Glutaminylzyklase (QC)-Inhibierende Verbindungen Aus Mikroalgen – Neue Leitstrukturen Für Den Einsatz in Der Therapie Der Alzheimer Erkrankung

Total Page:16

File Type:pdf, Size:1020Kb

Glutaminylzyklase (QC)-Inhibierende Verbindungen Aus Mikroalgen – Neue Leitstrukturen Für Den Einsatz in Der Therapie Der Alzheimer Erkrankung Glutaminylzyklase (QC)-inhibierende Verbindungen aus Mikroalgen – neue Leitstrukturen für den Einsatz in der Therapie der Alzheimer Erkrankung Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät I – Biowissenschaften – der Martin-Luther-Universität Halle-Wittenberg, vorgelegt von Frau Dipl. Ing. (FH) Stephanie Hielscher-Michael geb. am 21.06.1978 in Wippra Die vorliegende Arbeit entstand im Zeitraum von Januar 2009 bis Dezember 2013 in der Ar- beitsgruppe Biochemie/ Algenbiotechnologie der Hochschule Anhalt in Köthen (Frau Prof. Dr. Carola Griehl), im Leibniz-Instituts für Pflanzenbiochemie in der Abteilung Natur- und Wirkstoffchemie (Herr Prof. Dr. Ludger Wessjohann) und der Probiodrug AG (Herr Prof. Hans-Ulrich Demuth jetzt Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Außen- stelle Halle für Molekulare Wirkstoffbiochemie und Therapieentwicklung) im Rahmen eines kooperativen Promotionsverfahrens mit der Martin-Luther-Universität Halle Wittenberg (Herrn Prof. Dr. Markus Pietzsch, Arbeitsgruppe Aufarbeitung biotechnischer Produkte, Institut für Pharmazie der Naturwissenschaftlichen Fakultät I). Die Algenkultivierungen wurden im Algenbiotechnikum der Hochschule Anhalt in Köthen un- ter der Betreuung von Frau Prof. Dr. Carola Griehl durchgeführt. Die Arbeiten zur Identifizie- rung, Charakterisierung sowie Isolierung der QC-inhibierenden Verbindungen erfolgten am Leibniz-Institut für Pflanzenbiochemie in der Abteilung Natur- und Wirkstoffchemie unter An- leitung von Herrn Prof. Dr. Ludger Wessjohann. Die Testungen im QC-Assay wurden in der Probiodrug AG unter Betreuung von Herrn Prof. Hans-Ulrich Demuth jetzt Fraunhofer-Institut für Zelltherapie und Immunologie IZI durchgeführt. Gutachter: 1. Prof. Dr. Markus Pietzsch Martin-Luther-Universität Halle-Wittenberg; Naturwissenschaftliche Fakultät I- Biowissenschaften, Institut Pharmazie, Halle/S. 2. Prof. Dr. Ludger Wessjohann Leibniz-Institut für Pflanzenbiochemie; Abteilung Natur- und Wirkstoffchemie, Halle/S. 3. Prof. Dr. Carola Griehl Hochschule Anhalt; Fachbereich Angewandte Biowissenschaften und Prozesstechnik, Köthen Tag der öffentlichen Verteidigung: 24.01.2017 in Halle Gewidmet meiner Familie Inhaltsverzeichnis Inhaltsverzeichnis ............................................................................................................................. I Abkürzungen ............................................................................................................................ IV 1. Zusammenfassung ................................................................................................................... 1 2. Summary ............................................................................................................................. 3 3. Einleitung und Zielstellung ....................................................................................................... 5 4. Stand des Wissens .................................................................................................................. 7 4.1. Algen als Quelle bioaktiver Verbindungen ...........................................................................7 4.2. Alzheimer Erkrankung (AD) .............................................................................................. 11 4.2.1. Epidemiologie und Risikofaktoren ............................................................................... 11 4.2.2. Symptomatik und Verlauf ............................................................................................. 12 4.2.3. Neuropathologische Charakteristika ............................................................................ 12 4.2.4. Pathogenese ............................................................................................................ 14 4.2.4.1. APP-Prozessierung und Aβ-Peptide............................................................................ 15 4.2.4.2. Amyloid Kaskaden Hypothese ..................................................................................... 18 4.2.5. Derzeitige Therapieoptionen ........................................................................................ 19 4.2.6. Perspektivische Therapieansätze (AD Targets) .......................................................... 21 4.2.6.1. Therapieansatz: Hemmung der QC ............................................................................. 30 5. Ergebnisse & Diskussion ....................................................................................................... 35 5.1. Kultivierung der Mikroalgen .............................................................................................. 