The Ecology of Southern African Wild Silk Moths (Gonometa Species, Lepidoptera: Lasiocampidae): Consequences for Their Sustainable Use

Total Page:16

File Type:pdf, Size:1020Kb

The Ecology of Southern African Wild Silk Moths (Gonometa Species, Lepidoptera: Lasiocampidae): Consequences for Their Sustainable Use University of Pretoria etd – Veldtman, R (2005) The ecology of southern African wild silk moths (Gonometa species, Lepidoptera: Lasiocampidae): consequences for their sustainable use by Ruan Veldtman Submitted in partial fulfilment of the requirements for the degree Philosophiae Doctor (Entomology) in the Faculty of Natural & Agricultural Science University of Pretoria Pretoria July 2004 University of Pretoria etd – Veldtman, R (2005) University of Pretoria etd – Veldtman, R (2005) vir Ma University of Pretoria etd – Veldtman, R (2005) ACKNOWLEDGEMENTS A special thanks to Antoinette Botes (University of Stellenbosch) for assisting with fieldwork; Frank and Margaret Taylor, (Development Consultancies) for making it possible to collect data in Botswana; farmers of the Northern Cape and North West Provinces for their hospitality and assistance during fieldwork; and the late G. Bailey, and S. Worth for comments on events and facts related to the study. I would also like to thank E. Veldtman of Emerald Utility Systems Ltd. for development of tailored data base software and cover page illustration, P. le Roux for assistance in data processing; H. Geertsema (University of Stellenbosch), G. Prinsloo (Plant Protection Research Institute), E. Kioko (International Centre of Insect Physiology and Ecology) and D. Barraclough (Natal Museum) for supplying information on parasitoid species; G. Olivier for supplying cocoons from Namibia; S. Chown for funding SEM examination of cocoons; P. Cloete (Roediger Agencies) for advising and assisting in impact tests and the Department of Polymer Science (University of Stellenbosch) for use of their impact tester; and L. Erasmus (University of Stellenbosch) for help with interpolation graphics. P. le Roux (University of Stellenbosch) and M. Warren (University of Pretoria) for valuable discussions. To my supervisors I express great appreciation for their time and effort: Melodie McGeoch, who constantly motivated me to do better and assisted me during difficult stages of my write up, as well as inspiring a deep interest in spatial ecology; and Clarke Scholtz for his supervision during the fieldwork stage of the project, support with resulting logistic problems and a for being a source of taxonomic expertise. To my family I am thankful for support and understanding throughout the duration of my study, as well as those academic years preceding it. To my wife I thank you for helping in almost every facet of the project as well as providing constant words of encouragement during its duration. The University of Pretoria, Liberty Life Trust and the National Research Foundation are thanked for funding this study. i University of Pretoria etd – Veldtman, R (2005) The ecology of southern African wild silk moths (Gonometa species, Lepidoptera: Lasiocampidae): consequences for their sustainable use Student: Ruan Veldtman1 Supervisors: Prof. Melodie A. McGeoch2 & Prof. Clarke H. Scholtz1 Departments: 1 Zoology & Entomology, University of Pretoria; 2 Conservation Ecology, University of Stellenbosch Degree: Doctor of Philosophy (Entomology) ABSTRACT The pupal cocoons of two southern African wild silkmoth species, Gonometa postica and G. rufobrunnea (Lepidoptera: Lasiocampidae), are composed of high quality silk and have potential as a commercially viable resource. However, limited ecological research has been done on these species, and their population dynamics is especially poorly known. A steady and predictable supply of cocoons is paramount to the economic sustainability of a wild silk industry. There is thus an urgent need for documenting and understanding the population dynamics of southern Africa’s Gonometa species. Here, the temporal and spatial variation of pupal (and thus cocoon) abundance, as well as associated natural enemies, are described for both Gonometa species for the first time. The larval parasitoid species emerging from parasitised pupae were quantitatively associated with species-specific emergence holes, making field-identification of these species possible. Eleven sites in total were sampled, over four generations, across the region where both species have historically reached high population densities. Apparent spatial synchrony in pupal abundance found between sites suggests that climate is responsible for observed population size fluctuations. As predicted from their life history traits, temporal variability was lower than expected for classically eruptive species. Gonometa species thus have an intermediate position on the population dynamics gradient. In turn, the responses of natural enemies were not predictable from Gonometa species defensive traits, but appear to be mediated ii University of Pretoria etd – Veldtman, R (2005) by between-species cocoon strength differences. Using data on the number of G. postica pupae per tree and associated parasitism at several sites, the importance of the degree of spatial explicitness in the quantification