Hubert Kennedy Twelve Articles on Giuseppe Peano

Total Page:16

File Type:pdf, Size:1020Kb

Hubert Kennedy Twelve Articles on Giuseppe Peano Hubert Kennedy Twelve Articles on Giuseppe Peano Peremptory Publications San Francisco 2002 1 © 2002 by Hubert Kennedy Twelve Articles on Giuseppe Peano is a Peremptory Publications ebook. It may be freely distributed, but no changes may be made in it. All but one of these articles originally appeared in various journals in the years 1963– 1984. Comments and suggestions are welcome. Please write to [email protected]. 2 Contents Introduction 4 The Mathematical Philosophy of Giuseppe Peano 6 Philosophy of Science 30 (1963): 262–266 Giuseppe Peano at the University of Turin 14 The Mathematics Teacher 61 (1968): 703–706 Is there an elementary proof of Peano’s existence theorem for first order differential equations? 20 The American Mathematical Monthly 76 (1969): 1043–1045 The origins of modern axiomatics: Pasch to Peano 23 The American Mathematical Monthly 79 (1972): 133–136 What Russell learned from Peano 28 Notre Dame Journal of Formal Logic 14 (1973): 367–372 A prospective biography of Giuseppe Peano (1858–1932) 35 Historia Mathematica 1 (1974): 87–89 Peano’s concept of number 39 Historia Mathematica 1 (1974): 387–408 Nine Letters from Giuseppe Peano to Bertrand Russell 68 Journal of the History of Philosophy 13 (1975): 205–220 Contributi di Peano alla matematica 91 Nominazione. Collana-rivista internazionale di logica 1, no. 1 (1980): 21–26 Una lettera inedita di G. Peano sulla preparazione matematica dei suoi allievi 97 Archimede. Rivista per gli insegnanti e i cultori di matematiche pure e applicate 32 (1980): 56–58 Axiom of Choice 101 Notices of the American Mathematical Society 31 (1984): 284 Peano—the Unique 102 [1983] 3 Introduction For many years my research in the history of mathematics was focused on Giuseppe Peano (1858–1932), the foremost Italian mathematician at the turn of the twentieth cen- tury. This culminated in the biography Peano: Life and Works of Giuseppe Peano (Dordrecht: D. Reidel, 1980), which I have re-published in a “definitive” edition as an ebook (2002). But there were a number of other shorter publications. Most of them are collected here. Not included are the 31-page booklet Giuseppe Peano, published by Birk- häuser Verlag Basel in their series “Kurze Mathematiker-Biographien,” which appeared in a German translation by Ruth Amsler in 1974, and—also in 1974—the entry “Giuseppe Peano” in the Dictionary of Scientific Biography, edited by C. C. Gillispie (New York: Charles Scribner’s Sons), 10: 441–444. The latter will be in a collection of the seven articles I wrote for the DSB. The present articles appeared in a variety of journals and so are inevitably repeti- tious. The final article in this collection, written in 1983, appears here for the first time. It was written for a Festschrift in honor of Ludovico Geymonat (whose lectures Corrado Mangione and I attended together in 1957–58 at the University of Milan), but was re- jected by the editors, Corrado Mangione and Umberto Bottazzini, who spend a complete evening trying to pressure me into writing something else. The article reflects my recent enthusiasm for Max Stirner, which may be what they objected to. Two of the articles are in Italian. The first was written in English for translation into Italian. The second was originally written in Italian. For this ebook I have had to use various fonts and to manufacture several symbols that were not in the fonts available to me; this last was especially necessary for the article “Nine Letters from Giuseppe Peano to Bertrand Russell.” I was unable to make all of them fit as neatly on the line as they should—and some fonts do not convert well to the PDF format—but I hope their somewhat strange appearance will not make the formulas too difficult to read. Much of this material was, of course, used in the biography, but in the articles I was able to emphasize certain points. “Peano’s concept of number,” for example, goes into 4 great detail in one aspect of Peano’s thought. “Nine Letters from Giuseppe Peano to Ber- trand Russell” points up the historical importance of the contact between the two. All give evidence that Peano was one of the great mathematicians of the late nineteenth and early twentieth centuries—a figure well worth recalling. Giuseppe Peano (1858–1932) 5 Philosophy of Science Vol. 30, No. 3, July 1963 THE MATHEMATICAL PHILOSOPHY OF GIUSEPPE PEANO HUBERT C. KENNEDY Providence College Because Bertrand Russell adopted much of the logical symbolism of Peano, because Russell always had a high regard for the great Italian mathematician, and because Russell held the logicist thesis so strongly, many English-speaking mathematicians have been led to classify Peano as a logicist, or at least as a forerunner of the logicist school. An attempt is made here to deny this by showing that Peano’s primary interest was in axiomatics, that