?A/Azj Z. Weze/Q

Total Page:16

File Type:pdf, Size:1020Kb

?A/Azj Z. Weze/Q March 1, 1960 H. L. WELCH ‘ 2,926,647 V ENGINE HOT SPOT HEATING SYSTEM AND METHOD Filed Feb. 1, 1954 . 3 Sheets-Sheet 1 El. £5 INVENTOR. ?a/aZJ Z. WeZe/Q K772177115 ya’ March 1, 1960 H. L. wELcH 2,926,647 v ENGINE HOT SPOT HEATING SYSTEM AND METHOD Filed Feb. 1, 1954 3 Sheets-Sheet 2 g.\ \ \\\ INVENTOR ?arala’ Z. Mé’Zré March 1, 1960 H. |_. WELCH 2,926,647 v ENGINE HOT SPOT HEATING SYSTEM AND METHOD Filed Feb. 1, 1954 3 Sheets-Sheet 3 7 a 22 14 #4 - INVENTOR. I 2,926,647 United States Patent 0 “ice Patented Mar. 1, 1960 1 2 cycle of the other during the overlap period of the intake and exhaust valves of these cylinders and that if this back 2,926,647 pressure wave is completely eliminated or substantially neutralized as by sufficiently delaying it so that it cannot V ENGINE HOT SPOT HEATING SYSTEM adversely affect the intake action of the other cylinder AND METHOD when the heat valve is open, that the peak torque condition Harold L. Welch, Walled Lake, Micl1., assignor to Chrys may be improved and greater power may be obtained in ler Corporation, Highland Park, Mich., a corporation operation of the engine. of Delaware I have discovered that the latter improvement may be 10 conveniently effected by connecting the crossover passage Application February 1, 1954, Serial No. 407,476 of the hot spot with the exhaust port of a single cylinder 13 Claims. (Cl. 123-122) of each bank which cylinders do not follow each other in the ?ring order. Preferably, they are ports of cylinders which are spaced apart in the (?ring order by at least two This invention relates to methods and structures for 15 other cylinders. Stated in reference to a V-8 engine utiliz effecting heating of the intake manifold hot spot of engines ing a 90° two-plane crank, they are preferably cylinders having opposite banks of cylinders for instance, V-type whose exhaust strokes are 270° of crank rotation out of engines, and especially to such methods and structures phase with each other. The only way that an exhaust which facilitate improvement in the torque and power pressure wave from one of these interconnected cylinders output. 20 can reach the other is by travelling around over a long In typical V-8 engines currently used, an intake mani path through the exhaust manifold and exhaust conduits. fold is positioned intermediate the V-arranged banks of This delays the wave sufficiently in reaching the other cylinders and an exhaust manifold is provided on the out ‘cylinder so that it cannot adversely affect the intake action side of each cylinder bank connecting with each exhaust thereof. It may be observed that the improvement in port of the bank to which it is secured. In such engines 25 engine output effected by utilizing this feature is much it has been common practice to interconnect the exhaust greater than that possible when only a single exhaust port ports of the two middle cylinders of each bank and to in of each bank is interconnected and are of cylinders follow terconnect these pairs of exhaust ports by cross passages ing each other in the ?ring order. in the heads and the intake manifold respectively, the I have also discovered that the peak engine torque may latter passing through the intake manifold hot spot. It 30 to some extent be improved in any of the aforesaid ar is further customary to make exhaust pipe or conduit con rangements by making symmetrical conduit connections nections with one exhaust manifold at approximately the to the exhaust manifold of the two banks of cylinders. lengthwise center thereof and a second exhaust pipe or Experimentation has shown that when one bank has a conduit connection at the end of the exhaust manifold of central connection and the other an end connection it the other bank, rearwardly of the engine, these conduits 35 adversely affects engine torque. being in turn connected with each other by a cross pipe It is therefore an object of my invention to provide in and with the mu?ler. Moreover, a themostatic valve has an engine having opposite banks of cylinders, an intake conventionally been located in the exhaust manifold or manifold hot spot providing su?icient heat during the pipe of one bank. When this valve is closed, as during engine warming up operation which gives a minimum heat engine warm-up, it forces the exhaust gases from that bank effect after the heat control valve is open and the engine through the cross passages aforesaid past the hot spot of is up to normal temperature and to effect