AFOSR Brochure.Ai

Total Page:16

File Type:pdf, Size:1020Kb

AFOSR Brochure.Ai *(The Bank of Sweden Prize in Economic Sciences) Putting it all together Yields Revolutionary Results… Creating Revolutionary Scientific Revolutionary Results from AFOSR Breakthroughs for the Warfighter The United States Air Force and Putting it All Together Yields Revolutionary Results... the Significance of Basic Research Air Force Office of Scientific Research funding has played a key role in many discoveries of critical importance to the United States Air Force, the scientific community and the whole world. The Air Force Office of Scientific Research (AFOSR), a part of the Air Force Research Laboratory (AFRL), manages the United The many advantages held by the United States Air Force investment in basic research. AFOSR accomplishes Nobel Prize in Physics Nobel Prize in Chemistry Nobel Prize in Medicine Nobel Prize in Economics* States Air Force on the battlefields of today Polykarp Kusch and Willis Lamb made discoveries that resulted in a Subramanyan Chandrasekhar and William Fowler’s work in the this task through strong, productive alliances with a wide array of and tomorrow are due, in large part, to the reshaping of the theory of quantum electrodynamics. development of models of nucleosynthesis, thermonuclear and fusion reactions, government agencies, the university research community, industry was critical in the development of the U.S. thermonuclear arsenal, and insight into Dr. Steven Chu Dr. Ahmed Zewail Dr. Paul Greengard Dr. Daniel Kahneman technological innovations developed by the John Bardeen was the co-inventor of the transistor. He laid the foundation for the “Big Bang” origin of the universe. laboratories and worldwide research establishments. the electronics revolution of the last half of the 20th century. a 1997 Nobel Prize winner in the 1999 Nobel Prize winner in shared the Nobel Prize for shared the Nobel Prize for extraordinary efforts of countless scientists and Dudley Herschbach and John Polanyi opened a new area of research in Physics, was one of three Chemistry, pioneered “femtochemistry,” Medicine in 2000 for discoveries Economics in 2002. AFOSR engineers. Willard Libby developed carbon-14 dating which allows accurate chemistry-reaction dynamics, which was pivotal in the development of the first AFOSR funding is distributed among approximately 1,200 grants determination of the age of artifacts. physicists sharing the prize for a branch of study in chemistry that regarding “signal transduction in funded Dr. Kahneman’s ground- chemical lasers. and contracts provided to more that 225 academic institutions, 150 Robert Hofstadter pioneered studies in electron scattering of atomic nuclei "development of methods to cool allows scientists to understand the nervous system.” First funded breaking research on human The Air Force Office of Scientific Research Daniel Tsui discovered a new form of quantum fluid that led to miniaturized, commercial firms and more than 240 internal Air Force research and opened new explorations into the nature of fundamental particles and allowed high-performance millimeter wave components used extensively in surveillance and and trap atoms with laser light." chemical reactions at the most by AFOSR in 1984, Greengard’s perception, attention and (AFOSR) sponsors the work of exceptional for new mechanisms for hardening systems against harmful radiation. There are few programs that demonstrate the significant impact of basic efforts performed within AFRL’s nine technology directorates. communications systems. Funded by AFOSR since 1988, fundamental level and at the speed research demonstrated the means decision-making beginning in individuals who provide basic research; the invented the maser, which was the basis for its successor, the research on an Air Force weapons system like the Airborne Laser (ABL). Additionally, AFOSR manages a portion of the basic research Charles Townes Herbert Kroemer developed semiconductor heterostructures which resulted in Chu's research provides the at which they occur. Future Air by which chemicals known as 1971. Along with psychologist foundation that underpins the dramatic evolution laser. He transformed communications, navigation, astronomy, radar, atomic the High Electron Mobility Transistor (HEMT), critical to today’s high-speed The fields of basic research that ultimately contributed to the realization investments of the Department of the Defense, the Defense clocks, surgery and numerous industrial procedures. foundation for atom interferometers, Force applications include: neurotransmitters carry signals Amos Twersky, Kahneman of Air Force technology. These scientists develop electronics. He also assisted in the creation of the heterostructure laser crucial to of the ABL include physics, chemistry, electronics, materials, theoretical Advanced Research Projects Agency and the Missile Defense the development of fiber-optic communications. atom lasers and more precise Greater understanding and control of between nerve cells. Under AFOSR studied the determinants of the revolutionary scientific breakthroughs that Hans Bethe was a pioneer in the theory of nuclear reactions--especially his mathematics, and of course, laser research. Seven AFOSR supported Agency. discoveries in concerning the energy production in stars. His work is used to frequency standards, the basis for the release of energy in chemical sponsorship, Greengard experi- human choice in risky situations. keep America’s Air Force the best in the world. Jack Kilby invented the integrated circuit. His microchip laid the conceptual and researchers received the Nobel Prize in Physics for their work in lasers, assess