he never used the mathematical logic developed by him for the reduction of mathe- matical concepts to logical concepts, and that, instead, he denied the validity of such a re- duction. An attempt will be made in this brief note to partially answer the question: Did Peano have a philosophy of mathematics? This question is less easy to answer than one might think. On one hand, despite his evident interest in the philosophy of mathematics (shown by attendance at philosophical congresses, etc.) he showed extreme reserve and modesty when questioned about the subject; on the other hand, his express aim was not the development of a philosophy of mathematics, despite the obvious influence of his work on that subject. This influence is first seen in the group of Italian mathematicians who collaborated with him in the publication of the several editions of the Formulaire de mathématiques, among them his assistants at the University of Turin, F. Castellano, G. Vailati, and C. Burali-Forti. The last is remembered as the discoverer in 1897 of the first important antinomy in Cantor’s set theory [2], though the English-speaking mathemati- cians remained generally unaware of such a contradiction until B. Russell’s publication in 1903 of similar antinomies [21]. It is interesting to note that Russell’s own interest in this subject, an interest that consequently led, with the collaboration of A. N. Whitehead, to the publication of the famous Principia Mathematica, was aroused by Peano in 1897 at 6 the First International Congress of Mathematicians (Zurich), where the young Russell heard Peano present Section I from Tome II of the Formulaire de mathématiques (i.e. the part pertaining to mathematical logic.)1 Peano is perhaps best known for his Postulates for the Natural Numbers. These pos- tulates mark the completion of the process of “arithmetization” which began in the last century when H. Grassmann, in his Lehrbuch der Arithmetik (1861), showed that the commutative law can be derived from the associative law by means of the principle of complete induction. They may be stated: 1. Zero is a number. 2. The successor of any number is another number. 3. There are no two numbers with the same successor. 4. Zero is not the successor of a number. 5. Every property of zero, which belongs to the successor of every number with this property, belongs to all numbers. B. Russell objected that these postulates do not characterize the natural numbers. They characterize a much more general concept, that of a progression of any objects whatsoever which has a first member, contains no repetitions, and for each member of which there is an immediate successor. Peano made no reply to this “objection” and even advised his students to seriously consider it. Russell’s objection, however, had little force for Peano. R. Dedekind had said in his essay, Was sind und was sollen die Zahlen?, of 1888, after defining an “ordered simply infinite system” to be a set of elements which, as we would now say, satisfies Peano’s postulates, that “if we entirely neglect the special character of the elements; simply retaining their distin- guishability and taking into account only the relations to one another in which they are placed ... then are these elements called natural numbers or ordinal numbers or simply 1 [Added in 2002] This statement is false. Russell first met Peano at the International Congress of Phi- losophy, Paris, 1900. 7 numbers. ... With reference to this freeing the elements from every other content (abstrac- tion) we are justified in calling numbers a free creation of the human mind” ([6], p. 68). Peano introduced his postulates in Arithmetices Principia, Nova Methodo Exposita (1889). He first read Dedekind’s essay as this little book was going to press. Indeed, he notes in the preface that he had found Dedekind’s essay useful and remarks that “in it, questions pertaining to the foundations of numbers are keenly examined.”2 We should note, however, that he arrived at the postulates independently of Dedekind, and that per- haps the “usefulness” was in finding “moral proof of the independence of the primitive propositions from which I started, in their substantial coincidence with the definitions of Dedekind” ([20], p. 243). Two years later, in “Sul concetto di numero” (1891), we find explicit recognition of the fact that the postulates do not characterize the natural numbers: “The propositions ex- press the necessary and sufficient conditions that the entities of a system can be made to correspond univocally to the series of natural numbers” ([18], p. 87). It seems, then, that Peano was aware from the beginning that the postulates do not characterize the natural numbers. They received their definitive statement in Formulaire de mathématiques, t. II, Sec. 2 (1898), where ‘one’ is replaced by ‘zero’ among the primitive notions, and where Peano remarks, in a note immediately following their statement: “These primitive propositions .