this by connect the intake manifold. When the valve is open, as when ing the hot spot with a single exhaust port of each bank the engine comes up to normal operating temperature, of cylinders. ‘ this forced movement is relieved and the natural pulsa Another object of my invention is to substantially at tions of the exhaust system move exhaust gases past the 45 tain the foregoing object while simultaneously substan hot spot and heat the same. tially eliminating or neutralizing the back. pressure effect It is normally desirable to provide maximum heat in of the exhaust waves of the exhaust event of one cylinder the operation of the intake manifold hot spot during on the intake event of another due to the hot spot cross warm~up of a cold engine. However, I have found that over connection between the exhaust ports of such cylinder after the engine is up to its normal temperature, such high banks, this by interconnecting the exhaust ports of only heat at the hot spot is not necessary but in fact is believed cylinders which do not succeed each other in the ?ring detrimental. Thus the conventional hot spot arrange order and which preferably are spaced apart in the ?ring ment that permits such a high heat condition after warm order by at least two other cylinders. up is conducive to a loss in available peak torque in the Another object of my invention is to effect improve engine operation. A minimum torque loss results if the 55 ment in the peak engine torque of a V engine having a exhaust connections to the hot spot are such as to provide hot spot crossover incorporating any of the foregoing fea good heat for engine warm-up but a minimum heat e?ect tures, by providing symmetrical connections of the ex after the engine is up to temperature. To attain these haust pipes or conduits with the exhaust manifolds of the ends I found it best to connect the crossover passage of opposite banks of cylinders. 60 These and other objects and advantages of my inven the hot spot with a single exhaust port of each bank of tion will be apparent from the following speci?cation and cylinders. These can be ports of cylinders having any from the drawings wherein similar numerals designate position in the ?ring order but for reasons which hereafter similar parts of the structure. appear are preferably those of cylinders which do not im In the drawings: mediately succeed each other in the ?ring order. 65 Figure 1 is a transverse section of a V-type internal I have further discovered that in the conventional hot combustion engine to which my invention is applied and spot arrangement utilizing the exhaust ports of two cylin showing the hot spot of the intake manifold system in a ders of each bank of the engine or even where only two crossover passage connecting with the exhaust system of exhaust ports are cross connected but in either case are the engine; of cylinders which follow each other in the ?ring order 70 Figure 2 is a top plan view partly in section of the that the back pressure or exhaust wave of the exhaust intake and exhaust manifold systems of an engine, such event-of oneofvthese cylinders interferes with ‘the intake‘ 7 as shown in Figure 1, incorporating my invention; 2,926,647 3 4 Figure 3 is a schematic view of an engine incorporating may be used with the crank of Figure 6 and ?ring orders one of the features of my invention; Figures 4 and 5 are schematic views of engines incor porating a plurality of features of my invention; and Figures 6 and 7 are schematic views of two suggested two-plane 90° crank pin arrangements for a ‘.1 engine utilizing my invention, the Roman numerals in the ?gures indicating the positioning of the crank throws counting from the front or fan end of the engine and the numerals in the parentheses indicating cylinder members whose 10 pistons are connected with the crank throws. For the purposes of illustration, my invention will be may be used with the crank arrangement of Figure 7. described relative to a 90° V-8 engine of current manu In Figures 2, 3, 4, and 5 my invention has been shown facture having a so-called two-plane 90° crankshaft, as applied to an engine having a crank arrangement of hemispherical combustion chambers and provided with Figures 6 and ?ring orders of 1—8—7—3-6—5—4—2 for downdraft carburetion of the dual type, each riser of Figure 3, 1—8—4—3—6—5—7-2 for Figures 2 and 4, and which is arranged to feed a pair of inner cylinders of one l—5—7—2—6—8-4—3 for Figure 5, as will hereafter be bank and a pair of outer or end cylinders of the opposite more evident.
