VOLI-Rme 71,1986

Total Page:16

File Type:pdf, Size:1020Kb

VOLI-Rme 71,1986 AmericanMineralogist, Volume 7l, pages 1550-1565,1986 INDEX VOLI-rME 71,1986 Aberg, G., see Ericsson, T., 136 Brisbln, W.C.: Mechanics of pegmatite intrusion, Abrecht, J,, see Hewitt, D.A., 1126 64t+ Aj-nes, R.D., G.R. Rossman: Relationships between Brown, G.E., Jr., B.A. Ml11s:,High-temperature radiation damage and t.race water in zircon, structure and crystal chemistry of hydrous quartz, and Eopaz, ll86 alka1i-rich beryl from the Harding pegmatite, Aines, R. D, , see Rossman, G.R. , 779 I'aos CounLy, New Mexlco, 547 Akizuki, M.: Al-Si ordering and twinning in Brown, G,E., Jr., R,C. Ewing: InEroductj-on to edingEonite, l5l0 the Jahns Memori-al Issue. 233. Memorial of Aldridge, L.P., E. 8i11, R. B15s, S. Lauer, V.R. Richard Henry Jahns, 652 Marathe, A. Sawaryn, A.X. Trautwein, H. Brovn, G.E., Jr., see Shigley, J.E., 356 Winkler: Electronic structure of Fe in some Brown, G.E., Jr., see Stern, L.A., 406 minerals, derived from iterative extended Brown, W.E., see Takagi, 5., 1229 Hiickel theory (IEHT), rnultiple scattering Xo Budahn, J.R.: Evidence for equilibrium condi- (MS-Xo) calculations, and Miissbauer measure- tions during the partitioning of nickel ment.s, 1015 beEweenolivine and l<omaLiiUeliquids, 1337 Alexander, V.D., D.T. Griffen, T.J. Martin: Burnham, C. l{ayne, ll. Nekvasil: Bquilbrium Crystal chemistry of some Fe- and Ti-poor properties of granite pegmatite magmas, 239 dumorLieritcs, 786 Burnham, Charles W., see Post, J.n,, 142, 1178 AmEhauer, G., see Joswig, W., 1I94 Burnham, C,W,, see Skinner, Il.C.\{,, 860 Angel, R.J.: Transformation mechanisms belween Burns, R.G., see Dyar, M.D., 955 single-chain silicates, 1441 Buseck, P.R., see Rask, J.H., 805 Angel, R.J., C.T. Prewitt: Crystal structure of mullite: A re-examination of the average Carlson, I4l.D., M.K. Nelis: An occurrence of structure, I476 staurolite in the Llano uplift, central Armbruster, T.: Role of Na in the structure of Texas,682 1ow cordierite: A single-crystal X-ray study, C.armlchael, LS.E,, see Lange, R.A., 937 746 Cernf, P., B.E. Goad, F.C. Hawthorne, R. Chap- Arth, J.G., see Barker, F., 632 man: Fractlonation trends of Ehe Nb- and Ta- Artioli, G., see Smith, J.V., 727 bearing oxide mj-nerals in the Greer Lake Ashworth, J.R.: MyrmekiEe replacing albite in pegmatiti,c granite and its pegmatite aureole, prograde metamorphism, 895 southeastern ManiEoba, 501 Au, A.Y., see Hazen, R.M,, 977 Chakoumakos, B.C., see Lurnpkin, G.R., 569 Chandrasekhar, B.K., see White, W.8., 1415 Barbosa, C,P., see Foord, E.E,, 603 Chang, C.D., see Posey-Dowty, J., 85 Barker, F., J.G. Arth, T.W. Stern: Evolution of Chapman, R., see Cernf, P., 501 