Bush Ambrosia deltoidea Bursage Anemopsis californica Yerba Mansa Anisacanthus quadrifidus Flame Bush Anisacanthus thurberi Desert Honeysuckle Antiginon leptopus Queen's Wreath Vine Aquilegia chrysantha Golden Colmbine Aristida purpurea Purple Three Awn Grass Artemisia filifolia Sand Sage Artemisia frigida Fringed Sage Artemisia X 'Powis Castle' Powis Castle Wormwood Asclepias angustifolia Arizona Milkweed Asclepias curassavica Blood Flower Asclepias curassavica X 'Sunshine' Yellow Bloodflower Asclepias linearis Pineleaf Milkweed Asclepias subulata Desert Milkweed Asclepias tuberosa Butterfly Weed Atriplex canescens Four Wing Saltbush Atriplex lentiformis Quailbush Baileya multiradiata Desert Marigold Bauhinia lunarioides Orchid Tree Berlandiera lyrata Chocolate Flower Bignonia capreolata Crossvine Bougainvillea Sp. Bougainvillea Bouteloua gracilis
    [Show full text]
  • Las Abejas Del Género Agapostemon (Hymenoptera: Halictidae) Del Estado De Nuevo León, México
    Revista Mexicana de Biodiversidad 83: 63-72, 2012 Las abejas del género Agapostemon (Hymenoptera: Halictidae) del estado de Nuevo León, México Bees of the genus Agapostemon (Hymenoptera: Halictidae) of the state of Nuevo León, Mexico Liliana Ramírez-Freire1 , Glafiro José Alanís-Flores1, Ricardo Ayala-Barajas2, Humberto Quiroz -Martínez1 y Carlos GerardoVelazco-Macías3 1Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Cd. Universitaria. Apartado postal 134-F, 66450 San Nicolás de los Garza, Nuevo León, México. 2Estación de Biología Chamela (Sede Colima) Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 21, 48980 San Patricio, Jalisco, México. 3Parques y Vida Silvestre. Av. Alfonso Reyes norte s/n, interior del Parque Niños Héroes, lateral izquierda, acceso 3, 64290 Monterrey, Nuevo León, México. [email protected] Resumen. Se realizó un estudio faunístico de las abejas del género Agapostemon (Halictidae) en el estado de Nuevo León, México para conocer las especies presentes, su distribución, relación con la flora y tipos de vegetación del estado. La metodología se basó en la revisión de literatura y de bases de datos de colecciones entomológicas, y en muestreos en campo donde se utilizó red entomológica y platos trampa de colores amarillo, azul, rosa (tonos fluorescentes) y blanco. Sólo en 20 de los 35 muestreos que se realizaron se obtuvieron ejemplares del género. Se recolectaron 11 especies, 2 de las cuales son registros nuevos para el estado (A. nasutus y A. splendens). El 12.31% de los ejemplares se obtuvo mediante el uso de red y el 87.84% con los platos trampa; el color amarillo fue el preferido por las abejas.
    [Show full text]
  • Insects Associated with the Flowers of Two Species of Malacothrix{A^Tekaceke) on San Miguel Island, California
    INSECTS ASSOCIATED WITH THE FLOWERS OF TWO SPECIES OF MALACOTHRIX{A^TEKACEKE) ON SAN MIGUEL ISLAND, CALIFORNIA BY SCOTT E. MILLER' AND W. S. DAVIS^ The insects associated with Malacothrix incana (Nutt.) T. & G. and M. implicata Eastwood on San Miguel Island were sampled as part of a general analysis of hybridization between the two species on the island (Davis and Philbrick, 1986). On San Miguel Island, M. incana is widely distributed on unstabilized and stabilized sand dunes on slopes near the ocean or on sandy substrate on the upper surfaces of the island including the slopes of San Miguel Peak and Green Mountain. In contrast, M. implicata is generally restricted to the slopes near the ocean or the walls of canyons above the ocean. Hybrid plants were found only where M. incana and M. implicata were growing in a common area and constituted less than 1% of the total number of the three forms in these areas. Hybrid plants were most frequent on the slopes above Cuyler Harbor and above Tyler Bight. Plants of M. implicata are spreading or erect perennials with large heads containing up to 80 florets. The ligules are white and have a purple stripe on the abaxial surface. Plants of M. incana are peren- nial and become mound-shaped after several years of growth. The large heads contain up to 100 florets with yellow ligules. The hybrid is also perennial and has large heads with pale yellow florets whose ligules often bear a reddish stripe on the abaxial surface. During our visit to San Miguel Island in May, 1984 a majority of the plants of M.
    [Show full text]
  • The Sabal May 2017
    The Sabal May 2017 Volume 34, number 5 In this issue: Native Plant Project (NPP) Board of Directors May program p1 below Texas at the Edge of the Subtropics— President: Ken King by Bill Carr — p 2-6 Vice Pres: Joe Lee Rubio Native Plant Tour Sat. May 20 in Harlingen — p 7 Secretary: Kathy Sheldon Treasurer: Bert Wessling LRGV Native Plant Sources & Landscapers, Drew Bennie NPP Sponsors, Upcoming Meetings p 7 Ginger Byram Membership Application (cover) p8 Raziel Flores Plant species page #s in the Sabal refer to: Carol Goolsby “Plants of Deep South Texas” (PDST). Sande Martin Jann Miller Eleanor Mosimann Christopher Muñoz Editor: Editorial Advisory Board: Rachel Nagy Christina Mild Mike Heep, Jan Dauphin Ben Nibert <[email protected]> Ken King, Betty Perez Ann Treece Vacek Submissions of relevant Eleanor Mosimann NPP Advisory Board articles and/or photos Dr. Alfred Richardson Mike Heep are welcomed. Ann Vacek Benito Trevino NPP meeting topic/speaker: "Round Table Plant Discussion" —by NPP members and guests Tues., April 23rd, at 7:30pm The Native Plant Project will have a Round Table Plant Discussion in lieu of the usual PowerPoint presentation. We’re encouraging everyone to bring a native plant, either a cutting or in a pot, to be identified and discussed at the meeting. It can be a plant you are unfamiliar with or something that you find remarkable, i.e. blooms for long periods of time or has fruit all winter or is simply gor- geous. We will take one plant at a time and discuss it with the entire group, inviting all comments about your experience with that native.