of aggregation and the detection of density dependence was illustrated. The spatially explicit method gave different results and more information regarding the spatial pattern of pupal abundance and parasitism than non- and semi-explicit methods. Similarly, the detection of density dependence in parasitism rates was affected by the use of spatially explicit data, with the spatial explicit approach giving different and more biologically informative results than traditional, non-spatially explicit methods. This has marked implications for previous insect-host - parasitoid studies aimed at detecting density dependence. The variability in cocoon size, a surrogate for larval performance, adult fecundity and silk yield, revealed that gender, followed by species, contributed most to observed size differences, with no clear differences between generations or localities. Finally, the between-host plant and within- host plant distribution of G. postica and G. rufobrunnea pupae was quantified, chiefly investigating the deterministic nature of the choice of pupation site. The distribution of both species at these scales was found to be markedly non-random, with pupae generally preferring specific tree characteristics and micro-sites. These results now provide the basis for recommending an appropriate utilisation strategy for southern Africa’s wild silk moths. Based on the spatial and temporal variability in pupal abundance observed, a constant and predictable cocoon supply for natural harvesting is unlikely. Long-term, broad-scale documentation of Gonometa species population cycles may make it possible to predict cocoon availability in the future. Until such research is done, it is recommended that the current practise of only collecting cocoons from which moths have emerged be continued. Simultaneously, artificial rearing and seeding as alternative utilisation strategies should be experimentally explored based on the information gathered and patterns identified here. iii University of Pretoria etd – Veldtman, R (2005) TABLE OF CONTENTS Acknowledgements………….…………………………………………………………. i Abstract…………………………..………………….…………………………………. ii Table of contents…………………………………………….…………………………. iv GENERAL INTRODUCTION……………………………………………………… 1 References………………………………………………………….. 15 CHAPTER 1: Predicting population dynamics and natural enemy responses from 19 herbivore life history and defensive traits Introduction………………………………………………………… 19 Methods…………………………………………………………….. 24 Results……………………………………………………………… 30 Discussion………………………………………………………….. 46 References………………………………………………………….. 52 CHAPTER 2: The parasitoids of southern African wild silkmoths (Lepidoptera) 58 References………………………………………………………….. 67 CHAPTER 3: Aggregation and spatial heterogeneity: from one dimension to the 69 next Introduction………………………………………………………… 69 Methods…………………………………………………………….. 80 Results……………………………………………………………… 84 Discussion………………………………………………………….. 93 References………………………………………………………….. 99 Appendix…………………………………………………………… 105 iv University of Pretoria etd – Veldtman, R (2005) CHAPTER 4: Spatially explicit host-parasitoid relationships: density dependence 106 revisited Introduction………………………………………………………… 106 Methods…………………………………………………………….. 114 Results……………………………………………………………… 119 Discussion………………………………………………………….. 129 References………………………………………………………….. 134 CHAPTER 5: Variability in cocoon size in southern African wild silk moths: 141 implications for sustainable harvesting Introduction………………………………………………………… 141 Methods…………………………………………………………….. 144 Results……………………………………………………………… 147 Discussion………………………………………………………….. 155 References………………………………………………………….. 157 CHAPTER 6: Fine-scale pupal abundance and distribution patterns of Gonometa 159 postica and G. rufobrunnea (Lepidoptera: Lasiocampidae) Introduction………………………………………………………… 159 Methods…………………………………………………………….. 162 Results……………………………………………………………… 170 Discussion………………………………………………………….. 194 References………………………………………………………….. 199 GENERAL CONCLUSION………………………………………………………… 206 References………………………………………………………….. 214 Appendices…………………………………………………………. 216 v University of Pretoria etd – Veldtman, R (2005) GENERAL INTRODUCTION “Spatial aggregation, or non-random search, by natural enemies, both predators and parasitoids, in response to patchy distributions of prey or hosts has a profound effect upon the population dynamics of victim and hunter populations.” Heads & Lawton 1983 “Claiming that an activity is sustainable requires us to predict the future. Reliable prediction of the future requires an especially profound understanding of the past and present. No qualifications
Recommended publications
  • Arthropod Facilitation by Wood-Boring Beetles: Spatio-Temporal Distribution Mediated by a Twig-Girdler Ecosystem Engineer