Recommended publications
  • Testing the System Page 1 of 4
    Testing the system Page 1 of 4 Testing the system Vehicle diagnostic, testing and information system -VAS 5051B- Test sequence Coolant temperature at least 80 °C. Vehicles with automatic gearbox: selector lever in position P or N – Connect vehicle diagnostic, testing and information system -VAS 5051B- and select vehicle system “01 - Engine electronics” from list. Engine must be idling. WARNING Test equipment must always be secured on the rear seat and operated from that position by a second person. If test and measuring instruments are operated from front passenger's seat and the vehicle is involved in an accident, the person sitting in this seat could be seriously injured when the airbag is triggered. Display on -VAS 5051B-: – From list -1- select diagnostic function “04 - Basic setting”. Display on -VAS 5051B-: 1 - Enter display group – Using the keypad -2-, enter “094” to select “Display group 094” and confirm entry with the Q key. vw-wi://rl/A.en-GB.A04.5636.29.wi::37889621.xml?xsl=3 14.01.2014 Testing the system Page 2 of 4 – Activate basic setting by touching key A . Display on -VAS 5051B-: – Increase the engine speed to above 2000 rpm for approx. 10 seconds. – Check specifications in display zones -3- and -4-. Display zones 1234 Display group 94: variable valve timing, bank 1 (right-side) and bank 2 (left-side) Display xxxx rpm --- --- --- Readout Engine speed Variable valve timing Variable valve timing Variable valve timing bank 1 bank 2 Range CS-ctrl ON Test OFF Test OFF CS-ctrl OFF Test ON Test ON Syst.
    [Show full text]
  • Lawn-Boy V-Engine Service Manual
    LAWN-BOY V-ENGINE SERVICE MANUAL Table of Contents – Page 1 of 2 REFERENCE SECTION SAFETY SPECIFICATIONS - ENGINE SPECIFICATIONS SPECIFICATIONS - ENGINE FASTENER TORQUE REQUIREMENTS SPECIFICATIONS - CARBURETOR SPECIFICATIONS (WALBRO LMR-16) SPECIAL TOOL REQUIREMENTS TROUBLESHOOTING MAINTENANCE SECTION 1 WALBRO LMR-16 CARBURETOR LMR-16 CARBURETOR - IDENTIFICATION LMR-16 CARBURETOR - THEORY OF OPERATION LMR-16 CARBURETOR - GOVERNOR THEORY LMR-16 CARBURETOR - REMOVAL LMR-16 CARBURETOR - DISASSEMBLY LMR-16 CARBURETOR - CLEANING AND INSPECTION LMR-16 CARBURETOR - ASSEMBLY LMR-16 CARBURETOR - PRESETTING THE GOVERNOR LMR-16 CARBURETOR - ASSEMBLING AIR BOX TO CARBURETOR LMR-16 CARBURETOR - INSTALLATION LMR-16 CARBURETOR - FINAL CHECK LMR-16 CARBURETOR - CHOKE ADJUSTMENT LMR-16 CARBURETOR - SERVICING THE AIR FILTER LMR-16 CARBURETOR-TROUBLESHOOTING SECTION 2 PRIMER START CARBURETOR PRIMER START CARBURETOR - IDENTIFICATION PRIMER START CARBURETOR - THEORY OF OPERATION PRIMER START CARBURETOR - GOVERNOR THEORY PRIMER START CARBURETOR - REMOVAL PRIMER START CARBURETOR - DISASSEMBLY PRIMER START CARBURETOR - CLEANING AND INSPECTION PRIMER START CARBURETOR - ASSEMBLY PRIMER START CARBURETOR - INSTALLATION PRIMER START CARBURETOR - PRESETTING THE GOVERNOR PRIMER START CARBURETOR - FINAL CHECK PRIMER START CARBURETOR - SERVICING THE AIR FILTER PRIMER START CARBURETOR TROUBLESHOOTING ENGINE STARTS HARD ENGINE RUNS RICH ENGINE RUNS LEAN FUEL LEAKS FROM CARBURETOR LAWN-BOY V-ENGINE SERVICE MANUAL Table of Contents – Page 2 of 2 SECTION 3 FUEL SYSTEM FUEL
    [Show full text]
  • Wärtsilä 32 PRODUCT GUIDE © Copyright by WÄRTSILÄ FINLAND OY