Recommended publications
  • Richard Dedekind English Version
    RICHARD DEDEKIND (October 6, 1831 – February 12, 1916) by HEINZ KLAUS STRICK, Germany The biography of JULIUS WILHELM RICHARD DEDEKIND begins and ends in Braunschweig (Brunswick): The fourth child of a professor of law at the Collegium Carolinum, he attended the Martino-Katherineum, a traditional gymnasium (secondary school) in the city. At the age of 16, the boy, who was also a highly gifted musician, transferred to the Collegium Carolinum, an educational institution that would pave the way for him to enter the university after high school. There he prepared for future studies in mathematics. In 1850, he went to the University at Göttingen, where he enthusiastically attended lectures on experimental physics by WILHELM WEBER, and where he met CARL FRIEDRICH GAUSS when he attended a lecture given by the great mathematician on the method of least squares. GAUSS was nearing the end of his life and at the time was involved primarily in activities related to astronomy. After only four semesters, DEDEKIND had completed a doctoral dissertation on the theory of Eulerian integrals. He was GAUSS’s last doctoral student. (drawings © Andreas Strick) He then worked on his habilitation thesis, in parallel with BERNHARD RIEMANN, who had also received his doctoral degree under GAUSS’s direction not long before. In 1854, after obtaining the venia legendi (official permission allowing those completing their habilitation to lecture), he gave lectures on probability theory and geometry. Since the beginning of his stay in Göttingen, DEDEKIND had observed that the mathematics faculty, who at the time were mostly preparing students to become secondary-school teachers, had lost contact with current developments in mathematics; this in contrast to the University of Berlin, at which PETER GUSTAV LEJEUNE DIRICHLET taught.
    [Show full text]
  • Hubert Kennedy Eight Mathematical Biographies
    Hubert Kennedy Eight Mathematical Biographies Peremptory Publications San Francisco 2002 © 2002 by Hubert Kennedy Eight Mathematical Biographies is a Peremptory Publications ebook. It may be freely distributed, but no changes may be made in it. Comments and suggestions are welcome. Please write to [email protected] . 2 Contents Introduction 4 Maria Gaetana Agnesi 5 Cesare Burali-Forti 13 Alessandro Padoa 17 Marc-Antoine Parseval des Chênes 19 Giuseppe Peano 22 Mario Pieri 32 Emil Leon Post 35 Giovanni Vailati 40 3 Introduction When a Dictionary of Scientific Biography was planned, my special research interest was Giuseppe Peano, so I volunteered to write five entries on Peano and his friends/colleagues, whose work I was investigating. (The DSB was published in 14 vol- umes in 1970–76, edited by C. C. Gillispie, New York: Charles Scribner's Sons.) I was later asked to write two more entries: for Parseval and Emil Leon Post. The entry for Post had to be done very quickly, and I could not have finished it without the generous help of one of his relatives. By the time the last of these articles was published in 1976, that for Giovanni Vailati, I had come out publicly as a homosexual and was involved in the gay liberation movement. But my article on Vailati was still discreet. If I had written it later, I would probably have included evidence of his homosexuality. The seven articles for the Dictionary of Scientific Biography have a uniform appear- ance. (The exception is the article on Burali-Forti, which I present here as I originally wrote it—with reference footnotes.