35 5.2. Extraktion und Extraktaufarbeitung ................................................................................... 37 5.3. Screening der Algenextrakte auf QC-inhibierende Eigenschaften ................................... 39 5.3.1. Parameterbestimmung für den QC-Assay ................................................................... 40 5.3.1.1. Michaelis-Menten Konstante Km .................................................................................. 40 5.3.1.2. Einfluss der Lösungsmittel ........................................................................................... 40 5.3.2. QC-inhibierende Wirkungen der Algenextrakte ........................................................... 41 5.3.2.1. Untersuchung der konzentrationsabhängigen QC-Inhibierung ................................... 42 5.4. Identifizierung QC-inhibierender Metaboliten ................................................................... 42 5.4.1. Identifizierung QC-inhibierender Metaboliten mittels bioaktivitäts-geleiteter Isolierung ............................................................................................................ 43 5.4.2. Identifizierung QC-inhibierender Metaboliten mittels AcorA ........................................ 49 5.4.2.1. Massenspektrometrische Untersuchungen ................................................................. 50 5.4.2.2. Korrelationsanalyse (AcorA) ........................................................................................ 52 5.4.2.3. Strukturelle Charakterisierung der identifizierten QC-aktivitätsrelevanten Metaboliten ............................................................................................................ 64 5.4.3. Untersuchungen der identifizierten QC-aktivitätsrelevanten Metaboliten mittels Molecular Modeling ...................................................................................................... 75 5.4.4. Aktivitätsnachweis der identifizierten QC-aktivitätsrelevanten Metaboliten ................. 78 I 5.4.5. Isolierung der QC-aktiven Metaboliten (Sulfolipide) .................................................... 79 5.5. Charakterisierung weiterer Algenmetabolite ..................................................................... 83 5.6. Diskussion der erzielten Ergebnisse und durchgeführten Arbeiten .................................. 93 5.6.1. Sulfolipide – neue QC-inhibierende Verbindungen aus Mikroalgen ............................ 93 5.6.2. Identifizierung und Charakterisierung der QC inhibierenden Sulfolipide ..................... 96 6. Material und Methoden ........................................................................................................ 102 6.1. Verwendete Geräte und Chemikalien ............................................................................. 102 6.2. Kultivierung der Mikroalgen ............................................................................................ 104 6.2.1. Verwendete Mikroalgenspezies ................................................................................. 104 6.2.2. Verwendete Medien und Kultivierungsbedingungen ................................................. 104 6.2.3. Kultivierung im Labormaßstab (Vorkultur/Inokulum) ................................................. 105 6.2.4. Kultivierung im Technikumsmaßstab ......................................................................... 105 6.2.5. Prozessbegleitende Analytik ...................................................................................... 106 6.2.5.1. Bestimmung der Biotrockenmassekonzentration ...................................................... 106 6.2.5.2. Bestimmung Zellzahl .................................................................................................. 106 6.2.5.3. Bestimmung der maximalen spezifischen Wachstumsrate ....................................... 106 6.2.6. Ernte der Biomasse ................................................................................................... 106 6.3. Zellaufschluss und Extraktion ......................................................................................... 107 6.3.1. Dreistufige Extraktion ................................................................................................. 107 6.3.2. Einstufige Extraktion .................................................................................................. 107 6.4. Extraktaufarbeitung / Probenvorbereitung ...................................................................... 108 6.4.1. Chlorophyll-Entfernung .............................................................................................. 108 6.4.1.1. Chlorophyllfällung modifiziert nach Greilinger und Gross .......................................... 108 6.4.1.2. Chlorophyll-Eliminierung mittels SA-Kartuschen ......................................................