    Wärtsilä 32 PRODUCT GUIDE © Copyright by WÄRTSILÄ FINLAND OY COPYRIGHT © 2021 by WÄRTSILÄ FINLAND OY All rights reserved. No part of this booklet may be reproduced or copied in any form or by any means (electronic, mechanical, graphic, photocopying, recording, taping or other information retrieval systems) without the prior written permission of the copyright owner. THIS PUBLICATION IS DESIGNED TO PROVIDE AN ACCURATE AND AUTHORITATIVE INFORMATION WITH REGARD TO THE SUBJECT-MATTER COVERED AS WAS AVAILABLE AT THE TIME OF PRINTING. HOWEVER, THE PUBLICATION DEALS WITH COMPLICATED TECHNICAL MATTERS SUITED ONLY FOR SPECIALISTS IN THE AREA, AND THE DESIGN OF THE SUBJECT-PRODUCTS IS SUBJECT TO REGULAR IMPROVEMENTS, MODIFICATIONS AND CHANGES. CONSEQUENTLY, THE PUBLISHER AND COPYRIGHT OWNER OF THIS PUBLICATION CAN NOT ACCEPT ANY RESPONSIBILITY OR LIABILITY FOR ANY EVENTUAL ERRORS OR OMISSIONS IN THIS BOOKLET OR FOR DISCREPANCIES ARISING FROM THE FEATURES OF ANY ACTUAL ITEM IN THE RESPECTIVE PRODUCT BEING DIFFERENT FROM THOSE SHOWN IN THIS PUBLICATION. THE PUBLISHER AND COPYRIGHT OWNER SHALL UNDER NO CIRCUMSTANCES BE HELD LIABLE FOR ANY FINANCIAL CONSEQUENTIAL DAMAGES OR OTHER LOSS, OR ANY OTHER DAMAGE OR INJURY, SUFFERED BY ANY PARTY MAKING USE OF THIS PUBLICATION OR THE INFORMATION CONTAINED HEREIN. Wärtsilä 32 Product Guide Introduction Introduction This Product Guide provides data and system proposals for the early design phase of marine engine installations. For contracted projects specific instructions for planning the installation are always delivered. Any data and information herein is subject to revision without notice. This 1/2021 issue replaces all previous issues of the Wärtsilä 32 Project Guides. Issue Published Updates 1/2021 15.03.2021 Technical data updated.
    [Show full text]
  • Camshaft Deviation Codes.Pdf
    AD07.61 -P-4000 -94VA Page 1 of 2 AD07.61-P-4000- Continuous camshaft adjustment - 94VA fault code description ME Angular deviation of camshafts to the crankshaft 1 Fault code 1197 Exhaust camshaft on right cylinder bank, permanent advanced ( Readout on generic scan tool) position (P0017) 1198 Exhaust camshaft on right cylinder bank, permanent retarded position (P0017) 1200 Exhaust camshaft on right cylinder bank, displacement (P0017) 1201 Exhaust camshaft on left cylinder bank, permanent advanced position (P0019) 1202 Exhaust camshaft on left cylinder bank, permanent retarded position (P0019) 1204 Exhaust camshaft on left cylinder bank, displacement (P0019) 1205 Intake camshaft on right cylinder bank, permanent advanced position (P0016) 1206 Intake camshaft on right cylinder bank, permanent retarded position (P0016) 1208 Intake camshaft on right cylinder bank, displacement (P0016) 1209 Intake camshaft on left cylinder bank, permanent advanced position (P0018) 1210 Intake camshaft on left cylinder bank, permanent retarded position (P0018) 1212 Intake camshaft on left cylinder bank, displacement (P0018) 2 Fault storage After expiry of test duration and fault Actuation of engine diagnosis Following two successive driving cycles with faults indicator lamp (EURO4) or CHECK ENGINE (MIL) malfunction indicator lamp 3 Checking frequency Continuous 4 Checked signal or status Comparison of position of the intake camshaft or exhaust camshaft to position of the crankshaft 5 Fault setting conditions 1197, 1201, 1205, 1209 - Permanent advanced position greater than a 20° crank angle 1198, 1202, 1206, 1210 - Permanent retarded position greater than a 20° crank angle 1200, 1204, 1208, 1212 - Fault if after adjustment of a camshaft the new position deviates more than a 9° crank angle from the required value.