    Journal of Insect Science, (2018) 18(5): 14; 1–7 doi: 10.1093/jisesa/iey097 Research Arthropod Facilitation by Wood-Boring Beetles: Spatio-temporal Distribution Mediated by a Twig-girdler Ecosystem Engineer Samuel Novais,1,2,3 Nancy Calderón-Cortés,4 Gumersindo Sánchez-Montoya,2,3 and Mauricio Quesada1,2,3,5 1Laboratório de Ecologia de Insetos, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 2Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores Unidad Morelia, 58190, Morelia, Michoacán, México, 3Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190 Morelia, Michoacán, México, 4Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán 58190, México, and 5Corresponding author, e-mail: [email protected] Subject Editor: Konrad Fiedler Received 6 July 2018; Editorial decision 11 September 2018 Abstract The twig-girdler beetle Oncideres albomarginata chamela (Chemsak and Giesbert) (Cerambycidae: Lamiinae) detaches branches of Spondias purpurea L. (Sapindales: Anacardiaceae) that fall on the forest floor or remain suspended on vegetation. Many wood-boring beetles also oviposit in these branches and larval development creates cavities that are abandoned when the adults emerge. The objective of this study was to evaluate the role of wood-boring beetles as facilitators by creating new habitats for arthropods, and test for vertical stratification and temporal variation of arthropods associated with S. purpurea branches that were previously engineered by O. albomarginata chamela in a tropical dry forest (TDF) in Jalisco, Mexico. In order to determine the effects of vertical strata and seasons on branch colonization by arthropods, we placed 60 branches on the forest floor (ground stratum) and 60 were placed in trees (vegetation stratum) from February to April (dry season), and from August to October 2016 (rainy season), for 240 branch samples in total.
    [Show full text]
  • Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
    Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld.
    [Show full text]
  • Colophospermum Mopane – a Potential Host for Rearing Wild Silk Worm (Gonometa Rufobrunnea) in Arid Rajasthan
    Int.J.Curr.Microbiol.App.Sci (2017) 6(3): 549-560 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 3 (2017) pp. 549-560 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.603.064 Colophospermum mopane – A Potential Host for Rearing Wild Silk Worm (Gonometa rufobrunnea) in Arid Rajasthan V. Subbulakshmi*, N.D. Yadava, Birbal, M.L. Soni, K.R. Sheetal and P.S. Renjith ICAR-Central Arid Zone Research Institute, Regional Research Station, Bikaner-334004, Rajasthan, India *Corresponding author ABSTRACT India is the biggest consumer of raw silk and silk fabrics and second largest K e yw or ds producer of raw silk after China. There are two types of silk viz., mulberry silk Mopane; and vanya silk (non-mulberry silk). India has vast potential for production of wild silkworm; Gonometa vanya silks which plays a major role in rural livelihood security. Vanya silk rufobrunnea, can also be produced from the cocoons of wild silkworm, Gonometa vanya silk. rufobrunnea insect. The main food plant of Gonometa rufobrunnea is Article Info Colophospermum mopane commonly called as mopane. Mopane is a xeric species of South Africa and introduced in India for sand dune stabilization. Accepted: The review discuss about the possibility of rearing Gonometa rufobrunnea in 10 February 2017 already available mopane plantations in arid regions of the country to increase Available Online: 10 March 2017 production of vanya silk and to improve the rural economy in arid regions of India. Introduction Silk is a textile fibre produced by insects and (Ahmed and Rajan, 2011).
    [Show full text]
  • Ngoka, Thesis Final 2012
    RELATIVE ABUNDANCE OF THE WILD SILKMOTH, Argema mimosae BOISDUVAL ON DIFFERENT HOST PLANTS AND HOST SELECTION BEHAVIOUR OF PARASITOIDS, AT ARABUKO SOKOKE FOREST BY Boniface M. Ngoka (M.Sc.) I84/15320/05 Department of Zoological Sciences A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SCHOOL OF PURE AND APPLIED SCIENCES OF KENYATTA UNIVERSITY NOVEMBER, 2012 ii DECLARATION This thesis is my original work and has not been presented for a degree in any other university or any other award. Signature----------------------------------------------Date--------------------------------- SUPERVISORS We confirm that the thesis is submitted with our approval as supervisors Professor Jones M. Mueke Department of Zoological Sciences, School of Pure and Applied Sciences Kenyatta University Nairobi, Kenya Signature----------------------------------------------Date--------------------------------- Dr. Esther N. Kioko Zoology Department National Museums of Kenya Nairobi, Kenya Signature----------------------------------------------Date--------------------------------- Professor Suresh K. Raina International Center of Insect Physiology and Ecology Commercial Insects Programme Nairobi, Kenya Signature----------------------------------------------Date--------------------------------- iii DEDICATION This thesis is dedicated to my family, parents, brothers and sisters for their perseverance, love and understanding which made this task possible. iv ACKNOWLEDGEMENTS My sincere thanks are due to Prof. Suresh K. Raina, Senior icipe supervisor and Commercial Insects Programme Leader, whose contribution ranged from useful suggestions and discussions throughout the study period. My sincere appreciations are also due to Dr. Esther N. Kioko, icipe immediate supervisor who provided me with wealth of literature and made many suggestions that shaped the research methodologies. Her support and keen supervision throughout the study period gave me a lot of inspiration. I would like to thank Prof.