Recommended publications
  • Nutritional Value of Seaweeds and Their Potential Pharmacological Role of Polyphenolics Substances: a Review
    © 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162) NUTRITIONAL VALUE OF SEAWEEDS AND THEIR POTENTIAL PHARMACOLOGICAL ROLE OF POLYPHENOLICS SUBSTANCES: A REVIEW Arumugam Abirami, Selvaraj Uthra and Muthuvel Arumugam* Faculty of Marine Sciences, CAS in Marine Biology, Annamalai University, Parangipettai-608 502, Tamil Nadu, India. ABSTRACT : seaweed shows extensive species diversity with inevitable ecological importance on marine biodiversity. It creates a unique marine ecosystem that acts as a shelter or nursery ground for marine organisms. Moreover, seaweeds are considered as vital sea food due to their richness of various food ingredients such as polysaccharides, dietary fiber, amino acids, minerals and vitamins, etc. They are available in different colors due to the presence of distinct pigments such as chlorophyll, fucoxanthin and phycoerythrin. In traditional Indian medical system, the dried or processed seaweeds are consumed as promising natural medicine for the treatment of various ailments. Seaweed contains various polyphenolic substances such as phlorotannins, phloroglucinol, eckol, dieckol, fucodiphloroethol, 7-phloroeckol, phlorofucofuroeckol and bieckol, which play a major role in human health. The preclinical studies proved that these compounds possess antimicrobial, antitumor, antioxidant activities and also reduce the risk of cardiovascular diseases. The present review deals with the nutritional value of seaweed and the importance of polyphenolic substances. Key words: Seaweeds, phytochemistry, functional foods, polyphenolics, health benefits. INTRODUCTION As there is an increasing demand for search of therapeutic drugs from natural products, there is now a superior concern in marine organisms, especially seaweeds. It serves as a primary producer in water ecosystem and has both ecological and economic value.
    [Show full text]
  • Alzheimer's Disease Clinical Trials
    Clinical Trial Perspective 5 Clinical Trial Perspective Alzheimer’s disease clinical trials: past failures and future opportunities Clin. Invest. (Lond.) Over a decade has elapsed since the US FDA has approved a medication for Alzheimer’s Roy Yaari*,1,2 & Ann Hake1,2 disease (AD) despite clinical trials of numerous agents over a wide array of mechanisms 1Eli Lilly & Company, Lilly Corporate including neurotransmitter modulation and disease modifying therapy targeting Center, Indianapolis, IN 46285, USA 2Indiana University School of Medicine, amyloid and tau. The failures of clinical trials in AD may be due to inadequate Department of Neurology, Indianapolis, understanding of mechanisms of action and/or poor target engagement; however, IN 46202, USA other factors could include inadequate study design, stage of AD along the continuum *Author for correspondence: studied, inclusion of participants without Alzheimer’s pathology into clinical trials Tel.: +1 317 651 6163 and limited power of endpoint measures. Future studies will need to carefully assess [email protected] these possible shortcomings in design of upcoming trials, especially as the field moves toward studies of disease modifying agents (as opposed to symptomatic treatment) of AD and to patients that are very early in the disease spectrum. Keywords: Alzheimer’s disease • Alzheimer’s disease biomarkers • amyloid • clinical trials • preclinical Alzheimer’s disease • tau US FDA approved medications continue to provide significant, but modest More than three decades ago, the choliner- symptomatic benefit[5–7] . gic hypothesis proposed that degeneration The compound memantine introduced a of cholinergic neurons in the basal fore- second mechanism for symptomatic treat- brain and the associated loss of cholinergic ment of AD into clinical practice.