    [Show full text]
  • HSDI Diesel Engines - Gas Exchange Optimization and the Impact on Reducing Emission
    HSDI Diesel Engines - Gas Exchange Optimization and the Impact on Reducing Emission ABSTRACT All future powertrain developments must consider the primary tasks of achieving the required emission levels and CO2- values, while still providing comfort, good drivability, high reliability and affordable costs. One method for improving fuel economy in passenger vehicles that is beginning to be examined is the incorporation of downsizing. To achieve the levels of engine performance that will be required, increasing the boost pressure and/or rated speed is mandatory. When the boost pressure or the rated speed is increased, the result is an increase in the mass flow rate through the intake and exhaust ports and valves. Considering the impact of these changes, the port layout of the system has to be reanalyzed. The primary purpose of this study is to examine these effects on the port layout on a modern diesel combustion system and to present a promising concept. The study included flow measurements, PIV measurements of intake flow, CFD simulations of the flow field during intake and results from the thermodynamic test bench. One of the key aspects that needed to be examined was to demonstrate flow quality’s impact on combustion. A new port concept was developed as a result of this study that utilizes a variable valve lift to provide a highly variable swirl. This design enables a homogenous flow field in the cylinder, with excellent flow coefficient. The design also allows an increase in volumetric efficiency combined with a reduction in flow losses. INTRODUCTION The prerequisites for advanced concepts of High Speed Direct Injection (HSDI) Diesel Engines require that due to the rapidly increasing price of crude oil they must improve fuel economy and the heat-trapping ability of carbon dioxide emissions.
    [Show full text]
  • Off-Road Industrial Engines MAN Engines Off-Road Diesel Engines Fordiesel Agricultural and Environmental, Construction and Special Machinery and Special Construction
    Industrial engines Off-Road Off-Road Diesel engines for agricultural and environmental, construction and special machinery MAN Engines Built for everyone who wants to move things in a big way. Contents MAN diesel engines for agricultural and construction machinery Performance spectrum and applications . 4 MAN key technologies . 4 Development to meet operational requirements . 4 Easy system integration . 4 Intelligent service solutions . 4 The shared component concept . 4 Modular exhaust gas treatment kit (AGN kit) . 4 Reliability . 4 Description of engines D0834 and D0836 . 6 D2676 . 8 D3876 . 10 D2868 . 12 D2862 . 14 MAN diesel engines for agricultural and construction machinery Time and cost pressure are increasing, both in agriculture and in the construction industry. This is why reliability and economic efficiency are more important in these businesses than ever before. MAN engines are the constant factor that makes the machines reliable, both in brisk day-to-day business and in their life-cycle costs. Our MAN engines can help you move things in a big way – either as a vehicle operator or as a designer. Performance spectrum and applications MAN off-road engines with a displacement of 4.6 to 24.2 liters come with ratings ranging from 110 kW to 882 kW (150 hp to 1 200 hp). Applications include: nnAgricultural machinery nnCutters and shredders nnSpecial machinery such as nnConstruction machinery nnEnvironmental and recycling snowcats nnMobile cranes and materials technology transport MAN key technologies Development to meet operational Easy system integration Our key to your success: When de signing requirements One name – one system . MAN makes and developing an MAN off-road engine, Our concepts are off-road in the truest use of a single defined engine inter- we rely on innovative technologies such sense of the word, that is to say they face to exchange data and commands as turbo-charging using variable turbine are extraordinary .
    [Show full text]
  • High Efficiency VCR Engine with Variable Valve Actuation and New Supercharging Technology
    AMR 2015 NETL/DOE Award No. DE-EE0005981 High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology June 12, 2015 Charles Mendler, ENVERA PD/PI David Yee, EATON Program Manager, PI, Supercharging Scott Brownell, EATON PI, Valvetrain This presentation does not contain any proprietary, confidential, or otherwise restricted information. ENVERA LLC Project ID Los Angeles, California ACE092 Tel. 415 381-0560 File 020408 2 Overview Timeline Barriers & Targets Vehicle-Technology Office Multi-Year Program Plan Start date1 April 11, 2013 End date2 December 31, 2017 Relevant Barriers from VT-Office Program Plan: Percent complete • Lack of effective engine controls to improve MPG Time 37% • Consumer appeal (MPG + Performance) Budget 33% Relevant Targets from VT-Office Program Plan: • Part-load brake thermal efficiency of 31% • Over 25% fuel economy improvement – SI Engines • (Future R&D: Enhanced alternative fuel capability) Budget Partners Total funding $ 2,784,127 Eaton Corporation Government $ 2,212,469 Contributing relevant advanced technology Contractor share $ 571,658 R&D as a cost-share partner Expenditure of Government funds Project Lead Year ending 12/31/14 $733,571 ENVERA LLC 1. Kick-off meeting 2. Includes no-cost time extension 3 Relevance Research and Development Focus Areas: Variable Compression Ratio (VCR) Approx. 8.5:1 to 18:1 Variable Valve Actuation (VVA) Atkinson cycle and Supercharging settings Advanced Supercharging High “launch” torque & low “stand-by” losses Systems integration Objectives 40% better mileage than V8 powered van or pickup truck without compromising performance. GMC Sierra 1500 baseline. Relevance to the VT-Office Program Plan: Advanced engine controls are being developed including VCR, VVA and boosting to attain high part-load brake thermal efficiency, and exceed VT-Office Program Plan mileage targets, while concurrently providing power and torque values needed for consumer appeal.