the Coast batholith along the Skagway Chernosky, J.V., Jr., see Jenkins, D.Y,,, 924 Traverse, Alaska and British Columbia, 632 Cho, M., J,J. Fawcett: A kinetic study of Barnes, H.L., see Murowchick, J.8., 1243 clinochlore and its high temperature equiv- Barton, M,D.: Phase equillbria and thermodynamic alent forsterite-cordierite-spinel at 2 kbar properties of mlnerals 1n the water pressure, 68, Morphologies and growth BeG-A1203-SiO2-H2O (BASH) system, wirh mechanisms of synthetic Mg-chlorite and petrologic applications, 277 nnrdi ori ta 7R Barton, M.D., see Hemingway, 8.S., 557 Clark, A.H., T.H. Pearce, P.L. Roeder, I. Batiza, R.: Review of Petrologv, Mineralogy and Wolfson: Oscillatory zoning and other Evolution of the Jan Maven Magma System by microstructures in magmatic olivine and Paff frnsfana,-84t augite: Nomarski i-nterference contrast obser- Beard, J.S., H,W. Day: Origin of gabbro peg- vations on etched polished surfaces, 734 matite in Ehe Smartville intrusive complex, Clemens,J.D., J.R. Ho1loway,A.J.R. hhite: norEhern Sierra Nevada, Caltfornia, 1085 Origin of A-type granlte: Experlnental con- Bernst.ein, L.R. : Renlerite, sEralnts,3l7 Cu16ZnGe2Fe4S16-Cu11GeAsFe4S16:A coupled Cohen,A.J., see Partlow, D.P., 589 solid soluEion series, 210 Cijlln, G. von, see Kro11, H., I 8i11, E,, see Aldridge, L.P., 1015 Couty, R., B. Velde: Pressure-induced band Bird, D.K., see Stern, L.A,, 406 splitting in infrared spectra of sanidine and B15s, R., see Aldridge, L.P., 1015 albite, 99 B1oss, F.D., see Su, S.-C., 1285, 1384, 1393 Crerar, D., see Posey-Dowty,J., 85 Boettcher, A.L. , see Luth, R.irl., 264 Crock, J.G., see Foord, E.E., 603 Borthwick, J,, see Holdaway, M.J., I135 Cronin, D.J., see Scarfe, C.14.,767 BringhursE, K.N., D.T. Griffen: Staurolite- Cygan, R.T., A,C. Lasaga: Dielectric and lusakite series. II. Crystal structure and polarization behavior of forsterite at optical properties of a cobaltoan st.aurolite, elevated Eemperatures, 758 r466 Cze1, L.J.: Memorial of Robert MannGrogan, 841 r550 AUTHOR INDEX, VOLUME 71, 1986 155l Day, H.W,, see Beard, J.S., 1085 Ferry, J.M., see Grove, T.L.' 1049 Desautels, P.E.: Memorial of Paul Seel' 1275 Filippidis, A., see Ericsson, T.' 1502 Do11ase, W.A., R.J. Reeder: Crystal structure Finger, L.l/., see Hazen, R.M.' 977 refinernent of huntite, Cal"1g3(C03)+, with X- Fitz Gerald, J,D., J.B. Parj-se, I.D.R. Mackin- ray powder data, 163 non: Average structure of an An4g plagioclase Domine, F., B. Piriou: Raman spectroscopic study from the Hogarth Ranges, 1399 of the Si02-A1203-K20 vitreous system: Dis- Fitzgerald, S., A.L. Rheingold, P.B. Leavens: tribution of silicon second neighbors, 38 Crystal strucEure of a Cu-bearing Duesler, E.N,, E.E. Foord: Crystal structure of vesuvianite, 1011. Crystal structure of a hashemj-te, BaCrO4, a barit.e structure type, non-P4/nnc vesuvianite froni Asbestos, Quebec, L2L7 t4B3 Dunn, P.J., C.A, Francis: Davidsonite and FitzpaE.rick, J., A. Pabst: Thaleni-te from lehiite discredited, 1515 Arizona, l88 843 Dunn, P.J., D.R. Peacor, R.C. Erd, R.A. Rarnlk: Fleischer, M.: Memorial of George T. Faust, Franciscanite and 6rebroite. two new minerals Foit, F.F., Jr,, see Rosenberg,P.E,, 97I frorn California and Sweden, related to Foord, E.E., R.V. Gaj.nes,J.G. Crock' W.B. a redefined welinite. 1522 Simmons,Jr., C.P. Barbosa: Minasgeraisite, Minas Dunn, P.J., D.R. Peacor, B,D. Sturman, F.J. new memberof the gadolinite group from Wicks: Rouseite, a new lead manE,anesear- Gerals, Brazil, 603 senit.e from ISngban, Sweden, 1034 Foord, 8,E., H.C. Starkey, J.E' Taggart' .Jr': Dunn, P,J., see Peacor, D.R., l5l7 Mineralogy and paragenesis of "pocket" clays granitic Dunn, P,J., see Rouse, R.C.' 1240 and associated minerals in complex 428 Dut.row, 8.L., see Holdaway, M.J', 1135, 1142 pegmatiEes, San Diego County, Calj-fornla' Dwornik, 8.J., see Evans, H.T.' Jr.' 1045 Foord, E,E., see Duesler, E.N' ' I217 Dyar, M.D.: Practical application of M6'ssbauer Foord, E,E., see Stern, L'A.' 406 goodness-of-fit parameters for evaluation of Francis, C.A., see Dunn, P.J.' 1515 real experimental results: A rep1y, 1266 Franks, P.C., see Smith, M.P.' 60 C' Li: Dyar, M,D., R.G. Burns: Mdssbauer spectral study Frost, M.T., I.E. Grey, I.R. Harrowfield' ferruginous one-1ayer trioctahedral micas, Alteration profiles and impurity element of 955 distributions in rnagnetic fractions weathered ilmenite, 167 Effenberger, H., F. Pertlik, J. Zemann: Refine- Fujino, K., H. Momoi, H. Sawamoto,M. Kumazawa: MnSiO3 ment of the crystal structure of krausite: A CrysUal structure and chemistry of nriueral wiLh alr lnUerpolyhedral oxygelt-oxygett tetragonal garneL, 78I contact shorter than the hydrogen bond ' 202 Furukawa,T., see White, W.B.' 1415 Eggleton, R.A., see Sinclair, W., 815 carbonate Ekambaram,V., see Rosenberg, P.E., 971 Gaffey, S.J.: Specural reflectance of infrared Epstein, S., see Newrnan, 5,, 1527 minerals in the visible and near and Erd. R.C., see Dunn, P.J., 1522 (0.35-2.55 mlcrons): Calcite, aragonite, Ericksen, G.E., M.E. Mrose, J'W. Marinenko' J.J' dolomite, I51 McGee: Mineralogical studies of the nitrate Gaines, R.V., see Foord, E'E. ' 603 subsolidus deposiEs of Chi1e. V. Iquiqueite, Gasparik, T.: Experlmental study of of Na4K3Mg(Cr04)82a039(0H)' l2ll2O, a new saline phase relations and mixing properties system mineral. , 830 clinopyroxene in the silica-saturated Ericsson, T., A. Filippidis: Cation ordering in CaG-MgO-A1203-5i02'686 the limited solid solution Fe2Si04-Zn2Si04' Goad, B,E., see CernY' P.' 50f 1502 Goldsmith, J.R., see Su, S.