Lectures on Etale Cohomology

Total Page:16

File Type:pdf, Size:1020Kb

Lectures on Etale Cohomology Lectures on Etale Cohomology J.S. Milne Version 2.10 May 20, 2008 These are the notes for a course taught at the University of Michigan in 1989 and 1998. In comparison with my book, the emphasis is on heuristic arguments rather than formal proofs and on varieties rather than schemes. The notes also discuss the proof of the Weil conjectures (Grothendieck and Deligne). BibTeX information @misc{milneLEC, author={Milne, James S.}, title={Lectures on Etale Cohomology (v2.10)}, year={2008}, note={Available at www.jmilne.org/math/}, pages={196} } v2.01 (August 9, 1998). First version on the web; 197 pages. v2.10 (May 20, 2008). Fixed many minor errors; changed TeX style; 196 pages Please send comments and corrections to me at math0 at jmilne.org. The photograph is of the Dasler Pinnacles, New Zealand. Copyright c 1998, 2008, J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permis- sion from the copyright holder. Contents Contents 3 I Basic Theory 7 1 Introduction . 7 2 Etale Morphisms . 16 3 The Etale Fundamental Group . 25 4 The Local Ring for the Etale Topology . 31 5 Sites . 38 6 Sheaves for the Etale Topology . 41 7 The Category of Sheaves on Xet........................ 49 8 Direct and Inverse Images of Sheaves. 57 9 Cohomology: Definition and the Basic Properties. 63 10 Cechˇ Cohomology. 68 11 Principal Homogeneous Spaces and H 1.................... 74 12 Higher Direct Images; the Leray Spectral Sequence. 79 13 The Weil-Divisor Exact Sequence and the Cohomology of Gm. 82 14 The Cohomology of Curves. 87 15 Cohomological Dimension. 102 16 Purity; the Gysin Sequence. 105 17 The Proper Base Change Theorem. 111 18 Cohomology Groups with Compact Support. 115 19 Finiteness Theorems; Sheaves of Z`-modules. 119 20 The Smooth Base Change Theorem. 122 21 The Comparison Theorem. 125 22 The Kunneth¨ Formula. 130 23 The Cycle Map; Chern Classes . 133 24 Poincare´ Duality . 139 25 Lefschetz Fixed-Point Formula. 142 II Proof of the Weil Conjectures. 145 26 The Weil Conjectures . 145 27 Proof of the Weil Conjectures, except for the Riemann Hypothesis . 148 28 Preliminary Reductions . 155 29 The Lefschetz Fixed Point Formula for Nonconstant Sheaves. 157 30 The MAIN Lemma . 170 31 The Geometry of Lefschetz Pencils . 178 32 The Cohomology of Lefschetz Pencils . 180 33 Completion of the Proof of the Weil Conjectures. 187 34 The Geometry of Estimates . 191 Index 195 3 Notations and conventions The conventions concerning varieties are the same as those in my notes on Algebraic Geom- etry. For example, an affine algebra over a field k is a finitely generated k-algebra A such that A kal is has no nonzero nilpotents for one (hence every) algebraic closure kal of ˝k k — this implies that A itself has no nilpotents. With such a k-algebra, we associate a ringed space Specm.A/ (topological space endowed with a sheaf of k-algebras), and an affine variety over k is a ringed space isomorphic to one of this form. A variety over k is a ringed space .X; OX / admitting a finite open covering X Ui such that .Ui ; OX Ui / D[ j is an affine variety for each i and which satisfies the separation axiom. We often use X to denote .X; OX / as well as the underlying topological space. A regular map of varieties will sometimes be called a morphism of varieties. For those who prefer schemes, a variety is a separated geometrically reduced scheme X of finite type over a field k with the nonclosed points omitted. If X is a variety over k and K k, then X.K/ is the set of points of X with coordinates 1 in K and XK or X is the variety over K obtained from X. For example, if X =K D Specm.A/, then X.K/ Hom .A; K/ and XK Specm.A K/. In general, X.K/ D k-alg D ˝k is just a set, but I usually endow X.C/ with its natural complex topology. A separable closure ksep of a field k is a field algebraic over k such that every separable polynomial with coefficients in k has a root in ksep. Our terminology concerning schemes is standard, except that I shall always assume that our rings are Noetherian and that our schemes are locally Noetherian. Our terminology concerning rings is standard. In particular, a homomorphism A B ! of rings maps 1 to 1. A homomorphism A B of rings is finite, and B is a