    [Show full text]
  • Traditional Consumption of and Rearing Edible Insects in Africa, Asia and Europe
    Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 Traditional consumption of and rearing edible insects in Africa, Asia and Europe Dele Raheem, Conrado Carrascosa, Oluwatoyin Bolanle Oluwole, Maaike Nieuwland, Ariana Saraiva, Rafael Millán & António Raposo To cite this article: Dele Raheem, Conrado Carrascosa, Oluwatoyin Bolanle Oluwole, Maaike Nieuwland, Ariana Saraiva, Rafael Millán & António Raposo (2018): Traditional consumption of and rearing edible insects in Africa, Asia and Europe, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2018.1440191 To link to this article: https://doi.org/10.1080/10408398.2018.1440191 Accepted author version posted online: 15 Feb 2018. Published online: 15 Mar 2018. Submit your article to this journal Article views: 90 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2018.1440191 Traditional consumption of and rearing edible insects in Africa, Asia and Europe Dele Raheema,b, Conrado Carrascosac, Oluwatoyin Bolanle Oluwoled, Maaike Nieuwlande, Ariana Saraivaf, Rafael Millanc, and Antonio Raposog aDepartment for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; bFaculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam;
    [Show full text]
  • Cabesl Project Report Rolf Gloor, Clement Ng'oriareng, Mercy Kiyapyap, Paul Losute
    Cabesl ProJect Report Rolf Gloor, Clement Ng'oriareng, Mercy Kiyapyap, Paul Losute Wild Silk Development in the North Rift Region of Kenya © 2009 lcipe, African Insect Science for Food and Health All rights reserved ISBN : 92 9064 2149 Published by: Cabesi, P.O. Box 342, Kapenguria, Kenya Tel. 0720-21 55 46 e-mail: [email protected] Illustrated and designed by Rolf Gloor Edited by Dr. Suresh K. Raina Photographs: Rolf Gloor, Mercy P Kiyapyap Printed by: Kul Graphics Limited P.O. Box 18095-00500, Nairobi, Kenya Page Pictures Cabasl Market Place Kapenguria 4 1 Foreword 5 2 Introduction 6 3 Host Plants 7 4 The Life Cycle ot Epiphora bauhlnlae 9 5 Reanng of ErJiphora bauhm18fJ 11 6 Karvesting 14 7 Post ptoduct1on 15 8 Wlld Silk Farm1ng 1n the North Rift 17 Cabesi Marker Place m Kapengvris: HanBy is the main-bvsiness .. The North Rift of Kenya Is a marginalized region where natural resources are under-utilized due to lack of technologies, market access and transportation. The Cabesi Project (from Camels, Bees and Silk) started in 2004 under lcipe's Commercial Insect Program. The camel program offered courses in camel husbandry and - health, and trainings for using camels for transportation. And in connection with ASAL Cabesi was able to increase the camel population by 30 animals. Cabesi provides since 2008 the complete infrastructure from beekeeping to production and sales of various bee-products. The system includes six honey collection centers in Pokot Central, West Pokot, North Pokot and Turkana Districts, and one Market Place in Kapenguria, where final processing, packaging and marketing are done.