    [Show full text]
  • Table of Contents S65B40 Engine
    Table of Contents S65B40 Engine Subject Page Crankcase and Crankshaft Drive . .3 Engine Block with Bedplate Construction . .3 Crankshaft . .4 Connecting Rods . .4 Pistons . .5 Oil Supply . .6 Oil Supply Hydraulic Circuit Diagram . .8 Valvetrain . .10 Cylinder Head . .10 Hydraulic Bucket Tappet . .11 CamshaftDrive................................................12 VANOS . .13 Belt Drive . .16 Air Supply . .17 Air Intake Guide/Oil Separator/Secondary Air System . .17 Oil Separators . .18 Secondary Air System . .18 Individual Throttle Butterfly System . .19 Idle Control System . .20 Fuel Supply . .21 Cooling System . .22 Exhaust System . .24 Initial Print Date: 1/08 Revision Date: S65B40 Engine Model: E90 M3, E92 M3 Production: 2/2008 After completion of this module you will be able to: Identify the components of the S65B40 engine Identify the difference between the S85B50 and S65B40 engines Explain the oil supply system of the engine 2 S65B40 Engine Crankcase and Crankshaft Drive Engine Block with Bedplate Construction The construction and materials are identical to the S85; the upper low-pressure die-cast crankcase is made from an aluminum-silicon alloy. The cylinder bores are formed using exposed hard silicon crystals, rendering the use of cylinder liners redundant. The lower crankcase (bedplate) is also constructed using die-cast aluminum. Due to the extreme forces, grey cast iron inlays are used to reinforce the bedplate construction. These also limit crankshaft bearing clearances over a greater temperature range and thus have a positive effect on the oil flow rate. S65B40 Engine block with bedplate construction Index Explanation 1 Engine block (upper section) 2 Grey cast iron inlays 3 Bedplate construction (lower section) 3 S65B40 Engine Crankshaft The five-bearing crankshaft is forged from a single piece, including the two double-chain wheels for driving the valve gear.
    [Show full text]
  • Engineering Study of the Rotary-Vee Engine Concept
    NASA Technical Memorandum 101995 SAE Paper No. 89-0332 Engineering Study of the Rotary-Vee Engine Concept Edward A. Willis National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Timothy A. Bartrand Sverdrup Technology, Inc. NASA Lewis Research Center Group ~~ Cleveland, OhTo - and John E. Beard National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Presented at the 1989 Annual Congress and Exposition sponsored by the Society of Automotive Engineers Detroit, Michigan, February 27-March 3, 1989 [NASA-Tbl- 103995) EIiGINEERING STUDY OF TfiE N89 -260C7 ROTARY-VEE ENGINE CONCEPT ;NASA, Lewis Research Center) 38 p CSCL 21E Unclas G~/07 0222716 ENGINEERING STUDY ON THE ROTARY-VEE ENGINE CONCEPT E.A. Willis National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 T.A. Bartrand Sverdrup Technology, Inc. NASA Lewis Research Center Group Cleveland, Ohio 44135 and J.E. Beard* National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44 135 ABSTRACT This paper provides a review of the applicable thermodynamic cycle and performance considerations when the rotary-vee mechanism is used as an internal combustion (I. C.) heat engine. Included is a simplified kinematic analysis and studies of the effects of design pa- rameters on the critical pressures, torques and parasitic losses. A discussion of the principal findings is presented. SUMMARY The rotary-vee is an unusual two-stroke internal combustion (1. C.) engine which incorpo- rates many small cylinders in a pair of rotating cylinder blocks. Several development projects have been launched since about 1970 to capture the perceived benefits of this arrangement.