    [Show full text]
  • TESE FINAL.Pdf
    FACULDADE DE MEDICINA DA UNIVERSIDADE DE COIMBRA TRABALHO FINAL DO 6º ANO MEDICO COM VISTA A ATRIBUIÇÃO DO GRAU DE MESTRE NO ÂMBITO DO CICLO DE ESTUDOS DO MESTRADO INTEGRADO EM MEDICINA ANA ALEXANDRA BRIGA CERQUEIRA ESTRATÉGIAS FARMACOLÓGICAS PARA AS ALTERAÇÕES PRECOCES DO COMPORTAMENTO NA DOENÇA DE ALZHEIMER TRABALHO DE REVISÃO ÁREA CIENTÍFICA DE FARMACOLOGIA TRABALHO REALIZADO SOBRE A ORIENTAÇÃO DE: PROFESSORA DOUTORA TICE DOS REIS ANASTÁCIO DE MACEDO MARÇO, 2009 ÍNDICE GERAL Agradecimentos.................................................................................................................3 Resumo..............................................................................................................................4 Abstract..............................................................................................................................6 Lista de Siglas....................................................................................................................8 Introdução........................................................................................................................11 Clínica e Diagnóstico……………...……………………………………………………11 Neuropatologia e Genética..............................................................................................15 Estratégias terapêuticas actuais...................................…………………………………23 Inibidores das colinesterases……………………………………………………23 Memantina……………………………………………………………………...27 Novas estratégias farmacológicas………………………………………………………30 Imunoterapia……………………………………………………………………34
    [Show full text]
  • (Ascophyllum Nodosum, Fucus Vesiculosus and Bifurcaria Bifurcata) and Micro-Algae (Chlorella Vulgaris and Spirulina Platensis) Assisted by Ultrasounds
    International Doctoral School Rubén Agregán Pérez DOCTORAL DISSERTATION “Seaweed extract effect on the quality of meat products” Supervised by the PhD: José Manuel Lorenzo Rodríguez, Daniel José Franco Ruiz and Francisco Javier Carballo García Year: 2019 “International mention” International Doctoral School JOSÉ MANUEL LORENZO RODRÍGUEZ, Researcher and Head of the Area of Chromatography, DANIEL JOSÉ FRANCO RUIZ, Researcher, both from The Centro Tecnolóxico da Carne, and FRANCISCO JAVIER CARBALLO GARCÍA, Professor of the Area of Food Technology of the University of Vigo, DECLARES that the present work, entitled “Seaweed extract effect on the quality of meat products”, submitted by Mr RUBÉN AGREGÁN PÉREZ, to obtain the title of Doctor, was carried out under their supervision in the PhD programme “Ciencia y Tecnología Agroalimentaria” and he accomplishes the requirements to be Doctor by the University of Vigo. Ourense, 25 February 2019 The supervisors José Manuel Lorenzo Rodríguez, PhD Daniel José Franco Ruiz, PhD Francisco Javier Carballo García, PhD ACKNOWLEDGMENTS First, I would like to thank my directors, José Manuel Lorenzo Rodríguez, PhD, Daniel José Franco Ruiz, PhD and Francisco Javier Carballo García, PhD for all the knowledge provided to me and for all the advice I received, specially to José Manuel Lorenzo for guiding me during this stage of my professional career. I also want to express my gratitude to the Centro Tecnolóxico da Carne and its manager, Mr Miguel Fernández Rodríguez, for having allowed me to do my Doctoral Thesis in its facilities, and to INIA for granting me a predoctoral scholarship for that purpose. Second, I would like to thank all my laboratory colleagues for all the assistance I received and their companionship during this time, especially my laboratory supervisor, Laura Purriños Pérez, PhD, for providing me with all the required materials and equipment needed.