    [Show full text]
  • Lepidoptera: Noctuoidea: Erebidae) and Its Phylogenetic Implications
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 558–570, 2016 http://www.eje.cz doi: 10.14411/eje.2016.076 ORIGINAL ARTICLE Characterization of the complete mitochondrial genome of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) and its phylogenetic implications YU SUN, SEN TIAN, CEN QIAN, YU-XUAN SUN, MUHAMMAD N. ABBAS, SAIMA KAUSAR, LEI WANG, GUOQING WEI, BAO-JIAN ZHU * and CHAO-LIANG LIU * College of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China; e-mails: [email protected] (Y. Sun), [email protected] (S. Tian), [email protected] (C. Qian), [email protected] (Y.-X. Sun), [email protected] (M.-N. Abbas), [email protected] (S. Kausar), [email protected] (L. Wang), [email protected] (G.-Q. Wei), [email protected] (B.-J. Zhu), [email protected] (C.-L. Liu) Key words. Lepidoptera, Noctuoidea, Erebidae, Spilarctia robusta, phylogenetic analyses, mitogenome, evolution, gene rearrangement Abstract. The complete mitochondrial genome (mitogenome) of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) was se- quenced and analyzed. The circular mitogenome is made up of 15,447 base pairs (bp). It contains a set of 37 genes, with the gene complement and order similar to that of other lepidopterans. The 12 protein coding genes (PCGs) have a typical mitochondrial start codon (ATN codons), whereas cytochrome c oxidase subunit 1 (cox1) gene utilizes unusually the CAG codon as documented for other lepidopteran mitogenomes. Four of the 13 PCGs have incomplete termination codons, the cox1, nad4 and nad6 with a single T, but cox2 has TA. It comprises six major intergenic spacers, with the exception of the A+T-rich region, spanning at least 10 bp in the mitogenome.
    [Show full text]
  • Development of a Biocontrol Program Against the Box Tree Moth [I
    Development of a biocontrol program against the Box Tree Moth [i]Cydalima perspectalis[/i] (Walker, 1859) Elisabeth Tabone, Thomas Enriquez, Marine Venard, Etty Colombel, Caroline Gutleben, Maxime Guérin, Fabien Robert, Anne Isabelle Lacordaire, Jean Claude Martin To cite this version: Elisabeth Tabone, Thomas Enriquez, Marine Venard, Etty Colombel, Caroline Gutleben, et al.. De- velopment of a biocontrol program against the Box Tree Moth [i]Cydalima perspectalis[/i] (Walker, 1859). IUFRO population dynamics and integrated control of forest defoliating and other insects, Sep 2015, Sopot, Poland. 83p, 2015, Population dynamics and integrated control of forest defoliating and other insects. hal-01214706 HAL Id: hal-01214706 https://hal.archives-ouvertes.fr/hal-01214706 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IUFRO CONFERENCE “POPULATION DYNAMICS AND INTEGRATED CONTROL OF FOREST DEFOLIATING AND OTHER INSECTS” BOOK OF ABSTRACTS IUFRO WP 7.03.07 "Population Dynamics of Forest Insects", IUFRO WP 7.03.06 "Integrated management
    [Show full text]
  • A Window to the World of Global Insect Declines: Moth Biodiversity Trends Are Complex SPECIAL FEATURE: PERSPECTIVE and Heterogeneous David L
    SPECIAL FEATURE: PERSPECTIVE A window to the world of global insect declines: Moth biodiversity trends are complex SPECIAL FEATURE: PERSPECTIVE and heterogeneous David L. Wagnera,1, Richard Foxb, Danielle M. Salcidoc, and Lee A. Dyerc Edited by Matthew L. Forister, University of Nevada, Reno, NV, and accepted by Editorial Board Member May R. Berenbaum October 13, 2020 (received for review March 20, 2020) Moths are the most taxonomically and ecologically diverse insect taxon for which there exist considerable time-series abundance data. There is an alarming record of decreases in moth abundance and diversity from across Europe, with rates varying markedly among and within regions. Recent reports from Costa Rica reveal steep cross-lineage declines of caterpillars, while other sites (Ecuador and Arizona, reported here) show no or only modest long-term decreases over the past two decades. Rates of decline for dietary and ecological specialists are steeper than those for ecologically generalized taxa. Additional traits com- monly associated with elevated risks include large wingspans, small geographic ranges, low dispersal ability, and univoltinism; taxa associated with grasslands, aridlands, and nutrient-poor habitats also appear to be at higher risk. In temperate areas, many moth taxa limited historically by abiotic factors are increas- ing in abundance and range. We regard the most important continental-scale stressors to include reduc- tions in habitat quality and quantity resulting from land-use change and climate change and, to a lesser extent, atmospheric nitrification and introduced species. Site-specific stressors include pesticide use and light pollution. Our assessment of global macrolepidopteran population trends includes numerous cases of both region-wide and local losses and studies that report no declines.
