Downgrading of Detonation Properties of Ammonium Nitrate Using Calcium Carbonate, Dolomite, and Fly Ash

Total Page:16

File Type:pdf, Size:1020Kb

Downgrading of Detonation Properties of Ammonium Nitrate Using Calcium Carbonate, Dolomite, and Fly Ash Sci. Tech. Energetic Materials, Vol.80,No.5,2019 171 Research paper Downgrading of detonation properties of ammonium nitrate using calcium carbonate, dolomite, and fly ash Ahmet Ozan Gezerman*† *Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Yıldız Mh., 34349 Beşiktaş/Istanbul, TURKEY Phone: +90-532-6538505 †Corresponding author: [email protected] Received: September 28, 2018 Accepted: July 23, 2019 4 2 Abstract 9 Aprocess has been developed for minimizing the detonation hazard of ammonium nitrate that is used as a chemical fertilizer, by adding calcium carbonate, dolomite, and fly ash. The detonation enthalpies and velocities of the obtained ammonium nitrate derivates were measured, revealing their suitability for application in fertilizer production. These results showed that, for a pure ammonium nitrate solution, coating with 0-20 wt% fly ash and adding a maximum of 25 wt% limestone and dolomite would eliminate the detonation problem associated with ammonium nitrate. It was also revealed that chemicals such as lead azide, lead styphnate, and mercury fulminate, which normally increase the detonation velocity of ammonium nitrate, did not do so when it contains CaCO3 (12.5%), CaMg(CO3)2 (7.5%), or fly ash (0- 20%). Even with the addition of lead saltsandmercury fulminate, the detonation velocity of calcium ammonium nitrate continues to decrease. Thus, the detonation hazard of calcium ammonium nitrate can be mitigated. Keywords:ammonium nitrate, calcium carbonate, dolomite, fly ash, detonation 1. Introduction this method, various fly ash compounds were used to Ammonium nitrate (AN) is widely recognized as an decrease detonation enthalpy and they have concluded important fertilizer. Increasing consumer demands have that such a measure decreases the detonation enthalpy of further stimulated the production of AN as well as the ammonium nitrate2).Resende et al. studied the detonation modification of various properties of this compound. properties of mixture of ammonium nitrate and various However, AN is inexpensive and readily available, and can materials such as biodiesel and sugar cane and they have be easily triggered to undergo explosion; hence, there is an found that the detonation velocities of these mixtures had increased concern regarding the possible misuse of this been mitigated3).Theyalsoreplaced the fuel oil in compound as an explosive for terrorist activities. For this commercial ammonium nitrate/fuel oil (ANFO), which is a reason, the governments of many countries have imposed widely used bulk industrial explosive, with rice straw, corn strict limitations on the industrial-scale production and the cob, sugarcane bagasse, and biodiesel3). use of AN, leading to consumer demand for fertilizer not Zygmunt and Buczkowski studied the explosive being satisfied. This has also led to the increased cost of properties of ammonium nitrate with ANFO4).According AN-based fertilizers, thus limiting their use in agriculture. to this study, the porous structure of ammonium nitrate Several formulations and processesaimed at has a significant influence on the detonation properties of suppressing the detonation probability of AN have been ANFO explosives. As the porosity of ammonium nitrate proposed by the past researchers1).Although various increases, the detonation velocity of ANFO increases. chemical compositions have been designed and applied to Therefore, to limit the detonation sensitivity of ammonium degrade the detonation properties of this compound, they nitrate, the porosity of ammonium nitrate should be are not intended to satisfy consumer requirements. In decreased. To better understand these properties, they another study, Taulbee et al.2) developed a method to investigated the oil adsorption capacity of the porous reduce the detonation enthalpy of ammonium nitrate. In structure of ammonium nitrate4).Inanother study, 172 Ahmet Ozan Gezerman Buczkowski and Zygmunt attempted to suppress the was observed that a decrease in water absorption by detonation probability of AN by diluting it with different ammonium nitrate particles was prevented thereby concentrations of dolomite5).Experiments show that even reducing physical