survivability from radiation for every Air Force satellite in orbit today. technical foundation for the entire field of modern electronics. ultra-precise clocks. The Air Force mented with large nerve cells to Kahneman and Twersky showed reactions in systems such as novel including the development of the theoretical foundation for the laser itself: AFOSR is organized into three scientific directorates: Aerospace, George Porter invented novel means to study extremely fast chemical will benefit from Chu's research in understand the molecular activity that a person’s decisions depend reactions. His work contributed to understanding processes related to solar energy John Fenn received the Nobel Prize for his development of methods for rocket propellants, chemical lasers, and Charles Townes, (known as the father of the laser); Arthur Schawlow; Chemical and Material Sciences; Mathematics, Information and Among these AFOSR-sponsored scientists and of synapse transmission. This conversion and radiation damage control in biological systems. identification and structure analysis of biological macromolecules. the following areas: on how the decision problem is engineers are a select group of 56 researchers the interactions of aerospace vehicles Nicolas Bloembergen; Dudley Herschbach; John Polanyi; Steven Chu; Life Sciences; and Physics and Electronics. These directorates knowledge has led to a better framed or described, and this Murray Gell-Mann, along with George Zweig, advanced the“quark” theory. This Navigation, guidance and control systems who have earned worldwide recognition for John Hall refined the development of laser-based precision spectroscopy, which with their environments. and Herbert Kroemer. manage programs supporting nearly 40 major research areas. classification of elementary particles and their interactions brought order to the understanding of the brain’s dependence results in decisions receiving the prestigious Nobel Prize for their ultimately led to even greater accuracy in defining the quantum structure of matter. (using atom interferometers for chaos created by the discovery of some 100 particles in the atom’s nucleus. Increased understanding and control of function in perception, coginition that deviate in predictable ways While the laser is the cornerstone of the ABL, the research in physics and research contributions in physics, chemistry, Robert Grubbs achieved the first well-defined catalysts for practical laboratory accelerometers and rotation sensors). AFOSR also has two foreign offices: the European Office of Ulf von Euler discovered the neural key to what controls the human body’s radar signatures from aircraft and and action. from the rational choice. electronics by Nobel winners John Bardeen, Jack Kilby, Brian Josephson, application, which have found very broad use in the chemical industry with the medicine and economics. This brochure recognizes response to stress and exertion. This research is used to help determine the Smaller electronic circuits with greater Philip Anderson, John Van Vleck and Herbert Kroemer provided revolutionary Aerospace Research and Development in London, United Kingdom development of new plastics, herbicides, drugs, and synthetic pheromones. rockets; processes that affect chemical This research benefits the Air these outstanding Nobel Prize winning research effectiveness of an individual during sustained operations. This research directly supports and the Asian Office of Aerospace Research and Development in density (using atom lasers). Force by providing a solid advances in electronic computing capability and communications. Paul scientists. Brian Josephson invented the Josephson Junction. This superconductivity Roy Glauber’s work in the field of quantum optics led to the formulation that erosion in space and the drag placed on DoD goals for advancement in Tokyo, Japan. In addition, AFOSR maintains the Air Force Covert
Recommended publications
  • Alfred Nobel
    www.bibalex.org/bioalex2004conf The BioVisionAlexandria 2004 Conference Newsletter November 2003 Volume 1, Issue 2 BioVisionAlexandria ALFRED NOBEL 2004 aims to celebrate the The inventor, the industrialist outstanding scientists and scholars, in a he Nobel Prize is one of the highest distinctions recognized, granting its winner century dominated by instant fame. However, many do not know the interesting history and background technological and T that led to this award. scientific revolutions, through its It all began with a chemist, known as Alfred Nobel, born in Stockholm, Sweden in 1833. Nobel Day on 3 April Alfred Nobel moved to Russia when he was eight, where his father, Immanuel Nobel, 2004! started a successful mechanical workshop. He provided equipment for the Russian Army and designed naval mines, which effectively prevented the British Royal Navy from moving within firing range of St. Petersburg during the Crimean War. Immanuel Nobel was also a pioneer in the manufacture of arms, and in designing steam engines. INSIDE Scientific awards .........3 Immanuel’s success enabled him to Alfred met Ascanio Sobrero, the Italian Confirmed laureates ....4 Lady laureates ............7 provide his four sons with an excellent chemist who had invented Nitroglycerine education in natural sciences, languages three years earlier. Nitroglycerine, a and literature. Alfred, at an early age, highly explosive liquid, was produced by acquired extensive literary knowledge, mixing glycerine with sulfuric and nitric mastering many foreign languages. His acid. It was an invention that triggered a Nobel Day is interest in science, especially chemistry, fascination in the young scientist for many dedicated to many of was also apparent.