-C.' 7384 equi- Ericsson, T., A.G. Nord, G. Aberg: Cation par- Grant, J.A' : Quartz-philogopj-te-liquid 1071 titi-oning in hydrothermally prepared olivine- librj.a and origins of charnockites' related (Fe,lu1n)-sarcopsides, 136 Grave, E.D., see Vochten, R.' 1037 practical Eugster, H.P.: Minerals in hot water, 655 Green, N,L., S.I' Usdansky: Toward a 1109' Evans, B.W,: Reactions among sodic, calcic, and plagi.oclase-muscovite thermometer, relations and rher- ferromagnesian arnphiboles, sodic Pyroxene' Ternary-feldspar mixing and deerite ln high-pressure metamorphosed mobarometrY,lI00 Li, Be' ironsEone, Siphnos, Greece, 1ll8 Grew, E.S., J.R. Hj.nthorne,N. Marquez: paragonite from Llvans, tl.T., Jr., E.J. Dwornik, C' FlilEon: B, and Sr in rnargariEe and Kassite from the Diamond Jo quarry, l4,agnet Antartica, ll29 Cove, Hot Spri-ng County, Arkansas: The Grey, LE., see Frost, M.T.' 167 786 problem of cafetj.te and kassite, 1045 Griifen, D.T., see Alexander, V.D.' 1466 Ewing, R.C., see Brown, G.8., Jr., 233, 652 Griffen, D.T., see Brj.nghurst' K.N.' 1461 Ewing, R.C., see Lurnpkin, G.R., 569 Griffen, D.T., see Phj-11ips,L.V.
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]
  • Yuksporite (K; Ba)(Na; Sr)Ca2(Si; Ti)4O11(F; OH) ² H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Orthorhombic
    Yuksporite (K; Ba)(Na; Sr)Ca2(Si; Ti)4O11(F; OH) ² H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Orthorhombic. Point Group: n.d. Fibrous, scaly, or lamellar; in irregular aggregates, to 10 cm. Physical Properties: Hardness = 5 D(meas.) = 3.05(3) D(calc.) = [2.98] Optical Properties: Semitransparent. Color: Rose-red to straw-yellow. Optical Class: Biaxial (+). Pleochroism: Marked; X = pale rose-yellow; Y = Z = rose-yellow. ® = 1.644(2) ¯ = n.d. ° = 1.660(2) 2V(meas.) = 46±{76± Cell Data: Space Group: n.d. a = 24.869(8) b = 16.756(6) c = 7.057(3) Z = 10 X-ray Powder Pattern: Khibiny massif, Russia. 2.778 (10), 3.00 (9), 1.786 (9), 3.10 (8), 3.05 (8), 1.888 (7), 2.92 (6) Chemistry: (1) (2) (1) (2) SiO2 40.92 38.40 BaO 8.60 TiO2 11.00 Na2O 7.94 3.84 Al2O3 0.07 K2O 12.57 6.15 Fe2O3 9.10 0.75 F 3.05 MnO 0.91 0.29 Cl 0.80 + MgO 0.42 H2O 2.20 CaO 20.56 18.90 H2O 8.52 SrO 5.87 O = (F; Cl) 1.46 ¡ 2 Total 100.94 [98.46] (1) Khibiny massif, Russia. (2) Murun massif, Russia; original total given as 99.07%, 3+ corresponds to (K0:70Ba0:30)§=1:00(Na0:66Sr0:30)§=0:96(Ca1:80Ti0:19Fe0:06Mn0:02)§=2:07 (Si3:42Ti0:57Al0:01)§=4:00O11[F0:86Cl0:12(OH)0:02]§=1:00 ² 0:6H2O: Occurrence: In veins in nepheline syenite in a di®erentiated alkalic massif (Khibiny massif, Russia).