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 7,964,607 B2 Verhoest Et A1
    US007964607B2 (12) United States Patent (10) Patent N0.: US 7,964,607 B2 Verhoest et a1. (45) Date of Patent: Jun. 21, 2011 (54) PYRAZOLO[3,4-D]PYRIMIDINE FOREIGN PATENT DOCUMENTS COMPOUNDS EP 1460077 9/2004 WO 02085904 10/2002 (75) Inventors: Patrick Robert Verhoest, Old Lyme, CT WO 2004037176 5/2004 (US); Caroline ProulX-Lafrance, Ledyard, CT (US) OTHER PUBLICATIONS Wunder et a1, M01. PharmacoL, v01. 28, N0. 6, (2005), pp. 1776 (73) Assignee: P?zer Inc., New York, NY (U S) 1781. van der Staay et a1, Neuropharmacology, v01. 55 (2008), pp. 908 ( * ) Notice: Subject to any disclaimer, the term of this 918. patent is extended or adjusted under 35 USC 154(b) by 562 days. Primary Examiner * Susanna Moore (74) Attorney, Agent, or Firm * Jennifer A. Kispert; (21) Appl.No.: 12/118,062 Michael Herman (22) Filed: May 9, 2008 (57) ABSTRACT (65) Prior Publication Data The invention provides PDE9-inhibiting compounds of For US 2009/0030003 A1 Jan. 29, 2009 mula (I), Related US. Application Data (60) Provisional application No. 60/917,333, ?led on May 11, 2007. (51) Int. Cl. C07D 48 7/04 (2006.01) A61K 31/519 (2006.01) A61P 25/28 (2006.01) (52) US. Cl. ................................... .. 514/262.1; 544/262 (58) Field of Classi?cation Search ................ .. 544/262; 5 1 4/2 62 .1 See application ?le for complete search history. and pharmaceutically acceptable salts thereof, Wherein R, R1, (56) References Cited R2 and R3 are as de?ned herein. Pharmaceutical compositions containing the compounds of Formula I, and uses thereof in U.S.
    [Show full text]
  • Bioactive Compounds from Macroalgae in the New Millennium: Implications for Neurodegenerative Diseases
    Mar. Drugs 2014, 12, 4934-4972; doi:10.3390/md12094934 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Bioactive Compounds from Macroalgae in the New Millennium: Implications for Neurodegenerative Diseases Mariana Barbosa, Patrícia Valentão and Paula B. Andrade * REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; E-Mails: [email protected] (M.B.); [email protected] (P.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +351-220428654; Fax: +351-226093390. Received: 18 June 2014; in revised form: 5 September 2014 / Accepted: 15 September 2014 / Published: 25 September 2014 Abstract: Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases.