    [Show full text]
  • Operating Instructions Diesel Engine
    Operating Instructions Diesel Engine 12V1600Rx0 12V1600Rx0L MS15030/01E Engine model kW/cyl. rpm Application group 12V1600R70 47 kW/cyl. 2100 2A, Continuous operation, unrestricted 12V1600R70L 52 kW/cyl. 2100 2A, Continuous operation, unrestricted 12V1600R80 55 kW/cyl. 1900 2A, Continuous operation, unrestricted 12V1600R80L 58 kW/cyl. 1900 2A, Continuous operation, unrestricted Table 1: Applicability © 2018 Copyright MTU Friedrichshafen GmbH This publication is protected by copyright and may not be used in any way, whether in whole or in part, without the prior writ- ten consent of MTU Friedrichshafen GmbH. This particularly applies to its reproduction, distribution, editing, translation, micro- filming and storage or processing in electronic systems including databases and online services. All information in this publication was the latest information available at the time of going to print. MTU Friedrichshafen GmbH reserves the right to change, delete or supplement the information provided as and when required. Table of Contents 1 Change Notices 8 Troubleshooting 1.1 Revision overview 5 8.1 Troubleshooting 47 8.2 Fault messages 49 2 Safety 9 Task Description 2.1 Important provisions for all products 6 2.2 Correct use of all products 8 9.1 Engine 89 2.3 Personnel and organizational requirements 9 9.1.1 Engine – Barring manually 89 2.4 Initial start-up and operation – Safety 9.1.2 Engine – Test run 91 regulations 10 9.2 Valve Drive 92 2.5 Safety regulations for assembly, 9.2.1 Cylinder head cover – Removal and maintenance, and repair work
    [Show full text]
  • An Evaluation of Marine Propulsion Engines for Several Navy Ships
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1992-05 An evaluation of marine propulsion engines for several Navy ships Stanko, Mark Thomas Cambridge, Massachusetts: Massachusetts Institute of Technology http://hdl.handle.net/10945/25907 AN EVALUATION OF MARINE PROPULSION ENGINES FOR SEVERAL NAVY SHIPS by Mark Thomas Stanko B.S.M.E., University of Utah 1983 SUBMITTED TO THE DEPARTMENT OF OCEAN ENGINEERING AND MECHANICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF NAVAL ENGINEER and MASTER OF SCIENCE IN MECHANICAL ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1992 ©Massachusetts Institute of Technology, 1992. All rights reserved. T260636 a'67db& AN EVALUATION OF MARINE PROPULSION ENGINES FOR SEVERAL NAVY SHIPS by Mark Thomas Stanko Submitted to the Departments of Ocean Engineering and Mechanical Engineering on May 1, 1992 in partial fulfillment of the requirements for the Degrees of Naval Engineer and Master of Science in Mechanical Engineering ABSTRACT The design of naval ships is a complex and iterative process. The propulsion system is selected early in the design cycle and it has significant impact on the ship design. A complete understanding of the marine propulsion engine alternatives is necessary to facilitate the design. Five types of marine propulsion engines have been examined and compared. They include an LM-2500 marine gas turbine, an Intercooled Recuperative (ICR) marine gas turbine, a series of Colt-Pielstick PC4.2V medium speed diesels, a series of Colt-Pielstick PC2.6V medium speed diesels, and an Allison 571-KF marine gas turbine module power pak. To facilitate an integrated propulsion systems study, an engine's computer model has been written that calculates the engine weight, volume, fuel consumption, and acquisition cost.
    [Show full text]
  • Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms a Typical finger Follower Cam Mechanism for a High Performance Engine J
    Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms A typical finger follower cam mechanism for a high performance engine J. J. Williams Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms 123 J. J. Williams Oxendon Software Market Harborough UK ISBN 978-1-4471-4563-9 ISBN 978-1-4471-4564-6 (eBook) DOI 10.1007/978-1-4471-4564-6 Springer London Heidelberg New York Dordrecht Library of Congress Control Number: 2012946758 Ó Springer-Verlag London 2013 NASCAR is a trademark of NASCAR Mercedes Benz is a trademark of Daimler AG Penske is a trademark of Penske Racing, Inc. This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
    [Show full text]