    [Show full text]
  • Differential Equations We Will Use “Dsolve” to Get an Analytical Solution to the DE Y’(T) = 2Ty(T)
    Differential Equations - Theory and Applications - Version: Fall 2017 Andr´asDomokos , PhD California State University, Sacramento Contents Chapter 0. Introduction 3 Chapter 1. Calculus review. Differentiation and integration rules. 4 1.1. Derivatives 4 1.2. Antiderivatives and Indefinite Integrals 7 1.3. Definite Integrals 11 Chapter 2. Introduction to Differential Equations 15 2.1. Definitions 15 2.2. Initial value problems 20 2.3. Classifications of DEs 23 2.4. Examples of DEs modelling real-life phenomena 25 Chapter 3. First order differential equations solvable by analytical methods 27 3.1. Differential equations with separable variables 27 3.2. First order linear differential equations 31 3.3. Bernoulli's differential equations 36 3.4. Non-linear homogeneous differential equations 38 3.5. Differential equations of the form y0(t) = f(at + by(t) + c). 40 3.6. Second order differential equations reducible to first order differential equations 42 Chapter 4. General theory of differential equations of first order 45 4.1. Slope fields (or direction fields) 45 4.1.1. Autonomous first order differential equations. 49 4.2. Existence and uniqueness of solutions for initial value problems 53 4.3. The method of successive approximations 59 4.4. Numerical methods for Differential equations 62 4.4.1. The Euler's method 62 4.4.2. The improved Euler (or Heun) method 67 4.4.3. The fourth order Runge-Kutta method 68 4.4.4. NDSolve command in Mathematica 71 Chapter 5. Higher order linear differential equations 75 5.1. General theory 75 5.2. Linear and homogeneous DEs with constant coefficients 78 5.3.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • Definitions and Nondefinability in Geometry 475 2
    Definitions and Nondefinability in Geometry1 James T. Smith Abstract. Around 1900 some noted mathematicians published works developing geometry from its very beginning. They wanted to supplant approaches, based on Euclid’s, which han- dled some basic concepts awkwardly and imprecisely. They would introduce precision re- quired for generalization and application to new, delicate problems in higher mathematics. Their work was controversial: they departed from tradition, criticized standards of rigor, and addressed fundamental questions in philosophy. This paper follows the problem, Which geo- metric concepts are most elementary? It describes a false start, some successful solutions, and an argument that one of those is optimal. It’s about axioms, definitions, and definability, and emphasizes contributions of Mario Pieri (1860–1913) and Alfred Tarski (1901–1983). By fol- lowing this thread of ideas and personalities to the present, the author hopes to kindle interest in a fascinating research area and an exciting era in the history of mathematics. 1. INTRODUCTION. Around 1900 several noted mathematicians published major works on a subject familiar to us from school: developing geometry from the very beginning. They wanted to supplant the established approaches, which were based on Euclid’s, but which handled awkwardly and imprecisely some concepts that Euclid did not treat fully. They would present geometry with the precision required for general- ization and applications to new, delicate problems in higher mathematics—precision beyond the norm for most elementary classes. Work in this area was controversial: these mathematicians departed from tradition, criticized previous standards of rigor, and addressed fundamental questions in logic and philosophy of mathematics.2 After establishing background, this paper tells a story about research into the ques- tion, Which geometric concepts are most elementary? It describes a false start, some successful solutions, and a demonstration that one of those is in a sense optimal.
    [Show full text]
  • Reverse Mathematics & Nonstandard Analysis
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Ghent University Academic Bibliography REVERSE MATHEMATICS & NONSTANDARD ANALYSIS: TOWARDS A DISPENSABILITY ARGUMENT SAM SANDERS Abstract. Reverse Mathematics is a program in the foundations of math- ematics initiated by Harvey Friedman ([8, 9]) and developed extensively by Stephen Simpson ([19]). Its aim is to determine which minimal axioms prove theorems of ordinary mathematics. Nonstandard Analysis plays an impor- tant role in this program ([14, 25]). We consider Reverse Mathematics where equality is replaced by the predicate ≈, i.e. equality up to infinitesimals from Nonstandard Analysis. This context allows us to model mathematical practice in Physics particularly well. In this way, our mathematical results have impli- cations for Ontology and the Philosophy of Science. In particular, we prove the dispensability argument, which states that the very nature of Mathematics in Physics implies that real numbers are not essential (i.e. dispensable) for Physics (cf. the Quine-Putnam indispensability argument). There are good reasons to believe that nonstandard analysis, in some version or another, will be the analysis of the future. Kurt G¨odel 1. Introducing Reverse Mathematics 1.1. Classical Reverse Mathematics. Reverse Mathematics is a program in Foundations of Mathematics founded around 1975 by Harvey Friedman ([8] and [9]) and developed intensely by Stephen Simpson and others; for an overview of the subject, see [19] and [20]. The goal of Reverse Mathematics is to determine what minimal axiom system is needed to prove a particular theorem from ordi- nary mathematics. By now, it is well-known that large portions of mathematics (especially so in analysis) can be carried out in systems far weaker than ZFC, the `usual' background theory for mathematics.