finite A- ! algebra, if B is finitely generated as an A-module. When A is a local ring, I often denote its (unique) maximal ideal by mA. A local homomorphism of local rings is a homomorphism 1 f A B such that f .mB / mA (equivalently, f .mA/ mB ). W ! D Generally, when I am drawing motivation from the theory of sheaves on a topological space, I assume that the spaces are Hausdorff, i.e., not some weird spaces with points whose closure is the whole space. X YX is a subset of Y (not necessarily proper); X def YX is defined to be Y , or equals Y by definition; D X YX is isomorphic to Y ; X YX and Y are canonically isomorphic (or there is a given or unique isomorphism) ' Prerequisites and References Homological algebra I shall assume some familiarity with the language of abelian cate- gories and derived functors. There is a summary of these topics in my Class Field Theory notes pp 69–76, and complete presentations in several books, for example, in Weibel, C.A., An Introduction to Homological Algebra2, Cambridge U.P., 1994. We shall not be able to avoid using spectral sequences — see pp 307–309 of my book on Etale Cohomology for a brief summary of spectral sequences and Chapter 5 of Weibel’s book for a complete treatment. 1Our terminology follows that of Grothendieck. There is a conflicting terminology, based on Weil’s Foun- dations and frequently used by workers in the theory of algebraic groups, that writes these the other way round. 2 n n p On p 9, Weibel defines C Œp C . The correct original definition, universally used by algebraic Dn n p and arithmetic geometers, is that C Œp C C (see Hartshorne, R., Residues and Duality, 1966, p26). Also, in Weibel, a “functor category” need notD be a category. 4 Sheaf theory Etale cohomology is modelled on the cohomology theory of sheaves in the usual topological sense. Much of the material in these notes parallels that in, for example, Iversen, B., Cohomology of Sheaves, Springer, 1986. Algebraic geometry I shall assume familiarity with the theory of algebraic varieties, for example, as in my notes on Algebraic Geometry (Math. 631). Also, sometimes I will men- tion schemes, and so the reader should be familiar with the basic language of schemes as, for example, the first 3 sections of Chapter II of Hartshorne, Algebraic Geometry, Springer 1977, the first chapter of Eisenbud and Harris, Schemes, Wadsworth, 1992, or Chapter V of Shafarevich, Basic Algebraic Geometry, 2nd Edition, Springer, 1994. For commutative algebra, I usually refer to Atiyah, M., and MacDonald, I., Introduction to Commutative Algebra, Addison-Wesley, 1969. Etale cohomology There are the following books: Freitag, E., and Kiehl, R., Etale Cohomology and the Weil Conjecture, Springer, 1988. Milne, J., Etale Cohomology, Princeton U.P. 1980 (cited as EC). Tamme, Introduction to Etale Cohomology, Springer. The original sources are: Artin, M., Grothendieck Topologies, Lecture Notes, Harvard University Math. Dept. 1962. Artin, M., Theor´ emes` de Representabilit´ e´ pour les Espace Algebriques´ , Presses de l’Universite´ de Montreal,´ Montreal,´ 1973 Grothendieck, A., et al., Seminaire´ de Geom´ etrie´ Algebrique.´ SGA 4 (with Artin, M., and Verdier, J.-L.). Theorie´ des topos et cohomologie etale´ des schemas´ (1963–64). Springer Lecture Notes 1972–73. SGA 4 1/2 (by Deligne, P., with Boutot, J.-F., Illusie, L., and Verdier, J.-L.) Cohomologie etale´ . Springer Lecture Notes 1977. SGA 5 Cohomologie l-adique et fonctions L (1965–66). Springer Lecture Notes 1977. SGA 7 (with Deligne, P., and Katz, N.) Groupes de monodromie en geom´ etrie´ algebriques´ (1967–68). Springer Lecture Notes 1972–73. 1 Except for SGA 4 2 , these are the famous seminars led by Grothendieck at I.H.E.S.. I refer to the following of my notes. FT Field and Galois Theory (v4.20 2008). AG Algebraic Geometry (v5.10 2008). AV Abelian Varieties (v2.00 2008). CFT Class Field Theory (v4.00 2008). Acknowledgements I thank the following for providing corrections and comments for earlier versions of these notes: Martin Bright; Sungmun Cho; Carl Mautner and others at UT Austin; Behrooz Mirzaii; Sean Rostami; Steven Spallone; Sun Shenghao; Zach Teitler; Ravi Vakil. Comment. The major theorems in etale´ cohomology are proved in SGA 4 and SGA 5, but often under unnecessarily restrictive hypotheses. Some of these hypotheses were removed later, but by 5 proofs that used much of what is in those seminars. Thus the structure of the subject needs to be re-thought. Also, algebraic spaces should be more fully incorporated into the subject (see Artin 1973). It is likely that de Jong’s resolution theorem (Smoothness, semi-stability and alterations. Inst. Hautes Etudes´ Sci. Publ. Math. No. 83 (1996), 51–93) will allow many improvements. Finally, such topics as intersection cohomology and Borel-Moore homology need to be added to the exposition. None of this will be attempted in these notes. 