contact between the ammonium nitrate mixtures of milled fertilizers containing 40% dolomite and particles and ultimately resulting in a reduction in the aluminum can detonate5).Bohanek et al.6) studied the detonation potential12).Ledoux and De Moor prepared an detonation properties of ANFO explosives using penthrite. ammonium nitrate mixture in which the explosive They reported that detonation velocity decreases with an material contained urea calcium nitrate (UCaN), urea increase in penthrite6). magnesium nitrate (UMgN), urea calcium phosphate On the other hand, to measure the detonation velocity, a (UCaP), urea magnesium phosphate (UMgP), urea different method was developed by Miyake et al.7).Intheir superphosphate (USP) and mixtures thereof to minimize study, the detonation velocity of an ANFO mixture was the detonation capacity13).Asaresult, they were able to measured using JIS G3454 steel tube. This tube had a 35.5 limit detonation energy of the ammonium nitrate. Their mm inner diameter, a 42.7 mm outer diameter and it was study provided an important insight into understanding 400 mm in length. The ANFO was detonated in this tube the detonation properties of ammonium nitrate with other ! and the detonation velocity was recorded7).They explosive materials. Gezerman and Çorbacıoglu studied prepared ANFO samples using the same AN pore means of minimizing the antisocial use of ammonium diameter and pore volume and found that the detonation nitrate by mixing it with dolomite and calcium carbonate, velocity (3.85 km s-1)wasthehighest for those particles and also coating it with fly ash (10-50%). They with the smallest diameter ("!!#"mm). After aging for 12 successfully maintained the nitrogen concentration (26%) months, the ANFO detonation velocities decreased, in the ammonium nitrate fertilizer while simultaneously suggesting that the ANFO reaction was influenced by the mitigating the detonation velocity14).Gezerman, in another physical and chemical properties of the AN particles and study, increased the concentration of the fly ash (max oil during storage. 20%) and combined dolomite and calcium carbonate with Another study on reducing the detonation enthalpy and ammonium nitrate15).Detonation tests on ammonium velocity of ammonium nitrate was performed by Adamo nitrate were conducted using the Dautriche method, et al.8).Inthat study, calorimetric experiments were revealing that the detonation velocity was reduced15). performed and during the ammonium nitrate degradation, Chaturvedi and Dave proposed reaction mechanisms role of water was investigated as the degradation occurring during the detonation of ammonium nitrate16). progressed. In addition, the possibility of the reaction During the detonation reaction, the temperature increased ο between ammonium nitrate and the sodium salt of to 230 Candnitrogen oxides, such as NO and NO2,were dichloroisocyanuric acid as a rate-limiting step was created as thermal decomposition products16).Several investigated. In another study that measured the studies have addressed the limiting effects of different detonation velocities of ammonium nitrate mixtures, Van materials such as Al powders on the detonation properties der Steen et al.9)measured those of non-ideal, low-density of ammonium nitrate5).Onesuchstudy found that the ammonium nitrate by using tubes with different addition of a 30% concentration of aluminum powder (with diameters and wall thicknesses. Also, they determined aparticlesizeof6µm) to an ammonium nitrate solution that the tube diameter has a much greater effect on the decreased the detonation energy dramatically5).Leong et detonation velocity than the confinement9).The al.17) presented a patented method for preventing CAN interferometer acted on those elements resulting in the fertilizer from being used as a precursor for explosives, failure of the detonation velocity testing procedure10).In e.g., for terrorist attacks. The CAN fertilizer was reacted another ammonium nitrate detonation study, in order to with an organic polymer, producing a hydrogel that does understand the detonation mechanism of ammonium allow the fertilizer to detonate. They used an organic nitrate with the ultimate aim of prevention, Na2SO4 in KCl polymer mixture of polyethylene glycol (PEG) , aqueous solutions were studied. The study attempted to hydroxyethyl cellulose (HEC), carboxymethyl cellulose prevent the thermal decomposition of the ammonium (CMC) and cellulose gum for this process. Cranney et al.18) nitrate11).Inanother study, Taulbee set out to reduce the produced non-detonable AN prills using surfactants such explosive potential of ammonium nitrate by applying a as non-polymeric polyisobutylonene succinic anhydride mixture of urea and ammonium nitrate12).Thesurface of (PIBSA)-based polymeric emulsifiers, which react with the the ammonium nitrate was coated with gypsum, calcium kaolin used to coat the surface of the AN (to suppress sulfate hemi-hydrate, calcium carbonate, calcium nitrate, oxidation), thus decreasing the heat of detonation of the soda lime, potassium sulfate, magnesium sulfate, bentonite, CAN. In another study examining the detonation, NaCl silica gel, potassium phosphate, potassium nitrate, was added to the ammonium nitrate solution, and with the potassium chloride, sodium sulfate,
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Primary-Explosives
    Improvised Primary Explosives © 1998 Dirk Goldmann No part of the added copyrighted parts (except brief passages that a reviewer may quote in a review) may be reproduced in any form unless the reproduced material includes the following two sentences: The copyrighted material may be reproduced without obtaining permission from anyone, provided: (1) all copyrighted material is reproduced full-scale. WARNING! Explosives are danegerous. In most countries it's forbidden to make them. Use your mind. You as an explosives expert should know that. 2 CONTENTS Primary Explosives ACETONE PEROXIDE 4 DDNP/DINOL 6 DOUBLE SALTS 7 HMTD 9 LEAD AZIDE 11 LEAD PICRATE 13 MEKAP 14 MERCURY FULMINATE 15 "MILK BOOSTER" 16 NITROMANNITE 17 SODIUM AZIDE 19 TACC 20 Exotic and Friction Primers LEAD NITROANILATE 22 NITROGEN SULFIDE 24 NITROSOGUANIDINE 25 TETRACENE 27 CHLORATE-FRICTION PRIMERS 28 CHLORATE-TRIMERCURY-ACETYLIDE 29 TRIHYDRAZINE-ZINC (II) NITRATE 29 Fun and Touch Explosives CHLORATE IMPACT EXPLOSIVES 31 COPPER ACETYLIDE 32 DIAMMINESILVER II CHLORATE 33 FULMINATING COPPER 33 FULMINATING GOLD 34 FULMINATING MERCURY 35 FULMINATING SILVER 35 NITROGEN TRICHLORIDE 36 NITROGEN TRIIODIDE 37 SILVER ACETYLIDE 38 SILVER FULMINATE 38 "YELLOW POWDER" 40 Latest Additions 41 End 3 PRIMARY EXPLOSIVES ACETONE PEROXIDE Synonyms: tricycloacetone peroxide, acetontriperoxide, peroxyacetone, acetone hydrogen explosive FORMULA: C9H18O6 VoD: 3570 m/s @ 0.92 g/cc. 5300 m/s @ 1.18 g/cc. EQUIVALENCE: 1 gram = No. 8 cap .75 g. = No. 6 cap SENSITIVITY: Very sensitive to friction, flame and shock; burns violently and can detonate even in small amounts when dry. DRAWBACKS: in 10 days at room temp. 50 % sublimates; it is best made immediately before use.
    [Show full text]
  • Ethanol Denatured
    GHS SAFETY DATA SHEET DENATURED ETHANOL SDS DATE: 03/10/2021 SECTION 1: PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME (GHS Product Identifier): Denatured Ethanol (Other means of Identification): Denatured Ethyl Alcohol PRODUCT INTENDED USE AND RESTRICTION: Automobile fuel, fuel additive NAME, ADDRESS & TELEPHONE NUMBER OF THE RESPONSIBLE PARTY: Company Green Plains Trade Group LLC 1811 Aksarben Drive, Omaha, NE 68106 Phone: 402-884-8700 Email: [email protected] CHEMTREC PHONE (24HR Emergency Telephone): 1-800-424-9300 (Within U.S.A) INTERNATIONAL CHEMTREC CALL: 1-703-527-3887 OTHER CALLS: 1-402-884-8700 (M-F, 8 AM-5 PM, Central time (U.S.A & Canada); within U.S.A) FAX PHONE: 1-402-884-8776 (M-F, 8 AM-5 PM, Central time (U.S.A & Canada); within U.S.A) SECTION 1 NOTES: None Available SECTION 2: HAZARDS IDENTIFICATION GHS LABELING AND CLASSIFICATION: This product meets the definition of the following hazard classes as defined by the Globally Harmonized System of Classification and Labeling of Chemicals (GHS). GHS CLASSIFICATION ACCORDING TO ANNEX II: HEALTH ENVIRONMENTAL PHYSICAL Serious eye damage/eye irritation-2A Not classified Flammable Liquids-Category 2 Skin corrosion/irration-3 STOT SE-2 Acute toxicity (Oral)-Category 4 SIGNAL WORD: DANGER SYMBOL: HAZARD STATEMENT: H225: Highly flammable liquid and vapor. H319: Causes serious eye irritation. H315: Causes skin irritation. H335: May cause respiratory irritation H336: May cause drowsiness or dizziness H302: Harmful if swallowed. PREVENTIVE: P201: Obtain special instructions before use. P202: Do not handle until all safety precautions have been read and understood P210-Keep away from heat/sparks/open flames/hot surfaces.—No smoking.