    [Show full text]
  • Unesco High Panel on Science for Development
    UNESCO HIGH PANEL ON SCIENCE AND TECHNOLOGY FOR DEVELOPMENT ** Attendees 15-16 September 2011 **Dr Atta-ur-Rahman President, Network of Academies of Science of Islamic Countries Distinguished National Professor of Chemistry, Karachi University Karachi, Pakistan **Dr Susan Avery President and Director, Woods Hole Oceanographic Institution Woods Hole, MA, USA **Dr Vijay Chandru Chief Executive Officer, Strand Life Sciences Bangalore, India Sir Partha Dasgupta Frank Ramsey Professor of Economics, University of Cambridge Cambridge, UK HRH Princess Sumaya bint El Hassan of Jordan President of the Royal Scientific Society Hashemite Kingdom of Jordan **HRH exceptionally to be replaced by Prof. Odeh Al-Jayyousi Vice-President of the Royal Scientific Society Hashemite Kingdom of Jordan Dr Rolf Heuer Director-General, CERN Geneva, Switzerland **Dr Sergei Kapitza Vice President, Academy of Natural Sciences, Russia Professor, Institute of Physics Moscow, Russia Dr Gong Ke President, Nankai University Tianjin, China **Prof. Dr Javier de Lucas Director, Cité internationale universitaire de Paris Paris, France **Prof. Dr Wolfram Mauser Dean of the Faculty of Geosciences Munich Ludwig Maximilian University 1 Munich, Germany **Prof. Gordon McBean Department of Geography, Social Science Centre The University of Western Ontario London, ON, Canada **Prof. Ahmadou Lamine N’Diaye President, African Academy of Sciences & President, National Academy of Science and Technology of Senegal Dakar, Senegal Prof. Tebello Nyokong Department of Chemistry Rhodes University
    [Show full text]
  • Section 2 Contribution of Science and Technology to Global Issues
    Chapter 1 Progress in Science and Technology and Socioeconomic Changes Section 2 Contribution of Science and Technology to Global Issues From the end of the 19th century to the 20th century, science and technology has rapidly advanced. Chemical industry, electrical industry and heavy industry and so on emerged and we have advanced forward to ages of mass production and mass consumption, when goods could be transported in bulk to distant locations for a short period, as physical distribution, including railways, cars and airplanes, developed. This accompanied the mass disposal of goods and mass consumption of energy, highlighting the Chapter 1 risk of depletion of limited resources, global warming, the destruction of ecosystems and the crisis in the global environment. Science and technology that changed our lives were explained in Section 1 of this chapter, but as well as changing our lives in terms of key daily lifestyle elements, science and technology are also crucial to solve global issues such as climate change, natural resource depletion and energy. There are significant expectations as to how science and technology can contribute to solve global issues. This section addresses the social contribution of science and technology in Japan domestically and internationally. 1 Contribution to Global Warming Countermeasures ○ Global warming state Climate changes caused by global warming are Average global surface temperature (land + sea) anomaly one of the most urgent problems which the world faces. The Intergovernmental Panel on Climate Change (IPCC)1, awarded the Nobel Peace Prize Year in 2007, published the Synthesis Report of Fifth Changes in average global sea level Assessment Report in 2014.