6 Chapter I Basic Theory 1 INTRODUCTION For a variety X over the complex numbers, X.C/ acquires a topology from that on C, and so one can apply the machinery of algebraic topology to its study.
Recommended publications
  • Algebraic Cycles from a Computational Point of View
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 392 (2008) 128–140 www.elsevier.com/locate/tcs Algebraic cycles from a computational point of view Carlos Simpson CNRS, Laboratoire J. A. Dieudonne´ UMR 6621, Universite´ de Nice-Sophia Antipolis, 06108 Nice, France Abstract The Hodge conjecture implies decidability of the question whether a given topological cycle on a smooth projective variety over the field of algebraic complex numbers can be represented by an algebraic cycle. We discuss some details concerning this observation, and then propose that it suggests going on to actually implement an algorithmic search for algebraic representatives of classes which are known to be Hodge classes. c 2007 Elsevier B.V. All rights reserved. Keywords: Algebraic cycle; Hodge cycle; Decidability; Computation 1. Introduction Consider the question of representability of a topological cycle by an algebraic cycle on a smooth complex projective variety. In this paper we point out that the Hodge conjecture would imply that this question is decidable for varieties defined over Q. This is intuitively well-known to specialists in algebraic cycles. It is interesting in the context of the present discussion, because on the one hand it shows a relationship between an important question in algebraic geometry and the logic of computation, and on the other hand it leads to the idea of implementing a computer search for algebraic cycles as we discuss in the last section. This kind of consideration is classical in many areas of geometry. For example, the question of deciding whether a curve defined over Z has any Z-valued points was Hilbert’s tenth problem, shown to be undecidable in [10,51, 39].
    [Show full text]
  • Hodge-Theoretic Invariants for Algebraic Cycles
    HODGE-THEORETIC INVARIANTS FOR ALGEBRAIC CYCLES MARK GREEN∗ AND PHILLIP GRIFFITHS Abstract. In this paper we use Hodge theory to define a filtration on the Chow groups of a smooth, projective algebraic variety. Assuming the gen- eralized Hodge conjecture and a conjecture of Bloch-Beilinson, we show that this filtration terminates at the codimension of the algebraic cycle class, thus providing a complete set of period-type invariants for a rational equivalence class of algebraic cycles. Outline (1) Introduction (2) Spreads; explanation of the idea p (3) Construction of the filtration on CH (X)Q (4) Interpretations and proofs (5) Remarks and examples (6) Appendix: Reformation of the construction 1. Introduction Some years ago, inspired by earlier work of Bloch, Beilinson (cf. [R]) proposed a series of conjectures whose affirmative resolution would have far reaching conse- quences on our understanding of the Chow groups of a smooth projective algebraic variety X. For any abelian group G, denoting by GQ the image of G in G⊗Z Q, these P conjectures would have the following implications for the Chow group CH (X)Q: (I) There is a filtration p 0 p 1 p (1.1) CH (X)Q = F CH (X)Q ⊃ F CH (X)Q p p p+1 p ⊃ · · · ⊃ F CH (X)Q ⊃ F CH (X)Q = 0 whose successive quotients m p m p m+1 p (1.2) Gr CH (X)Q = F CH (X)Q=F CH (X)Q may be described Hodge-theoretically.1 The first two steps in the conjectural filtration (??) are defined classically: If p 2p 0 : CH (X)Q ! H (X; Q) is the cycle class map, then 1 p F CH (X)Q = ker 0 : Setting in general m p p m p F CH (X) = CH (X) \ F CH (X)Q ; ∗Research partially supported by NSF grant DMS 9970307.