    [Show full text]
  • Chapter 2 EXPLOSIVES
    Chapter 2 EXPLOSIVES This chapter classifies commercial blasting compounds according to their explosive class and type. Initiating devices are listed and described as well. Military explosives are treated separately. The ingredi- ents and more significant properties of each explosive are tabulated and briefly discussed. Data are sum- marized from various handbooks, textbooks, and manufacturers’ technical data sheets. THEORY OF EXPLOSIVES In general, an explosive has four basic characteristics: (1) It is a chemical compound or mixture ignited by heat, shock, impact, friction, or a combination of these conditions; (2) Upon ignition, it decom- poses rapidly in a detonation; (3) There is a rapid release of heat and large quantities of high-pressure gases that expand rapidly with sufficient force to overcome confining forces; and (4) The energy released by the detonation of explosives produces four basic effects; (a) rock fragmentation; (b) rock displacement; (c) ground vibration; and (d) air blast. A general theory of explosives is that the detonation of the explosives charge causes a high-velocity shock wave and a tremendous release of gas. The shock wave cracks and crushes the rock near the explosives and creates thousands of cracks in the rock. These cracks are then filled with the expanding gases. The gases continue to fill and expand the cracks until the gas pressure is too weak to expand the cracks any further, or are vented from the rock. The ingredients in explosives manufactured are classified as: Explosive bases. An explosive base is a solid or a liquid which, upon application or heat or shock, breaks down very rapidly into gaseous products, with an accompanying release of heat energy.
    [Show full text]
  • UNITED STATES PATENT OFFICE. RAFAEL CAL VET, O F BAR, CEL on A, SPAIN
    UNITED STATES PATENT OFFICE. RAFAEL CAL VET, o F BAR, CEL ON A, SPAIN. VANUFACTURE OF PRIMARY EXPLOSIVES, 1,189,238. Specification of Letters Patent. Patented July 4, 1916. No Drawing. Application filed June 6, 1913. Serial No. 772,097. To all whom it may concern: Be it known that I, Dr. RAFAEL CALVET, a pounds have an acid reaction and can con subject of the King of Spain, residing at Sequently be combined with metals, and so 45 No. 34 calle de Gerona, Barcelona, Spain, form definite and permanent bodies which have invented certain new and useful Im might, like the thiocyanate compounds from provements in and Relating to the Manu which they are derived, be used for the facture of Primary Explosives, of which the preparation of the improved primary explo following is a specification. sive which forms the subject matter of the 50 This invention relates to a primary ex present patent application. 0 plosive and its manufacture, the object be The compounds in question are the fol ing to produce a substance capable of re lowing: perthiocyanic acid or hydrogen per placing fulminate of mercury and the other . thiocyanate (S.C.N.H.) and its salts, par usual detonating compounds. ticularly copper perthiocyanate (SCN,Cu) 55 The improved product consists of a mix and lead perthiocyanate (SCNPb) fur. 5 ture of a thiocyanate compound or of a sub ther dithiocyanic acid or hydrogen dithio stance derived therefrom with potassium. cyanate (S.C.N.H.) and its salts, copper chlorate or potassium perchlorate. diothiocyanate (SCN,Cu) and diothiocy It has previously been proposed to utilize anate of lead (S.C.N.Pb) and finally Woh 60 certain sulfocyanids or salts of the sulfocy ler's thiocyanic compound (“pseudo sul 20 anic acid SCNH, for the above said purpose.