    [Show full text]
  • R. Stephen Berry 1931–2020
    R. Stephen Berry 1931–2020 A Biographical Memoir by Stuart A. Rice and Joshua Jortner ©2021 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. RICHARD STEPHEN BERRY April 9, 1931–July 26, 2020 Elected to the NAS, 1980 We have prepared this memoir to bear witness to the life of R. Stephen (Steve) Berry, with emphasis on the view that a memorial is about reminding ourselves and others of more than his many and varied contributions to science; it is also to remind us of his personal warmth and freely offered friendship, of his generous support for all of us in a variety of situations, and of his loyalty to his friends and the institutions he served. The record of an individ- ual’s accomplishment is commonly taken to define his/ her legacy. Using that protocol, creative scientists are fortunate in that their contributions are visible, and those contributions endure, or not, on their own merits. Steve Berry was one of the most broadly ranging and influen- tial scientists in the world. His seminal experimental and By Stuart A. Rice theoretical contributions are distinguished by a keen eye and Joshua Jortner for new concepts and innovative and practical analyses. These contributions, which are remarkable in both scope and significance, have helped to shape our scientific perception. They have had, and continue to have, great influence on the development of chemistry, biophysics materials science, the science and technology related to the use, production, and conservation of energy, the societal applications of science and technology, and national and international science policy.
    [Show full text]
  • Fall 2019 SPECIAL DAY/TIME/LOCATION: Friday
    The Chemistry and Biochemistry Departmental Seminar Series covers a broad range of fields in the Chemical and Biochemical Sciences. In past seminars, scientists from Academia, Government, and Industry have presented their most recent discoveries and contributions in their respective areas. This Seminar Series offers students and faculty the opportunity to interact directly with other leaders in their specializations and to gain a good overview of the entire range of fields in Chemistry and Biochemistry. Fall 2019 Seminars are held on Tuesdays in CL 1009 (Clendenin Building, Room 1009 on the Kennesaw Campus), 12:30 - 1:30pm, unless otherwise noted with special day/time/location information. All are invited to attend. SPECIAL DAY/TIME/LOCATION: Friday, September 20, 2019 – 2:30pm in CL 2003 Dr. Jeffrey I. Seeman, Department of Chemistry, University of Richmond Title: Was Plagiarism Involved in the Conceptualization of the Woodward-Hoffmann Rules? Abstract: In 1981, Roald Hoffmann and Kenichi Fukui shared the Nobel Prize in Chemistry “for their theories, developed independently, concerning the course of chemical reactions.” Had Robert B. Woodward (1917 – 1979) lived two years longer, he would surely have received his second Nobel Prize in Chemistry for his contributions to the Woodward-Hoffmann rules. In the March 29, 2004 issue of Chemical & Engineering News, E. J. Corey wrote in his Priestley Medal Address, “On May 4, 1964, I suggested to my colleague R. B. Woodward a simple explanation involving the symmetry of the perturbed (HOMO) molecular orbitals for the stereoselective cyclobutene/1,3-butadiene and 1,3,5-hexatriene/cyclohexadiene conversions that provided the basis for the further development of these ideas into what became known as the Woodward-Hoffmann rules.” Letters between Corey and Hoffmann in 1981 and 1984 and other relevant information will be shown and discussed.
    [Show full text]
  • Campus Profile Sept 2018.Indd
    CAMPUS PROFILE AND POINTS OF DISTINCTION campus profileOCTOBER 2018 CAMPUS PROFILE AND POINTS OF DISTINCTION At the University of California San Diego, we constantly push boundaries and challenge expectations. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to take risks and redefine conventional wisdom. Today, as one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth, and make our world a better place. UC San Diego’s main campus is located near the Pacific Ocean on 1,200 acres of coastal woodland in La Jolla, California. The campus sits on land formerly inhabited by Kumeyaay tribal members, the original native inhabitants of San Diego County. UC San Diego’s rich academic portfolio includes six undergraduate colleges, five academic divisions, and five graduate and professional schools. BY THE NUMBERS • 36,624 Total campus enrollment (as of Fall 2017); • 16 Number of Nobel laureates who have taught the largest number of students among colleges on campus and universities in San Diego County. • 201 Memberships held by current and emeriti • 97,670 Total freshman applications for 2018 faculty in the National Academy of Sciences (73), National Academy of Engineering (84), • 4.13 Admitted freshman average high school GPA and National Academy of Medicine (44). • $4.7 billion Fiscal year 2016-17 revenues; • 4 Scripps Institution of Oceanography operates 20 percent of this total is revenue from contracts three research vessels and an innovative Floating and grants, most of which is from the federal Instrument Platform (FLIP), enabling faculty, government for research.