    [Show full text]
  • Perverse Sheaves
    Perverse Sheaves Bhargav Bhatt Fall 2015 1 September 8, 2015 The goal of this class is to introduce perverse sheaves, and how to work with it; plus some applications. Background For more background, see Kleiman's paper entitled \The development/history of intersection homology theory". On manifolds, the idea is that you can intersect cycles via Poincar´eduality|we want to be able to do this on singular spces, not just manifolds. Deligne figured out how to compute intersection homology via sheaf cohomology, and does not use anything about cycles|only pullbacks and truncations of complexes of sheaves. In any derived category you can do this|even in characteristic p. The basic summary is that we define an abelian subcategory that lives inside the derived category of constructible sheaves, which we call the category of perverse sheaves. We want to get to what is called the decomposition theorem. Outline of Course 1. Derived categories, t-structures 2. Six Functors 3. Perverse sheaves—definition, some properties 4. Statement of decomposition theorem|\yoga of weights" 5. Application 1: Beilinson, et al., \there are enough perverse sheaves", they generate the derived category of constructible sheaves 6. Application 2: Radon transforms. Use to understand monodromy of hyperplane sections. 7. Some geometric ideas to prove the decomposition theorem. If you want to understand everything in the course you need a lot of background. We will assume Hartshorne- level algebraic geometry. We also need constructible sheaves|look at Sheaves in Topology. Problem sets will be given, but not collected; will be on the webpage. There are more references than BBD; they will be online.
    [Show full text]
  • Lecture 3. Resolutions and Derived Functors (GL)
    Lecture 3. Resolutions and derived functors (GL) This lecture is intended to be a whirlwind introduction to, or review of, reso- lutions and derived functors { with tunnel vision. That is, we'll give unabashed preference to topics relevant to local cohomology, and do our best to draw a straight line between the topics we cover and our ¯nal goals. At a few points along the way, we'll be able to point generally in the direction of other topics of interest, but other than that we will do our best to be single-minded. Appendix A contains some preparatory material on injective modules and Matlis theory. In this lecture, we will cover roughly the same ground on the projective/flat side of the fence, followed by basics on projective and injective resolutions, and de¯nitions and basic properties of derived functors. Throughout this lecture, let us work over an unspeci¯ed commutative ring R with identity. Nearly everything said will apply equally well to noncommutative rings (and some statements need even less!). In terms of module theory, ¯elds are the simple objects in commutative algebra, for all their modules are free. The point of resolving a module is to measure its complexity against this standard. De¯nition 3.1. A module F over a ring R is free if it has a basis, that is, a subset B ⊆ F such that B generates F as an R-module and is linearly independent over R. It is easy to prove that a module is free if and only if it is isomorphic to a direct sum of copies of the ring.