    [Show full text]
  • APA STANDARD 87-1 Contents 1
    APA STANDARD 87-1 Contents 1. INTRODUCTION..............................................................................................1 2. DEFINITIONS.....................................................................................................1 3. REQUIREMENTS FOR CONSUMER FIREWORKS, NOVELTIES AND THEATRICAL PYROTECHNICS .....................................................................4 3.1 Types of Consumer Fireworks.......................................................................5 3.2 Types of Novelties .........................................................................................8 3.4 Other Devices ................................................................................................9 3.6 Specific Requirements for Consumer Fireworks...........................................10 3.7 Prohibited Chemicals and Components.........................................................12 3.8 Requirements for Theatrical Pyrotechnics ....................................................13 3.9 Approval ........................................................................................................13 3.10 Marking and Labeling..................................................................................14 4. REQUIREMENTS FOR DISPLAY FIREWORKS DEVICES ..........................14 4.1 Types of Display Fireworks Devices.............................................................14 4.2 Construction of Aerial Shells.........................................................................15 4.3 Approval
    [Show full text]
  • The First Chemical Achievements and Publications by Justus Von Liebig
    MICROREVIEW The First Chemical Achievements and Publications by Justus von Liebig 1803؊1873) on Metal Fulminates and Some Further Developments in Metal) Fulminates and Related Areas of Chemistry[‡] Wolfgang Beck[a] Dedicated to Professor Wolfgang Steglich on the occasion of his 70th birthday for his great friendship, collaboration and support[‡‡] Keywords: Liebig / Fulminates / Silver / Structure elucidation The first chemical investigations and publications by Justus by Liebig. Later, explosive (fulminato)metal complexes were von Liebig dealt with the fulminates of silver and mercury. prepared by Nef, Wieland, and especially by Lothar Wöhler Even as a boy Liebig had learnt how to prepare silver fulmi- and co-workers. In Munich the HCNO structure of fulminic nate, and as student of chemistry in Erlangen (1821) he stud- acid was established by its IR spectrum and the spectroscopic ied the properties and reactions of silver fulminate. In Paris in properties of (fulminato)metal complexes were studied. A se- 1823 (together with Gay-Lussac) he succeeded in analyzing ries of new nonexplosive complexes could be obtained by quantitatively the highly explosive silver compound. This dilution of the energy-rich species with large cations or li- great experimental success with the dangerous silver fulmi- gands. Recent X-ray structure determinations have revealed nate was most important in three respects: i. The develop- the almost perfect linear, tetrahedral, square-planar, or octa- ment of the experimental method later culminated in Liebig’s hedral structures of these complexes with linear − 2− perfected and well-known C,H,N analysis of organic com- metal−CϵNO bonds, e.g. [Au(CNO)2] , [Zn(CNO)4] , 2− 3− pounds (1830).
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • Commerce in Explosives; 2020 Annual Those on the Annual List
    Federal Register / Vol. 85, No. 247 / Wednesday, December 23, 2020 / Notices 83999 inspection at the Office of the Secretary or synonyms in brackets. This list Black powder substitutes. and on EDIS.3 supersedes the List of Explosive *Blasting agents, nitro-carbo-nitrates, This action is taken under the Materials published in the Federal including non-cap sensitive slurry and authority of section 337 of the Tariff Act Register on January 2, 2020 (Docket No. water gel explosives. of 1930, as amended (19 U.S.C. 1337), 2019R–04, 85 FR 128). Blasting caps. and of §§ 201.10 and 210.8(c) of the The 2020 List of Explosive Materials Blasting gelatin. Commission’s Rules of Practice and is a comprehensive list, but is not all- Blasting powder. Procedure (19 CFR 201.10, 210.8(c)). inclusive. The definition of ‘‘explosive BTNEC [bis (trinitroethyl) carbonate]. materials’’ includes ‘‘[e]xplosives, BTNEN [bis (trinitroethyl) nitramine]. By order of the Commission. BTTN [1,2,4 butanetriol trinitrate]. Issued: December 18, 2020. blasting agents, water gels and detonators. Explosive materials, Bulk salutes. William Bishop, include, but are not limited to, all items Butyl tetryl. Supervisory Hearings and Information in the ‘List of Explosive Materials’ Officer. C provided for in § 555.23.’’ 27 CFR Calcium nitrate explosive mixture. [FR Doc. 2020–28458 Filed 12–22–20; 8:45 am] 555.11. Accordingly, the fact that an BILLING CODE 7020–02–P Cellulose hexanitrate explosive explosive material is not on the annual mixture. list does not mean that it is not within Chlorate explosive mixtures. coverage of the law if it otherwise meets DEPARTMENT OF JUSTICE Composition A and variations.