    [Show full text]
  • L'leve~Th List of New Mineral Na~Es. ~
    556 L'leve~th list of new mineral na~es. ~ By L. J. SPENCER, M.A., Sc.D., F.R.S. Keeper of Minerals ia the British Museum (Natural History). [Communicated June 12~ 1928.] Ajkaite. (L. Zeehmeister, Math. Termdszettud. ~:rtesitS, Badapest, 1926, vol. 43, p. 332 (ajkait); L. Zechmeister and V. Vrab~ly, Per. Deutsch. Chem. Gesell., 1926, vol. 59, Abt. B, p. 1426). The same as ajkite (Bull. Soc. Min. France, 1878, vol. 1, p. 126 ; abstract from... ?). A fossil resin containing 1-5 ~ sulphur and no succinic acid, from Ajka, com. Veszpr~m, Hungary. [M.A. 3-362.] Albiclase. A. N. Winchell, 1925. Journ. Geol. Chicago, vol. 83, p. 726 ; Elements of optical mineralogy, 2nd edit., 1927, pt. 2, p. 319. P. Niggli, Lehrbuch Min., 1926, vol. 2, p. 536 (Albiklas). A contrac- tion of albite-oligoclase for felspars of the plagioclase series ranging in composition from Ab~Anlo to AbsoAn~o. Allite. tL Harrassowitz, 1926. Laterit, Material und Versuch erdgesehichtlicher Auswertung, Berlin 1926, p. 255 (Allit, plur. Allite). A rock-name to include both bauxite and laterite. Later (Metall und Erz, Halle, ]927, vol. 24, p. 589) bauxite with A1208. H~O is distinguished as monohydrallite (Monohydrallit) and laterite with Al~0s.3H20 as trihydrallite (Trihydrallit). These, although suggestive of mineral- names (and given so i~ error in Chem. Zentr., 1926, vol. 1, p. 671), are proposed as rock-names ; from aluminium and M~o~. Similarly, siallites (1926, p. 252, Siallit, from Si, A1, M0o~), to include kaolinite and allo- phanite, are rocks composed of the aluminium silicates kaolin and allophane.
    [Show full text]
  • Aperiodic Mineral Structures
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Infoscience - École polytechnique fédérale de Lausanne EMU Notes in Mineralogy, Vol. 19 (2017), Chapter 5, 213–254 Aperiodic mineral structures L. BINDI1 and G. CHAPUIS2 1 Dipartimento di Scienze della Terra, Universita` di Firenze, Via La Pira 4, I-50121 Firenze, Italy 2 Laboratoire de Cristallographie, E´cole Polytechnique Fe´de´rale de Lausanne, CH-1015 Lausanne, Switzerland The three-dimensional periodic nature of crystalline structures was so strongly anchored in the minds of scientists that the numerous indications that seemed to question this model struggled to acquire the status of validity. The discovery of aperiodic crystals, a generic term including modulated, composite and quasicrystal structures, started in the 1970s with the discovery of incommensurately modulated structures and the presence of satellite reflections surrounding the main reflections in the diffraction patterns. The need to use additional integers to index such diffractograms was soon adopted and theoretical considerations showed that any crystal structure requiring more than three integers to index its diffraction pattern could be described as a periodic object in a higher dimensional space, i.e. superspace, with dimension equal to the number of required integers. The structure observed in physical space is thus a three-dimensional intersection of the structure described as periodic in superspace. Once the symmetry properties of aperiodic crystals were established, the superspace theory was soon adopted in order to describe numerous examples of incommensurate crystal structures from natural and synthetic organic and inorganic compounds even to proteins. Aperiodic crystals thus exhibit perfect atomic structures with long-range order, but without any three-dimensional translational symmetry.