    [Show full text]
  • Arithmetic Duality Theorems
    Arithmetic Duality Theorems Second Edition J.S. Milne Copyright c 2004, 2006 J.S. Milne. The electronic version of this work is licensed under a Creative Commons Li- cense: http://creativecommons.org/licenses/by-nc-nd/2.5/ Briefly, you are free to copy the electronic version of the work for noncommercial purposes under certain conditions (see the link for a precise statement). Single paper copies for noncommercial personal use may be made without ex- plicit permission from the copyright holder. All other rights reserved. First edition published by Academic Press 1986. A paperback version of this work is available from booksellers worldwide and from the publisher: BookSurge, LLC, www.booksurge.com, 1-866-308-6235, [email protected] BibTeX information @book{milne2006, author={J.S. Milne}, title={Arithmetic Duality Theorems}, year={2006}, publisher={BookSurge, LLC}, edition={Second}, pages={viii+339}, isbn={1-4196-4274-X} } QA247 .M554 Contents Contents iii I Galois Cohomology 1 0 Preliminaries............................ 2 1 Duality relative to a class formation . ............. 17 2 Localfields............................. 26 3 Abelianvarietiesoverlocalfields.................. 40 4 Globalfields............................. 48 5 Global Euler-Poincar´echaracteristics................ 66 6 Abelianvarietiesoverglobalfields................. 72 7 An application to the conjecture of Birch and Swinnerton-Dyer . 93 8 Abelianclassfieldtheory......................101 9 Otherapplications..........................116 AppendixA:Classfieldtheoryforfunctionfields............126
    [Show full text]
  • A Algebraic Varieties
    A Algebraic Varieties A.1 Basic definitions Let k[X1,X2,...,Xn] be a polynomial algebra over an algebraically closed field k with n indeterminates X1,...,Xn. We sometimes abbreviate it as k[X]= k[X1,X2,...,Xn]. Let us associate to each polynomial f(X)∈ k[X] its zero set n V(f):= {x = (x1,x2,...,xn) ∈ k | f(x)= f(x1,x2,...,xn) = 0} n 2in the n-fold product set k of k. For any subset S ⊂ k[X] we also set V(S) = f ∈S V(f). Then we have the following properties: n (i) 2V(1) =∅,V(0) =k . = (ii) i∈I V(Si) V( i∈I Si). (iii) V(S1) ∪ V(S2) = V(S1S2), where S1S2 := {fg | f ∈ S1,g∈ S2}. The inclusion ⊂ of (iii) is clear. We will prove only the inclusion ⊃. For x ∈ V(S1S2) \ V(S2) there is an element g ∈ S2 such that g(x) = 0. On the other hand, it ∀ ∀ follows from x ∈ V(S1S2) that f(x)g(x) = 0( f ∈ S1). Hence f(x)= 0( f ∈ S1) and x ∈ V(S1). So the part ⊃ was also proved. By (i), (ii), (iii) the set kn is endowed with the structure of a topological space by taking {V(S) | S ⊂ k[X]} to be its closed subsets. We call this topology of kn the Zariski topology. The closed subsets V(S) of kn with respect to it are called algebraic sets in kn. Note that V(S)= V(S), where S denotes the ideal of k[X] generated by S.
    [Show full text]
  • Arxiv:2008.10677V3 [Math.CT] 9 Jul 2021 Space Ha Hoyepiil Ea Ihtewr Fj Ea N194 in Leray J
    On sheaf cohomology and natural expansions ∗ Ana Luiza Tenório, IME-USP, [email protected] Hugo Luiz Mariano, IME-USP, [email protected] July 12, 2021 Abstract In this survey paper, we present Čech and sheaf cohomologies – themes that were presented by Koszul in University of São Paulo ([42]) during his visit in the late 1950s – we present expansions for categories of generalized sheaves (i.e, Grothendieck toposes), with examples of applications in other cohomology theories and other areas of mathematics, besides providing motivations and historical notes. We conclude explaining the difficulties in establishing a cohomology theory for elementary toposes, presenting alternative approaches by considering constructions over quantales, that provide structures similar to sheaves, and indicating researches related to logic: constructive (intuitionistic and linear) logic for toposes, sheaves over quantales, and homological algebra. 1 Introduction Sheaf Theory explicitly began with the work of J. Leray in 1945 [46]. The nomenclature “sheaf” over a space X, in terms of closed subsets of a topological space X, first appeared in 1946, also in one of Leray’s works, according to [21]. He was interested in solving partial differential equations and build up a strong tool to pass local properties to global ones. Currently, the definition of a sheaf over X is given by a “coherent family” of structures indexed on the lattice of open subsets of X or as étale maps (= local homeomorphisms) into X. Both arXiv:2008.10677v3 [math.CT] 9 Jul 2021 formulations emerged in the late 1940s and early 1950s in Cartan’s seminars and, in modern terms, they are intimately related by an equivalence of categories.