    [Show full text]
  • Dissolution and Processing of Cellulose Using Ionic
    (19) & (11) EP 1 458 805 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08L 1/02 (2006.01) C08B 1/00 (2006.01) 31.08.2011 Bulletin 2011/35 C08B 16/00 (2006.01) (21) Application number: 02784000.8 (86) International application number: PCT/US2002/031404 (22) Date of filing: 03.10.2002 (87) International publication number: WO 2003/029329 (10.04.2003 Gazette 2003/15) (54) DISSOLUTION AND PROCESSING OF CELLULOSE USING IONIC LIQUIDS LÖSEN UND VERARBEITEN VON CELLULOSE UNTER VERWENDUNG VON IONISCHEN FLÜSSIGKEITEN DISSOLUTION ET TRAITEMENT DE CELLULOSE AU MOYEN DE LIQUIDES IONIQUES (84) Designated Contracting States: (74) Representative: Fisher, Adrian John AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Carpmaels & Ransford IE IT LI LU MC NL PT SE SK TR One Southampton Row London (30) Priority: 03.10.2001 US 326704 P WC1B 5HA (GB) (43) Date of publication of application: (56) References cited: 22.09.2004 Bulletin 2004/39 US-A- 1 943 176 (60) Divisional application: • DATABASE CAPLUS [Online] HUSEMANN ET 10177823.1 / 2 325 246 AL.: ’Homogeneous acetylation of cellulose’, XP002962860 Database accession no. 1971: (73) Proprietor: The University of Alabama 553083 & BULETINUL INSTITUTULUI Tuscaloosa, AL 35487-0336 (US) POLITEHNICDIN IASI 1970, • DATABASE CAPLUS [Online] FISCHER ET AL.: (72) Inventors: ’Structural changes of cellulose dissolved in • SWATLOSKI, Richard, Patrick molten salt hydrates’, XP002962861 Database Tuscaloosa, AL 35486 (US) accession no. 2000:328016 & BOOK OF • ROGERS, Robin, Don ABSTRACTS, 219TH ACS NATIONAL MEETING, Tuscaloosa, AL 35401 (US) SAN FRANCISCO, CA 26 March 2000 - 30 March • HOLBREY, John, David 2000, Tuscaloosa, AL 35401 (US) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • 1 Draft Chemicals (Management and Safety)
    Draft Chemicals (Management and Safety) Rules, 20xx In exercise of the powers conferred by Sections 3, 6 and 25 of the Environment (Protection) Act, 1986 (29 of 1986), and in supersession of the Manufacture, Storage and Import of Hazardous Chemical Rules, 1989 and the Chemical Accidents (Emergency Planning. Preparedness and Response) Rules, 1996, except things done or omitted to be done before such supersession, the Central Government hereby makes the following Rules relating to the management and safety of chemicals, namely: 1. Short Title and Commencement (1) These Rules may be called the Chemicals (Management and Safety) Rules, 20xx. (2) These Rules shall come into force on the date of their publication in the Official Gazette. Chapter I Definitions, Objectives and Scope 2. Definitions (1) In these Rules, unless the context otherwise requires (a) “Act” means the Environment (Protection) Act, 1986 (29 of 1986) as amended from time to time; (b) “Article” means any object whose function is determined by its shape, surface or design to a greater degree than its chemical composition; (c) “Authorised Representative” means a natural or juristic person in India who is authorised by a foreign Manufacturer under Rule 6(2); (d) “Chemical Accident” means an accident involving a sudden or unintended occurrence while handling any Hazardous Chemical, resulting in exposure (continuous, intermittent or repeated) to the Hazardous Chemical causing death or injury to any person or damage to any property, but does not include an accident by reason only
    [Show full text]
  • CMJ MW NEW Chapter 01 FINAL
    Chapter One Analysis Mania Justus Liebig is widely regarded as the nineteenth century’s greatest chemist.1 Liebig is famous for developing the world’s first school for chemical research and a new piece of chemical glassware he called the Kaliapparat (potash apparatus). Iconic from the start, Liebig’s Kaliapparat remains familiar to present-day chemists everywhere from the American Chemical Society logo.2 Triumphalist accounts of Liebig are based on the attractive proposition that when Liebig invented the Kaliapparat in 1830 he solved the problem of organic analysis, and that this achievement was crucial in propelling his rapid rise to fame. These accounts also assume it was always obvious to Liebig that doing organic analysis would be his route to success, and that he intended to found a school for research in this area right from the start.3 This standard account of Liebig is, in large part, derived from what Liebig himself later wrote – autobiographical recollections that entered the historical literature through the first biography of Liebig, written by his devoted pupil Jacob Volhard.4 Despite numerous more recent studies of 1 James R. Partington, A History of Chemistry Vol. 4 (London: Macmillan, 1964), 300. 2 www.acs.org. 3 Organic analysis is the process by which chemists determine the composition of organic compounds in terms of their constituent elements: carbon, hydrogen, oxygen, and (sometimes) nitrogen. The nature of the early nineteenth-century problem confronting organic analysis is examined below in The State of the Field. 4 Jakob Volhard, Justus Liebig, Vol. 1 (Leipzig: Barth, 1909). According to Volhard’s pupil Daniel Vorländer, “Jacob Volhard,” Berichte der deutschen chemischen Gesellschaft 45 (1912): 1855–1902, 1856, JACKSON: Material World DRAFT 2 Liebig, the central elements of this hagiography have remained unchallenged until now.
    [Show full text]