    [Show full text]
  • ECE Illinois WINTER2005.Indd
    Electrical and Computer Engineering Alumni News ECE Alumni Association newsletter University of Illinois at Urbana-Champaign Winter 2005-2006 Jack Kilby, 1923–2005 Volume XL Cancer claims Nobel laureate, ECE alumnus By Laura Schmitt and Jamie Hutchinson Inside this issue Microchip inventor and Nobel physics laureate DEPARTMENT HEAD’S Jack Kilby (BSEE ’47) died from cancer on MESSAGE June 22, 2005. He was 81. Kilby received the 2000 Nobel Prize in 2 Physics on December 10, 2001, in an award ceremony in Stockholm, Sweden. Kilby was ROOM-TEMPERATURE LASER recognized for his part in the invention and 4 development of the integrated circuit, which he first demonstrated on September 12, 1958, while at Texas Instruments. At the Nobel awards ceremony, Royal Swedish Academy member Tord Claesen called that date “one of the most important birth dates in the history of technology.” A measure of Kilby’s importance can be seen in the praise that was lavished on him in death. Lengthy obituaries appeared in engi- Jack Kilby neering and science trade publications as well FEATURED ALUMNI CAREERS as in major newspapers worldwide, including where his interest in electricity and electron- the New York Times, Financial Times, and The ics blossomed at an early age. His father ran a 29 Economist. On June 24, ABC News honored power company that served a wide area in rural Kilby by naming him its Person of the Week. Kansas, and he used amateur radio to keep in Reporter Elizabeth Vargas introduced the contact with customers during emergencies. segment by noting that Kilby’s invention During an ice storm, the teenage Kilby saw “had a direct effect on billions of people in the firsthand how electronic technology could world,” despite his relative anonymity among positively impact people’s lives.
    [Show full text]
  • AHMED H. ZEWAIL 26 February 1946 . 2 August 2016
    AHMED H. ZEWAIL 26 february 1946 . 2 august 2016 PROCEEDINGS OF THE AMERICAN PHILOSOPHICAL SOCIETY VOL. 162, NO. 2, JUNE 2018 biographical memoirs t is often proclaimed that a stylist is someone who does and says things in memorable ways. From an analysis of his experimental Iprowess, his written contributions, his lectures, and even from the details of the illustrations he used in his published papers or during his lectures to scientific and other audiences, Ahmed Zewail, by this or any other definition, was a stylist par excellence. For more than a quarter of a century, I interacted with Ahmed (and members of his family) very regularly. Sometimes he and I spoke several times a week during long-distance calls. Despite our totally different backgrounds we became the strongest of friends, and we got on with one another like the proverbial house on fire. We collaborated scientifi- cally and we adjudicated one another’s work, as well as that of others. We frequently exchanged culturally interesting stories. We each relished the challenge of delivering popular lectures. In common with very many others, I deem him to be unforgettable, for a variety of different reasons. He was one of the intellectually ablest persons that I have ever met. He possessed elemental energy. He executed a succession of brilliant experiments. And, almost single-handedly, he created the subject of femtochemistry, with all its magnificent manifestations and ramifications. From the time we first began to exchange ideas, I felt a growing affinity for his personality and attitude. This was reinforced when I told him that, ever since I was a teenager, I had developed a deep interest in Egyptology and a love for modern Egypt.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • University of Toronto University-Wide Impact Presentation