    [Show full text]
  • Infinitesimals Via Cauchy Sequences: Refining the Classical Equivalence
    INFINITESIMALS VIA CAUCHY SEQUENCES: REFINING THE CLASSICAL EQUIVALENCE EMANUELE BOTTAZZI AND MIKHAIL G. KATZ Abstract. A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number sys- tem. Such an approach can be seen as formalizing Cauchy’s senti- ment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infinitesimals in a 1910 publication by Giuseppe Peano, reversing his earlier endorsement of Cantor’s belittling of infinitesimals. June 2, 2021 1. Historical background Robinson developed his framework for analysis with infinitesimals in his 1966 book [1]. There have been various attempts either (1) to obtain clarity and uniformity in developing analysis with in- finitesimals by working in a version of set theory with a concept of infinitesimal built in syntactically (see e.g., [2], [3]), or (2) to define nonstandard universes in a simplified way by providing mathematical structures that would not have all the features of a Hewitt–Luxemburg-style ultrapower [4], [5], but nevertheless would suffice for basic application and possibly could be helpful in teaching. The second approach has been carried out, for example, by James Henle arXiv:2106.00229v1 [math.LO] 1 Jun 2021 in his non-nonstandard Analysis [6] (based on Schmieden–Laugwitz [7]; see also [8]), as well as by Terry Tao in his “cheap nonstandard analysis” [9]. These frameworks are based upon the identification of real sequences whenever they are eventually equal.1 A precursor of this approach is found in the work of Giuseppe Peano. In his 1910 paper [10] (see also [11]) he introduced the notion of the end (fine; pl.
    [Show full text]
  • 1 CS Peirce's Classification of Dyadic Relations: Exploring The
    C.S. Peirce’s Classification of Dyadic Relations: Exploring the Relevance for Logic and Mathematics Jeffrey Downard1 In “The Logic of Mathematics; an Attempt to Develop my Categories from Within” [CP 1.417-520] Charles S. Peirce develops a scheme for classifying different kinds of monadic, dyadic and triadic relations. His account of these different classes of relations figures prominently in many parts of his philosophical system, including the phenomenological account of the categories of experience, the semiotic account of the relations between signs, objects and the metaphysical explanations of the nature of such things as chance, brute existence, law-governed regularities and the making and breaking of habits. Our aim in this essay is to reconstruct and examine central features of the classificatory system that he develops in this essay. Given the complexity of the system, we will focus our attention in this essay mainly on different classes of degenerate and genuine dyadic relations, and we will take up the discussion of triadic relations in a companion piece. One of our reasons for wanting to explore Peirce’s philosophical account of relations is to better understand how it might have informed the later development of relations as 1 Associate Professor, Department of Philosophy, Northern Arizona University. 2 In what follows, I will refer to Peirce’s essay “The Logic of Mathematics; An Attempt to Develop my Categories from Within” using the abbreviated title “The Logic of Mathematics.” 3 One reason to retain all of the parts of the figures—including the diamonds that represent the saturated bonds—is that it makes it possible to study more closely the combinatorial possibilities of the system.