    [Show full text]
  • Wild Silk Free Download
    WILD SILK FREE DOWNLOAD Zara Devereux | 320 pages | 01 May 2014 | Little, Brown Book Group | 9780349400457 | English | London, United Kingdom Wild Silk Textiles: Stitching together habitat recovery and income generation in Madagascar A closer look at wild silks. This moth is economically important for it is the primary producer of silk. Experience the luxury Wild Silk superior Mulberry silk for yourself. The natural colored fabric was hand-woven in India using handspun yarns. Warps: mulberry silk Bombyx mori Wefts: tasar silk Antheraea paphia. New York Times. Hidden categories: All articles lacking reliable references Articles lacking reliable references from June Articles containing Japanese-language text Commons category link from Wikidata. The term 'Vanya' is of Sanskrit origin, meaning untamed, wild, or forest-based. The silk was hand dyed and the buttons are carved capiz shells Placuna placenta. The surface texture of many cocoons and communal webs looks like paper, leather, or cloth, so it is understandable that ideas for exploitation arose repeatedly in ancient cultures. Saris, wrappers, chaddars, and other fabric pieces of muga silk are sometimes embroidered or brocaded with traditional motifs using Wild Silk colors such as red, yellow, and green. The side panels are probably cotton, as is the heavy inner lining. Good, J. There are several different fabrics that use mulberry silk, such as chiffon, duppioni, charmeuse, etc. New Delhi: Mittal Publications. This is raw, rough, and textured silk which feels almost paper-like to the human touch. With their captivating glint and rich Wild Silk, the silk textiles produced through this process are truly unique. Wild silks of the world.
    [Show full text]
  • View on These Features
    BMC Genomics BioMed Central Research article Open Access The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae) Paola Salvato†1, Mauro Simonato†1, Andrea Battisti1 and Enrico Negrisolo*2 Address: 1Department of Environmental Agronomy and Vegetal Productions-Entomology, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Italy and 2Department of Public Health, Comparative Pathology and Veterinary Hygiene, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Italy Email: Paola Salvato - [email protected]; Mauro Simonato - [email protected]; Andrea Battisti - [email protected]; Enrico Negrisolo* - [email protected] * Corresponding author †Equal contributors Published: 15 July 2008 Received: 21 May 2008 Accepted: 15 July 2008 BMC Genomics 2008, 9:331 doi:10.1186/1471-2164-9-331 This article is available from: http://www.biomedcentral.com/1471-2164/9/331 © 2008 Salvato et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Knowledge of animal mitochondrial genomes is very important to understand their molecular evolution as well as for phylogenetic and population genetic studies. The Lepidoptera encompasses more than 160,000 described species and is one of the largest insect orders. To date only nine lepidopteran mitochondrial DNAs have been fully and two others partly sequenced. Furthermore the taxon sampling is very scant. Thus advance of lepidopteran mitogenomics deeply requires new genomes derived from a broad taxon sampling.
    [Show full text]
  • Degumming Gonometa Postica Cocoons Using Environmentally Conscious Methods
    Degumming Gonometa postica cocoons using environmentally conscious methods Ismari van der Merwe February 2015 Degumming Gonometa postica cocoons using environmentally conscious methods Ismari van der Merwe Thesis submitted in accordance with the requirement for the degree Philosophiae Doctor in the Faculty of Natural and Agricultural Sciences Department of Consumer Science at the University of the Free State, Bloemfontein, South Africa February 2015 Promoter: Prof H J H Steyn Co-promoter: Prof C Hugo Declaration “I declare that this dissertation, which I hereby submit for the degree Philosophiae Doctor at the University of the Free State, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. I further more cede copyright of the thesis in favour of the University of the Free State.” ________________________________ Ismari van der Merwe 2 February 2015 ii The establishment of a sustainable wild silk industry in Africa could pave the way for similar Africa-unique projects to capture the true spirit of the continent. That spirit that determines her worth and echoes in her truths: “Every morning in Africa, a gazelle wakes up. It knows it must run faster than the fastest lion or it will be killed. Every morning a lion wakes up. It knows it must outrun the slowest gazelle or it will starve to death. It doesn’t matter whether you are a lion or a gazelle… when the sun comes up, you’d better be running.” (Author: Unknown) iii Acknowledgements Research is never the work of one person alone. There are always a lot of people that in their own way, however small, helped to make a project like this possible.
    [Show full text]