    [Show full text]
  • Cosmic History and a Candidate Parent Asteroid for the Quasicrystal-Bearing Meteorite Khatyrka
    COSMIC HISTORY AND A CANDIDATE PARENT ASTEROID FOR THE QUASICRYSTAL-BEARING METEORITE KHATYRKA Matthias M. M. Meier1*, Luca Bindi2,3, Philipp R. Heck4, April I. Neander5, Nicole H. Spring6,7, My E. I. Riebe1,8, Colin Maden1, Heinrich Baur1, Paul J. Steinhardt9, Rainer Wieler1 and Henner Busemann1 1Institute of Geochemistry and Petrology, ETH Zurich, Zurich, Switzerland. 2Dipartimento di Scienze della Terra, Università di Firenze, Florence, Italy. 3CNR-Istituto di Geoscienze e Georisorse, Sezione di Firenze, Florence, Italy. 4Robert A. Pritzker Center for Meteoritics and Polar Studies, Field Museum of Natural History, Chicago, USA. 5De- partment of Organismal Biology and Anatomy, University of Chicago, Chicago, USA. 6School of Earth and Environ- mental Sciences, University of Manchester, Manchester, UK. 7Department of Earth and Atmospheric Sciences, Uni- versity of Alberta, Edmonton, Canada. 8Current address: Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, USA. 9Department of Physics, and Princeton Center for Theoretical Science, Princeton University, Princeton, USA. *corresponding author: [email protected]; (office phone: +41 44 632 64 53) Submitted to Earth and Planetary Science Letters. Abstract The unique CV-type meteorite Khatyrka is the only natural sample in which “quasicrystals” and associated crystalline Cu,Al-alloys, including khatyrkite and cupalite, have been found. They are suspected to have formed in the early Solar System. To better understand the origin of these ex- otic phases, and the relationship of Khatyrka to other CV chondrites, we have measured He and Ne in six individual, ~40-μm-sized olivine grains from Khatyrka. We find a cosmic-ray exposure age of about 2-4 Ma (if the meteoroid was <3 m in diameter, more if it was larger).
    [Show full text]
  • EXPERIMENTAL IMPACTS of ALUMINUM PROJECTILES INTO QUARTZ SAND: FORMATION 1,2 1,3 of KHATYRKITE (Cual2) and REDUCTION of QUARTZ to SILICON
    Bridging the Gap III (2015) 1071.pdf EXPERIMENTAL IMPACTS OF ALUMINUM PROJECTILES INTO QUARTZ SAND: FORMATION 1,2 1,3 OF KHATYRKITE (CuAl2) AND REDUCTION OF QUARTZ TO SILICON. C. Hamann , D. Stöffler , and W. U. Reimold1,3. 1Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, In- validenstraße 43, 10115 Berlin, Germany ([email protected]; dieter.stö[email protected]; [email protected]); 2Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74– 100, 12249 Berlin, Germany, 3Humboldt-Universität zu Berlin, Unter der Linden 6, 10099 Berlin, Germany. Introduction and Rationale: Impact cratering is a melt particles, shock-lithified sand with and without basic geologic process in the solar system, which was distinct shock effects (PDF, diaplectic glass), and frac- predominant over endogenic geologic processes in the tured quartz grains (for details, see the companion early evolution of geologically active planetary bodies. abstract by Wünnemann et al. [10]). Since this study Since most planetary surfaces are highly porous and/or focuses on chemical projectile–target interaction, we composed of non-cohesive materials (e.g., the lunar will only consider impact melt particles that obviously regolith), understanding the influence of pore space show a crust of projectile melt on their top sides. and non-cohesiveness of materials on the impact pro- The bulk compositions of projectile and target were cess is crucial for gaining insights into the evolution of determined with EMPA and XRF, respectively. Impact planetary regoliths. To this end, numerous theoretical melt particles were studied with optical microscopy, and experimental studies have been conducted (e.g., SEM-EDX, and EMPA.