    [Show full text]
  • Algebraic Cycles on Generic Abelian Varieties Compositio Mathematica, Tome 100, No 1 (1996), P
    COMPOSITIO MATHEMATICA NAJMUDDIN FAKHRUDDIN Algebraic cycles on generic abelian varieties Compositio Mathematica, tome 100, no 1 (1996), p. 101-119 <http://www.numdam.org/item?id=CM_1996__100_1_101_0> © Foundation Compositio Mathematica, 1996, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Compositio Mathematica 100: 101-119,1996. 101 © 1996 KluwerAcademic Publishers. Printed in the Netherlands. Algebraic cycles on generic Abelian varieties NAJMUDDIN FAKHRUDDIN Department of Mathematics, the University of Chicago, Chicago, Illinois, USA Received 9 September 1994; accepted in final form 2 May 1995 Abstract. We formulate a conjecture about the Chow groups of generic Abelian varieties and prove it in a few cases. 1. Introduction In this paper we study the rational Chow groups of generic abelian varieties. More precisely we try to answer the following question: For which integers d do there exist "interesting" cycles of codimension d on the generic abelian variety of dimension g? By "interesting" cycles we mean cycles which are not in the subring of the Chow ring generated by divisors or cycles which are homologically equivalent to zero but not algebraically equivalent to zero. As background we recall that G. Ceresa [5] has shown that for the generic abelian variety of dimension three there exist codimen- sion two cycles which are homologically equivalent to zero but not algebraically equivalent to zero.
    [Show full text]
  • 2 Sheaves and Cohomology
    2 Sheaves and Cohomology 2.1 Sheaves and Presheaves We fix a topological space X. Later we will include assumptions that are satisfied by smooth manifolds. 2.1.1 Definitions and Examples Definition 2.1. A presheaf of abelian groups F on X assigns to each open U ⊆ X an abelian group F (U) = Γ(U; F ) and for every inclusion of open sets V ⊆ U a homomorphism of abelian groups F ρUV : F (U) ! F (V ), often called the restriction map, satisfying F 1 [P1] ρUU = F(U) F F F [P2] for W ⊆ V ⊆ U, we have ρVW ◦ ρUV = ρUW . If F and G are two presheaves (of abelian groups) on X, then a morphism ' : F ! G consists of the data of a morphism 'U : F (U) ! G (U) for each open set U ⊆ X such that if V ⊆ U is an inclusion, then we have commutative diagrams 'U F (U) / G (U) F G ρUV ρUV (V ) / (V ): F 'V G Remark 2.2. We may form a category TopX whose objects are open sets in X and whose mor- phisms are simply inclusions of open sets. Then the above definition says that a presheaf is a ◦ contravariant functor TopX ! Ab, and that a morphism of presheaves is a natural transforma- tion of the associated functors. Definition 2.3. A sheaf F of abelian groups on X is a presheaf which, for any open set U ⊆ X and any open covering fUigi2I of U, satisfies the two additional properties: [S1] if s 2 F (U) is such that sjUi = 0 for all i 2 I, then s = 0; [S2] if si 2 F (Ui) such that sijUi\Uj = sjjUi\Uj for all i; j 2 I, then there exists s 2 F (U) such that sjUi = si for each i.
    [Show full text]
  • JOINT CNU-USTC-SUST SEMINAR on P-ADIC DEFORMATION of ALGEBRAIC CYCLE CLASSES AFTER BLOCH-ESNAULT-KERZ
    JOINT CNU-USTC-SUST SEMINAR ON p-ADIC DEFORMATION OF ALGEBRAIC CYCLE CLASSES AFTER BLOCH-ESNAULT-KERZ 1. Introduction Our joint seminar program is to understand the paper [4] that study the p-adic variation of Hodge conjecture of Fontaine-Messing ([6], see also [4, Conjecture 1.2]) which states roughly as follows: For simplicity, let X=W be a smooth pro- jective scheme, with W = W (k) the Witt ring of a perfect field k of characteristic 1 p > 0. If the crystalline cycle class of an algebraic cycle Z1 in the special fiber X1 = X × k has the correct Hodge level under the canonical isomorphism of Berthelot-Ogus ∗ ∼ ∗ (1.0.1) Hcris(X1=W ) = HdR(X=W ); then it can be lifted to an algebraic cycle Z of X. This problem is known when the dimension of an cycle is zero dimensional (trivial by smoothness) and codi- mension one case (Betherlot-Ogus [2, Theorem 3.8]). The article [4] proved that, under some technical condition arising from integral p-adic Hodge theory, once the Hodge level is correct, the cycle can be formally lifted to the p-adic formal scheme X = \ lim "X ⊗ W=pn of X, and it remains to be an open problem that · −!n whether there exists some formal lifting which is algebraic. The p-adic variation of Hodge conjecture is a p-adic analogue of the infinites- imal variation of Hodge conjecture ([4, Conjecture 1.1]): in this conjecture the base ring is the formal disk, i.e., the spectrum of k[[t]] where k is a character- istic zero field, and the Berthelot-Ogus isomorphism (1.0.1) is replaced by the trivialization of Gauß-Manin connection over the formal disk ([13, Proposition 8.9]) ∗ ∼ ∗ (1.0.2) (HdR(X1=k) ⊗ k[[t]]; id ⊗ d) = (HdR(X=k[[t]]); rGM): It can be shown that the infinitesimal variation of Hodge conjecture is equivalent to the original version of Grothendieck on variation of Hodge conjecture ([11], page 103 footnote), which is indeed a direct consequence of Hodge conjecture after Deligne's global invariant cycle theorem.