    [Show full text]
  • Effects of Ecklonia Cava Extract on Neuronal Damage and Apoptosis in PC-12 Cells Against Oxidative Stress
    J. Microbiol. Biotechnol. 2021. 31(4): 584–591 https://doi.org/10.4014/jmb.2012.12013 Review Effects of Ecklonia cava Extract on Neuronal Damage and Apoptosis in PC-12 Cells against Oxidative Stress Yong Sub Shin1, Kwan Joong Kim1, Hyein Park2, Mi-Gi Lee3, Sueungmok Cho4, Soo-Im Choi5, Ho Jin Heo6, Dae-Ok Kim1,7*, and Gun-Hee Kim5* 1Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea 2Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea 3Bio-Center, Gyeonggido Business and Science Accelerator, Suwon 16229, Republic of Korea 4Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea 5Department of Foods and Nutrition, Duksung Women's University, Seoul 01369, Republic of Korea 6Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea 7Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea Marine algae (seaweed) encompass numerous groups of multicellular organisms with various shapes, sizes, and colors, and serve as important sources of natural bioactive substances. The brown alga Ecklonia cava Kjellman, an edible seaweed, contains many bioactives such as phlorotannins and fucoidans. Here, we evaluated the antioxidative, neuroprotective, and anti-apoptotic effects of E. cava extract (ECE), E. cava phlorotannin-rich extract (ECPE), and the phlorotannin dieckol on neuronal PC-12 cells. The antioxidant capacities of ECPE and ECE were 1,711.5 and 1,050.4 mg vitamin C equivalents/g in the ABTS assay and 704.0 and 474.6 mg vitamin C equivalents/g in the DPPH assay, respectively.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Revisiting the Pharmacodynamics Uroselectivity of Alpha1-Adrenergic
    JPET Fast Forward. Published on July 8, 2019 as DOI: 10.1124/jpet.119.260216 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 260216 TITLE PAGE Revisiting the pharmacodynamics uroselectivity of Alpha1-Adrenergic Receptor Antagonists Downloaded from Authors: Bruna Maria Castro Salomão Quaresma, Amanda Reis Pimenta, Anne Caroline jpet.aspetjournals.org Santos da Silva, André Sampaio Pupo, Luiz Antonio S. Romeiro, Claudia Lucia Martins Silva and François Noël* *Corresponding author at ASPET Journals on September 29, 2021 1 JPET Fast Forward. Published on July 8, 2019 as DOI: 10.1124/jpet.119.260216 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 260216 RUNNING TITLE PAGE Running Title: Uroselectivity of alpha1-adrenergic antagonists Corresponding author: François Noël Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av Carlos Chagas Filho, 373. Zip code 21941-902, Rio de Janeiro, Brazil. Downloaded from Phone number: +55 (21) 3938-6732 e-mail: [email protected] jpet.aspetjournals.org Av Carlos Chagas Filho, 373. Zip code 21941-902, Rio de Janeiro, Brazil. Number of text pages: 28 (including legends for figures) at ASPET Journals on September 29, 2021 Number of tables: 4 Number of figures: 2 (+ 1 in Supplemental material) Number of references: 48 Number of words: Abstract: 238 Introduction: 667 Discussion: 1233 Non-standard abbreviations: AARA, α1-AR antagonists; AR, α1-adrenoceptor; BPH, benign prostatic hyperplasia; DMEM, Dulbecco’s Modified Eagle Medium; DMSO, dimethyl 2 JPET Fast Forward.
    [Show full text]
  • Prolonged Exposure of Marine Algal Phlorotannins with Whitening Effect
    General Internal Medicine and Clinical Innovations Research Article ISSN: 2397-5237 Prolonged exposure of marine algal phlorotannins with whitening effect did not cause inflammatory hyperpigmentation in zebrafish larva Seon-Heui Cha1, Eun-Ah Kim2, Kil-Nam Kim3, Soo-Jin Heo2, Hee-Sook Jun4-6* and You-Jin Jeon7* 1Department of Marine Bio and Medical Science, Hanseo Universirty, Republic of Korea 2Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Republic of Korea 3Chuncheon Center, Korea Basic Science Institute (KBSI), Republic of Korea 4College of Pharmacy, Gachon University, Republic of Korea 5Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Republic of Korea 6Gachon Medical and Convergence Institute, Gachon Gil Medical center, Republic of Korea 7School of Marine Biomedical Sciences, Jeju National University, Republic of Korea Abstract The demand for novel melanin synthesis inhibitors is increasing due to the weak effectiveness and unwanted side effects. Thus, marine algae have been studied as sources of inhibitors of melanin synthesis, but it is still unclear whether they will be effective in in vivo. In this study, we investigated whether marine algal phlorotannins including phloroglucinol (PG), ekcol (EK), and dieckol (DK) from Ecklonia cava inhibit melanin synthesis in zebrafish embryos. PG, EK, and DK treatment were found to inhibit melanin synthesis in zebrafish embryos as similar to arbutin, used as a positive control. Interestingly, PG, EK, and DK treatment showed no toxicity, whereas arbutin treatment showed toxicity for long-term exposure. As well, mRNA expression of pro-inflammatory cytokines, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF- α), and cyclooxygenase-2 (COX-2) were increased in arbutin treatment, whereas, the mRNA expression were not altered in PG, EK, and DK treatment by long-tern exposure.