    [Show full text]
  • Design Rules for Discovering 2D Materials from 3D Crystals
    Design Rules for Discovering 2D Materials from 3D Crystals by Eleanor Lyons Brightbill Collaborators: Tyler W. Farnsworth, Adam H. Woomer, Patrick C. O'Brien, Kaci L. Kuntz Senior Honors Thesis Chemistry University of North Carolina at Chapel Hill April 7th, 2016 Approved: ___________________________ Dr Scott Warren, Thesis Advisor Dr Wei You, Reader Dr. Todd Austell, Reader Abstract Two-dimensional (2D) materials are championed as potential components for novel technologies due to the extreme change in properties that often accompanies a transition from the bulk to a quantum-confined state. While the incredible properties of existing 2D materials have been investigated for numerous applications, the current library of stable 2D materials is limited to a relatively small number of material systems, and attempts to identify novel 2D materials have found only a small subset of potential 2D material precursors. Here I present a rigorous, yet simple, set of criteria to identify 3D crystals that may be exfoliated into stable 2D sheets and apply these criteria to a database of naturally occurring layered minerals. These design rules harness two fundamental properties of crystals—Mohs hardness and melting point—to enable a rapid and effective approach to identify candidates for exfoliation. It is shown that, in layered systems, Mohs hardness is a predictor of inter-layer (out-of-plane) bond strength while melting point is a measure of intra-layer (in-plane) bond strength. This concept is demonstrated by using liquid exfoliation to produce novel 2D materials from layered minerals that have a Mohs hardness less than 3, with relative success of exfoliation (such as yield and flake size) dependent on melting point.
    [Show full text]
  • Glossary of Obsolete Mineral Names
    Uaranpecherz = uraninite, László 282 (1995). überbasisches Cuprinitrat = gerhardtite, Hintze I.3, 2741 (1916). überbrannter Amethyst = heated 560ºC red-brown Fe-rich quartz, László 11 (1995). Überschwefelblei = galena + anglesite + sulphur-α, Chudoba RI, 67 (1939); [I.3,3980]. uchucchacuaïte = uchucchacuaite, MR 39, 134 (2008). uddervallite = pseudorutile, Hey 88 (1963). uddevallite = pseudorutile, Dana 6th, 218 (1892). uddewallite = pseudorutile, Des Cloizeaux II, 224 (1893). udokanite = antlerite, AM 56, 2156 (1971); MM 43, 1055 (1980). uduminelite (questionable) = Ca-Al-P-O-H, AM 58, 806 (1973). Ueberschwefelblei = galena + anglesite + sulphur-α, Egleston 132 (1892). Uekfildit = wakefieldite-(Y), Chudoba EIV, 100 (1974). ufalit = upalite, László 280 (1995). uferite = davidite-(La), AM 42, 307 (1957). ufertite = davidite-(La), AM 49, 447 (1964); 50, 1142 (1965). U-free thorite = huttonite, Clark 303 (1993). U-galena = U-rich galena, AM 20, 443 (1935). ugandite = bismutotantalite, MM 22, 187 (1929). ughvarite = nontronite ± opal-C, MAC catalog 10 (1998). ugol = coal, Thrush 1179 (1968). ugrandite subgroup = uvarovite + grossular + andradite ± goldmanite ± katoite ± kimzeyite ± schorlomite, MM 21, 579 (1928). uhel = coal, Thrush 1179 (1968). Uhligit (Cornu) = colloidal variscite or wavellite, MM 18, 388 (1919). Uhligit (Hauser) = perovskite or zirkelite, CM 44, 1560 (2006). U-hyalite = U-rich opal, MA 15, 460 (1962). Uickenbergit = wickenburgite, Chudoba EIV, 100 (1974). uigite = thomsonite-Ca + gyrolite, MM 32, 340 (1959); AM 49, 223 (1964). Uillemseit = willemseite, Chudoba EIV, 100 (1974). uingvárite = green Ni-rich opal-CT, Bukanov 151 (2006). uintahite = hard bitumen, Dana 6th, 1020 (1892). uintaite = hard bitumen, Dana 6th, 1132 (1892). újjade = antigorite, László 117 (1995). újkrizotil = chrysotile-2Mcl + lizardite, Papp 37 (2004). új-zéalandijade = actinolite, László 117 (1995).