    UNIVERSITY OF TORONTO UNIVERSITY-WIDE IMPACT PRESENTATION INTRO: .......................................................................................... 2 SECTION 1: GLOBAL FOOTPRINT .............................................. 3 SECTION 2: INNOVATION AND IMPACT .................................... 15 SECTION 3: EXCELLENCE AND LEADERSHIP IN SOCIETY ..... 31 Text is not editable on animation slides. Updated May 2021 ON-SCREEN IMAGE SPEAKER’S NOTES BEGINNING OF PRESENTATION [Good afternoon]. My name is [X], and I serve as [X] at the University of Toronto. Thank you for joining us [today]. [Today] I would like to take you through a presentation that speaks to the crucial role that U of T is honoured to play in our communities and our world. U of T is a world-leading university with three campuses in the Greater Toronto Area. We provide students with a comprehensive global education, produce life-changing research, and promote economic growth and social progress in our communities. I’m going to cover three aspects: • U of T’s Global Footprint • U of T’s Innovation and Impact • U of T’s Excellence and Leadership in Society Since its very early days, U of T has been fortunate to have forged connections with institutions around the world and to have welcomed faculty and students from elsewhere to become part of the U of T community. Today, U of T’s global footprint is significant. 2 SECTION 1 GLOBAL FOOTPRINT 3 ON-SCREEN IMAGE SPEAKER’S NOTES We are immensely proud of our worldwide alumni community. Over 630,000 U of T alumni live, work and contribute to civil society in more than 190 countries and territories. Few universities in the world can rival the cultural diversity of our student population.
    [Show full text]
  • The Physical Tourist Physics and New York City
    Phys. perspect. 5 (2003) 87–121 © Birkha¨user Verlag, Basel, 2003 1422–6944/05/010087–35 The Physical Tourist Physics and New York City Benjamin Bederson* I discuss the contributions of physicists who have lived and worked in New York City within the context of the high schools, colleges, universities, and other institutions with which they were and are associated. I close with a walking tour of major sites of interest in Manhattan. Key words: Thomas A. Edison; Nikola Tesla; Michael I. Pupin; Hall of Fame for GreatAmericans;AlbertEinstein;OttoStern;HenryGoldman;J.RobertOppenheimer; Richard P. Feynman; Julian Schwinger; Isidor I. Rabi; Bronx High School of Science; StuyvesantHighSchool;TownsendHarrisHighSchool;NewYorkAcademyofSciences; Andrei Sakharov; Fordham University; Victor F. Hess; Cooper Union; Peter Cooper; City University of New York; City College; Brooklyn College; Melba Phillips; Hunter College; Rosalyn Yalow; Queens College; Lehman College; New York University; Courant Institute of Mathematical Sciences; Samuel F.B. Morse; John W. Draper; Columbia University; Polytechnic University; Manhattan Project; American Museum of Natural History; Rockefeller University; New York Public Library. Introduction When I was approached by the editors of Physics in Perspecti6e to prepare an article on New York City for The Physical Tourist section, I was happy to do so. I have been a New Yorker all my life, except for short-term stays elsewhere on sabbatical leaves and other visits. My professional life developed in New York, and I married and raised my family in New York and its environs. Accordingly, writing such an article seemed a natural thing to do. About halfway through its preparation, however, the attack on the World Trade Center took place.
    [Show full text]
  • Nfap Policy Brief » O C T O B E R 2017
    NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» O CTOBER 2017 IMMIGRANTS AND NOBEL PRIZES : 1901- 2017 EXECUTIVE SUMMARY Immigrants have been awarded 39 percent, or 33 of 85, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Reiner Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. These achievements by immigrants point to the gains to America of welcoming talent from across the globe. It does not mean America should welcome only Nobel Prize winners. Such a policy would be impossible to implement, since most immigrant Nobel Prize winners enter the United States many years before being awarded this honor. Most people immigrate to another country in their 20s, particularly employment-based immigrants, who either study in America or come here to work shortly after obtaining a degree abroad. The average of age of Nobel Prize winners at the time of the award is 59.5 years, according to economist Mark J. Perry.1 Table 1 Immigrant Nobel Prize Winners in Chemistry, Medicine and Physics Since 2000 Immigrant Nobel Winners Since 2000 33 of 85 American winners have been immigrants Percentage of Immigrant Winners Since 2000 39% Source: Royal Swedish Academy of Sciences, National Foundation for American Policy, George Mason University Institute for Immigration Research.
    [Show full text]