    [Show full text]
  • Étale Cohomology
    CHAPTER 1 Etale´ cohomology This chapter summarizes the theory of the ´etaletopology on schemes, culmi- nating in the results on `-adic cohomology that are needed in the construction of Galois representations and in the proof of the Ramanujan–Petersson conjecture. In §1.1 we discuss the basic properties of the ´etale topology on a scheme, includ- ing the concept of a constructible sheaf of sets. The ´etalefundamental group and cohomological functors are introduced in §1.2, and we use Cechˇ methods to com- 1 pute some H ’s in terms of π1’s, as in topology. These calculations provide the starting point for the proof of the ´etale analogue of the topological proper base change theorem. This theorem is discussed in §1.3, where we also explain the ´etale analogue of homotopy-invariance for the cohomology of local systems and we intro- duce the vanishing-cycles spectral sequence, Poincar´eduality, the K¨unneth formula, and the comparison isomorphism with topological cohomology over C (for torsion coefficients). The adic formalism is developed in §1.4, and it is used to define ´etalecoho- mology with `-adic coefficients; we discuss the K¨unneth isomorphism and Poincar´e duality with Q`-coefficients, and extend the comparison isomorphism with topo- logical cohomology to the `-adic case. We conclude in §1.5 by discussing ´etale cohomology over finite fields, L-functions of `-adic sheaves, and Deligne’s purity theorems for the cohomology of `-adic sheaves. Our aim is to provide an overview of the main constructions and some useful techniques of proof, not to give a complete account of the theory.
    [Show full text]
  • 6. Galois Descent for Quasi-Coherent Sheaves 19 7
    DESCENT 0238 Contents 1. Introduction 2 2. Descent data for quasi-coherent sheaves 2 3. Descent for modules 4 4. Descent for universally injective morphisms 9 4.1. Category-theoretic preliminaries 10 4.3. Universally injective morphisms 11 4.14. Descent for modules and their morphisms 12 4.23. Descent for properties of modules 15 5. Fpqc descent of quasi-coherent sheaves 17 6. Galois descent for quasi-coherent sheaves 19 7. Descent of finiteness properties of modules 21 8. Quasi-coherent sheaves and topologies 23 9. Parasitic modules 31 10. Fpqc coverings are universal effective epimorphisms 32 11. Descent of finiteness and smoothness properties of morphisms 36 12. Local properties of schemes 39 13. Properties of schemes local in the fppf topology 40 14. Properties of schemes local in the syntomic topology 42 15. Properties of schemes local in the smooth topology 42 16. Variants on descending properties 43 17. Germs of schemes 44 18. Local properties of germs 44 19. Properties of morphisms local on the target 45 20. Properties of morphisms local in the fpqc topology on the target 47 21. Properties of morphisms local in the fppf topology on the target 54 22. Application of fpqc descent of properties of morphisms 54 23. Properties of morphisms local on the source 57 24. Properties of morphisms local in the fpqc topology on the source 58 25. Properties of morphisms local in the fppf topology on the source 58 26. Properties of morphisms local in the syntomic topology on the source 59 27. Properties of morphisms local in the smooth topology on the source 59 28.
    [Show full text]