    [Show full text]
  • Peano 441 Peano
    PEANO PEANO On his life and work, see M . Berthelot, "Necrologie," his position at the military academy but retained his in Bulletin . Societe chindque de France, A5 (1863), 226- professorship at the university until his death in 1932, 227 ; J. R. Partington, A History of Chemistry, IV (London, having transferred in 1931 to the chair of complemen- 1964), 584-585 ; and F. Szabadvary, History of Analytical tary mathematics. He was elected to a number of Chemistry (Oxford, 1966), 251 . scientific societies, among them the Academy of F . SZABADVARY Sciences of Turin, in which he played a very active role . He was also a knight of the Order of the Crown of Italy and of the Order of Saint Maurizio and PEANO, GIUSEPPE (b . Spinetta, near Cuneo, Italy, Saint Lazzaro. Although lie was not active politically, 27 August 1858 ; d. Turin, Italy, 20 April 1932), his views tended toward socialism ; and lie once invited mathematics, logic . a group of striking textile workers to a party at his Giuseppe Peano was the second of the five children home. During World War I he advocated a closer of Bartolomeo Peano and Rosa Cavallo . His brother federation of the allied countries, to better prosecute Michele was seven years older . There were two the war and, after the peace, to form the nucleus of a younger brothers, Francesco and Bartolomeo, and a world federation . Peano was a nonpracticing Roman sister, Rosa . Peano's first home was the farm Tetto Catholic . Galant, near the village of Spinetta, three miles from Peano's father died in 1888 ; his mother, in 1910.
    [Show full text]
  • Models in Geometry and Logic: 1870-1920 ∗
    Models in Geometry and Logic: 1870-1920 ∗ Patricia Blanchette University of Notre Dame 1 Abstract Questions concerning the consistency of theories, and of the independence of axioms and theorems one from another, have been at the heart of logical investigation since the beginning of logic. It is well known that our own contemporary methods for proving independence and consistency owe a good deal to developments in geometry in the middle of the nineteenth century, and especially to the role of models in estab- lishing the consistency of non-Euclidean geometries. What is less well understood, and is the topic of this essay, is the extent to which the concepts of consistency and of independence that we take for granted today, and for which we have clear techniques of proof, have been shaped in the intervening years by the gradual de- velopment of those techniques. It is argued here that this technical development has brought about significant conceptual change, and that the kinds of consistency- and independence-questions we can decisively answer today are not those that first motivated metatheoretical work. The purpose of this investigation is to help clarify what it is, and importantly what it is not, that we can claim to have shown with a modern demonstration of consistency or independence.1 ∗This is the nearly-final version of the paper whose official version appears in Logic, Methodology, and Philosophy of Science - proceedings of the 15th International Congress, edited by Niiniluoto, Sepp¨al¨a,Sober; College Publications 2017, pp 41-61 1Many thanks to the organizers of CLMPS 2015 in Helsinki, and also to audience members for helpful comments.
    [Show full text]
  • Ordinary Differential Equations Simon Brendle
    Ordinary Differential Equations Simon Brendle Contents Preface vii Chapter 1. Introduction 1 x1.1. Linear ordinary differential equations and the method of integrating factors 1 x1.2. The method of separation of variables 3 x1.3. Problems 4 Chapter 2. Systems of linear differential equations 5 x2.1. The exponential of a matrix 5 x2.2. Calculating the matrix exponential of a diagonalizable matrix 7 x2.3. Generalized eigenspaces and the L + N decomposition 10 x2.4. Calculating the exponential of a general n × n matrix 15 x2.5. Solving systems of linear differential equations using matrix exponentials 17 x2.6. Asymptotic behavior of solutions 21 x2.7. Problems 24 Chapter 3. Nonlinear systems 27 x3.1. Peano's existence theorem 27 x3.2. Existence theory via the method of Picard iterates 30 x3.3. Uniqueness and the maximal time interval of existence 32 x3.4. Continuous dependence on the initial data 34 x3.5. Differentiability of flows and the linearized equation 37 x3.6. Liouville's theorem 39 v vi Contents x3.7. Problems 40 Chapter 4. Analysis of equilibrium points 43 x4.1. Stability of equilibrium points 43 x4.2. The stable manifold theorem 44 x4.3. Lyapunov's theorems 53 x4.4. Gradient and Hamiltonian systems 55 x4.5. Problems 56 Chapter 5. Limit sets of dynamical systems and the Poincar´e- Bendixson theorem 57 x5.1. Positively invariant sets 57 x5.2. The !-limit set of a trajectory 60 x5.3. !-limit sets of planar dynamical systems 62 x5.4. Stability of periodic solutions and the Poincar´emap 65 x5.5.
    [Show full text]