    [Show full text]
  • TCAP Coordinator, TPWD
    TEXAS CONSERVATION ACTION PLAN East Central Texas Plains (Post Oak Savanna) DRAFT ECOREGION HANDBOOK JUNE 2011 Note: text in red in this document will be revised between June 10 Public Comment Draft and the final USFWS-approved document. THIS IS A SUMMARY of the HANDBOOK; more background information will be added. In accordance with Texas State Depository Law, this publication is available at the Texas State Publications Clearinghouse and/or Texas Depository Libraries. © Texas Parks and Wildlife Department PWD insert number when approved Citing this document: Texas Parks and Wildlife Department. 2011. Texas Conservation Action Plan 2011 – 2016: East Central Texas Plains Handbook. Editor, Wendy Connally, Texas Conservation Action Plan Coordinator. PWD insert number when approved. Austin, Texas. Contents SUMMARY ..................................................................................................................................................... 1 HOW TO GET INVOLVED ............................................................................................................................... 2 OVERVIEW ..................................................................................................................................................... 3 RARE SPECIES and COMMUNITIES .............................................................................................................. 12 PRIORITY HABITATS ....................................................................................................................................
    [Show full text]
  • Plethora of Plants - Collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse Succulents
    NAT. CROAT. VOL. 27 No 2 407-420* ZAGREB December 31, 2018 professional paper/stručni članak – museum collections/muzejske zbirke DOI 10.20302/NC.2018.27.28 PLETHORA OF PLANTS - COLLECTIONS OF THE BOTANICAL GARDEN, FACULTY OF SCIENCE, UNIVERSITY OF ZAGREB (2): GLASSHOUSE SUCCULENTS Dubravka Sandev, Darko Mihelj & Sanja Kovačić Botanical Garden, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia (e-mail: [email protected]) Sandev, D., Mihelj, D. & Kovačić, S.: Plethora of plants – collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse succulents. Nat. Croat. Vol. 27, No. 2, 407- 420*, 2018, Zagreb. In this paper, the plant lists of glasshouse succulents grown in the Botanical Garden from 1895 to 2017 are studied. Synonymy, nomenclature and origin of plant material were sorted. The lists of species grown in the last 122 years are constructed in such a way as to show that throughout that period at least 1423 taxa of succulent plants from 254 genera and 17 families inhabited the Garden’s cold glass- house collection. Key words: Zagreb Botanical Garden, Faculty of Science, historic plant collections, succulent col- lection Sandev, D., Mihelj, D. & Kovačić, S.: Obilje bilja – zbirke Botaničkoga vrta Prirodoslovno- matematičkog fakulteta Sveučilišta u Zagrebu (2): Stakleničke mesnatice. Nat. Croat. Vol. 27, No. 2, 407-420*, 2018, Zagreb. U ovom članku sastavljeni su popisi stakleničkih mesnatica uzgajanih u Botaničkom vrtu zagrebačkog Prirodoslovno-matematičkog fakulteta između 1895. i 2017. Uređena je sinonimka i no- menklatura te istraženo podrijetlo biljnog materijala. Rezultati pokazuju kako je tijekom 122 godine kroz zbirku mesnatica hladnog staklenika prošlo najmanje 1423 svojti iz 254 rodova i 17 porodica.
    [Show full text]
  • Springs and Springs-Dependent Taxa of the Colorado River Basin, Southwestern North America: Geography, Ecology and Human Impacts
    water Article Springs and Springs-Dependent Taxa of the Colorado River Basin, Southwestern North America: Geography, Ecology and Human Impacts Lawrence E. Stevens * , Jeffrey Jenness and Jeri D. Ledbetter Springs Stewardship Institute, Museum of Northern Arizona, 3101 N. Ft. Valley Rd., Flagstaff, AZ 86001, USA; Jeff@SpringStewardship.org (J.J.); [email protected] (J.D.L.) * Correspondence: [email protected] Received: 27 April 2020; Accepted: 12 May 2020; Published: 24 May 2020 Abstract: The Colorado River basin (CRB), the primary water source for southwestern North America, is divided into the 283,384 km2, water-exporting Upper CRB (UCRB) in the Colorado Plateau geologic province, and the 344,440 km2, water-receiving Lower CRB (LCRB) in the Basin and Range geologic province. Long-regarded as a snowmelt-fed river system, approximately half of the river’s baseflow is derived from groundwater, much of it through springs. CRB springs are important for biota, culture, and the economy, but are highly threatened by a wide array of anthropogenic factors. We used existing literature, available databases, and field data to synthesize information on the distribution, ecohydrology, biodiversity, status, and potential socio-economic impacts of 20,872 reported CRB springs in relation to permanent stream distribution, human population growth, and climate change. CRB springs are patchily distributed, with highest density in montane and cliff-dominated landscapes. Mapping data quality is highly variable and many springs remain undocumented. Most CRB springs-influenced habitats are small, with a highly variable mean area of 2200 m2, generating an estimated total springs habitat area of 45.4 km2 (0.007% of the total CRB land area).
    [Show full text]