    [Show full text]
  • Antioxidant Contents of Fucus Vesiculosus L., in Response to Environmental Parameters
    MADALENA CARIA MENDES Antioxidant Contents of Fucus vesiculosus L., in Response to Environmental Parameters UNIVERSIDADE DO ALGARVE Faculdade de Ciências e Tecnologia 2017 MADALENA CARIA MENDES Antioxidant Contents of Fucus vesiculosus L., in Response to Environmental Parameters Mestrado em Aquacultura e Pescas Trabalho efetuado sob a orientação de: Susan L. Holdt1 Ester A. Serrão2 1 DTU Fødevareinstituttet, Technical University of Denmark, Kemitorvet, Bygning 202, DK-2800 Kgs Lyngby, Denmark. 2 Universidade do Algarve, CCMAR, Campus de Gambelas, P-8005-139 Faro, Portugal. UNIVERSIDADE DO ALGARVE Faculdade de Ciências e Tecnologia 2017 Declaração de Autoria Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída. i Copyright Madalena Caria Mendes A Universidade do Algarve reserva para si o direito, em conformidade com o disposto no Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a obra, independentemente do meio utilizado, bem como de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição para fins meramente educacionais ou de investigação e não comerciais, conquanto seja dado o devido crédito ao autor e editor respetivos. ii Acknowledgements This thesis entitled Antioxidant contents of Fucus vesiculosus L., in response to environmental parameters was conducted at the Research Group for Bioactives, analysis and applications, at the National Food Institute, Technical University of Denmark, under the Erasmus + traineeship program. I would like to thank my dear supervisors, for their great supervision, guidance and seaweed knowledge, Professors Susan L. Holdt and Ester A.
    [Show full text]
  • Brown Algae Phlorotannins: a Marine Alternative to Break the Oxidative Stress, Inflammation and Cancer Network
    foods Review Brown Algae Phlorotannins: A Marine Alternative to Break the Oxidative Stress, Inflammation and Cancer Network Marcelo D. Catarino 1 ,Sónia J. Amarante 1 , Nuno Mateus 2 , Artur M. S. Silva 1 and Susana M. Cardoso 1,* 1 LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (M.D.C.); [email protected] (S.J.A.); [email protected] (A.M.S.S.) 2 REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-234-370-360; Fax: +351-234-370-084 Abstract: According to the WHO, cancer was responsible for an estimated 9.6 million deaths in 2018, making it the second global leading cause of death. The main risk factors that lead to the development of this disease include poor behavioral and dietary habits, such as tobacco use, alcohol use and lack of fruit and vegetable intake, or physical inactivity. In turn, it is well known that polyphenols are deeply implicated with the lower rates of cancer in populations that consume high levels of plant derived foods. In this field, phlorotannins have been under the spotlight in recent years since they have shown exceptional bioactive properties, with great interest for application in food and pharmaceutical industries. Among their multiple bioactive properties, phlorotannins have revealed the capacity to interfere with several biochemical mechanisms that regulate oxidative stress, inflammation and tumorigenesis, which are central aspects in the pathogenesis of cancer. This versatility and ability to act either directly or indirectly at different stages and mechanisms of cancer growth make these Citation: Catarino, M.D.; Amarante, compounds highly appealing for the development of new therapeutical strategies to address this S.J.; Mateus, N.; Silva, A.M.S.; Cardoso, world scourge.
    [Show full text]