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 62, pages 1259-1262, 1977 NewMineral Names* MtcHe.rr-Flrlscsnn, Lours J. CesRrAND ADoLF Pe.ssr Franzinite* Six microprobe analyses gave (range and av.): AsrOu 44.96-45.68,45.36; CuO 16.84-20.22,18.81; ZnO 16.78-18.57, Stefano Merlino and Paolo Orlandi (1977)Franzinite, a new min- 17.90;CdO l3 58-14.93,14.08; CaO 0.41-l.ll' 0.80; PbO 0.14- eral phase from Pitigliano,ltaly. Neues Jahrb. Mineral. Mon- 1.42,0.63: MnO 0.'79-1.27,1.07; sum 97 8l-99 54' 98.65 percent, atsh., 163-167. corresponding to (Cu,Zn,Cd).(AsOa), with Cu:Zn:Cd : 1.19: Microchemical analysis gave SiO, 32.44, Al2Os 25.21, Fe"O" Lll:0.55. The mineral is readily dissolvedby concentratedacids 0.04,MgO 0.14,CaO 12.08,Na,O 11.50,K,O 4.24,SOa 10.65, CO, X-ray study showsthe mineral to be monoclinic,space group 12' 154, Cl 036,H,O 1.88,sum 100.08- (O:Cl,) 0.08 : 100.00 Im. or 12/m, a ll.65, b 12.68,c 6.87(all + 0.01A)' B 98 95 + 0.05'' percent. "SiO, and AlrO, were determined by X-ray fluorescence, Z = 6, G calc 4.95 The strongest X-ray lines (46 given) are 6.41 (vvs) account being taken of the proper correction factor for S and Cl (MS) (020, l0T), 3.29 (vSXll2), 2.876 (vSX400), 2.79s and assuming that the weight percentages sum up to 100 0." (222, 321, 240), 1.644(MS).
    [Show full text]
  • 2004Subject Index.Indd
    American Mineralogist, Volume 89, pages 1851–1859, 2004 Subject Index, Vol. 89, 2004 03-03-03 angle 614 coutinhoite 721 yuksporite 1561, 1816 27 GPa 1337 Cs 1304 zircon 1795 3-D chemical analysis 547 datolite 767 ANALYSIS, CHEMICAL (ROCK) 3-D structure 1304 depth-profi le 1067 3-D chemical analysis 547 3QMAS 777 diopside 7 clinopyroxene 1078 EMPA 640 eclogite 1078 Ab initio MMR 1314 empressite 1043 impactite 961 Ab initio molecular dynamics simulations 102 epidote 1772 lamprophyre 841 Ab Initio quantum calculations 377 Fe oxides 665 topaz aplite 841 Ab initio structure determination 365 ferrocolumbite 841 topaz granite 841 Absorption coeffi cient 301 ferrotapiolite 505 A new trioctahedral mica 232 Acid leaching 1694 garnet 1078, 1772 Annealing 941, 1162 Acoustic velocity 1221 getchellite 696 Anorogenic 841 Activity of silica 1438 glass 498 Anorthominasragrite 476 Additive components 1546 högbomite 819 Ansermetite 1575 Aerinite 1833 immiscibility gap 7 Antigorite 147 AFM/SFM/STM 1456 indialite 1 Antimony 696 albite 1048 ion probe 832, 1067 Apatite 629, 1411 calcite 1709 jimthompsonite 15 Apatite solid solutions 1411 coccoliths 1709 labuntsovite group 1655 Apatite-water interfacial structure 1647 dissolution rates 554 lindbergite 1087 APHID1546 fl uid cell 714 magnetite 462 Appalachian Blue Ridge 20 new technique 1048 mica 1772 Aqueous fl uid 1433 pearl 1384 microlite 505 Aragonite 1348 polysaccharides 1709 Mn oxides 1807 Arsenic 696, 1728 quartz 1048 monazite 1533 Arsenopyrite 878 specifi c surface area 1456 mordenite 421 Artifacts 15 (Ag, Cu)12Te3S2,(Ag,Au,
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]