Invertebrates Implications for Morphological Evolution Among

Total Page:16

File Type:pdf, Size:1020Kb

Invertebrates Implications for Morphological Evolution Among Downloaded from rsbl.royalsocietypublishing.org on July 28, 2011 Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates Peter J. Wagner Biol. Lett. published online 27 July 2011 doi: 10.1098/rsbl.2011.0523 Supplementary data "Data Supplement" http://rsbl.royalsocietypublishing.org/content/suppl/2011/07/21/rsbl.2011.0523.DC1.ht ml References This article cites 19 articles, 13 of which can be accessed free http://rsbl.royalsocietypublishing.org/content/early/2011/07/21/rsbl.2011.0523.full.html #ref-list-1 P<P Published online 27 July 2011 in advance of the print journal. Subject collections Articles on similar topics can be found in the following collections palaeontology (220 articles) taxonomy and systematics (363 articles) evolution (2833 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication. To subscribe to Biol. Lett. go to: http://rsbl.royalsocietypublishing.org/subscriptions This journal is © 2011 The Royal Society Downloaded from rsbl.royalsocietypublishing.org on July 28, 2011 Biol. Lett. varying selective forces. Moreover, biomechanics, doi:10.1098/rsbl.2011.0523 development and genetics probably create hierarchi- Published online cal interactions among morphological characters [2]. Palaeontology Rates for any one character thus should partially reflect both the number of associated characters and the probabilities of those characters accommodating a Modelling rate distributions change. If overall rates are products of independent prob- abilistic processes [3]and/or hierarchical linkages [4], using character then morphological rates should fit lognormal distributions. compatibility: implications Palaeontologists have combined simulations with for morphological the morphological disparity of character matrices to assess general rates of change (e.g. [5]). Systematists evolution among fossil have used the related concept of compatibility to con- trast general rates for individual characters (e.g. [6]) invertebrates (see the electronic supplementary material for a con- trast of disparity and compatibility). Here, I unite Peter J. Wagner* both traditions to assess how well three basic models National Museum of Natural History, Smithsonian Institution, of character evolution (single rates, gamma distri- Washington DC 20013, USA butions and lognormal distributions) predict fossil *[email protected] morphologies. Rate distributions are important considerations when testing hypotheses about morphological evol- ution or phylogeny. They also have implications 2. MATERIAL AND METHODS about general processes underlying character evol- (a) Compatibility, steps and rates ution. Molecular systematists often assume that Yang [1] suggests using steps implied by parsimony trees to establish rates are Poisson processes with gamma distri- rate distributions. However, when simulated matrix structure matches that of real data, parsimony steps blur rate classes [7]. butions. However, morphological change is the Instead, I use character compatibility to approximate steps. A com- product of multiple probabilistic processes and patible character pair has no necessary homoplasy: a binary pair should theoretically be affected by hierarchical combining for 00, 01 and 11 might not have homoplasy but a pair integration of characters. Both factors predict log- also including combination 10 must have homoplasy [6,8]. Simu- normal rate distributions. Here, a simple inverse lations corroborate the suggestion that compatibility decreases as modelling approach assesses the best single-rate, frequencies of change (and homoplasy) increase, both for whole matrices [7] and for individual characters [9]. gamma and lognormal models given observed State distributions also affect the probability of compatibility. character compatibility for 115 invertebrate Suppose two binary characters change only once. For character A, groups. Tests reject the single-rate model for only one taxon possesses state 1. State 1 cannot be paired with nearly all cases. Moreover, the lognormal outper- two states in any other character, and thus cannot create incompat- forms the gamma for character change rates and ibility. Conversely, character B changes in the middle of the (especially) state derivation rates. The latter in phylogeny so that half of the taxa have state 0 and other half have state 1. Both states 0 and 1 for character B now have four opportu- particular is consistent with integration affecting nities to be paired with a second state for other binary characters. In morphological character evolution. simulations, compatibility given X steps decreases as states become more ‘evenly’ distributed among taxa (see electronic supplementary Keywords: character evolution; compatibility; material). lognormal distribution; gamma distribution; This study uses simulations to inversely model the probability of information theory observed compatibilities and state distributions given the rates of character state change. For a clade of S taxa with Nch characters, each simulation: 1. INTRODUCTION — evolves a tree of S taxa; — evolves Nch characters (retaining the observed state num- Palaeontologists are interested in rates of character bers and missing entries as the data) until the observed state change both for testing macroevolutionary compatibility is reached; hypotheses and for inferring phylogeny. However, — iteratively removes simulated characters matching the com- patibility of observed characters; palaeontologists have paid much more attention to — re-simulates the ‘matching’ character with 1, ..., S steps; and rate variation over time and among clades than to — tallies how often we find observed compatibility and state rate variation among characters. Indeed, most rate distributions given 1, ..., S steps. and systematic studies tacitly assume a single rate for all characters. We have not yet explored whether There are three critical differences between this approach and permutation tests assessing character compatibilities (e.g. [10–12]). there are any general rules for rate distributions, or First, phylogeny underlies the character state distributions even even whether single-rate models are poor ones. under high rates of change (part 1). Second, each character is com- Molecular systematists often model rate variation pared with a ‘remaining’ matrix having the same compatibility as with gamma distributions. This assumes a collection the observed ‘remaining’ matrix (parts 2 and 3). Finally, results are tied to specific amounts of change (parts 4 and 5). of Poisson processes with different ‘waiting times’ Now, we have the likelihoods of 1, ..., S changes (steps) given the between events [1]. However, palaeontologists use observed compatibility for each character. However, model evalu- only fossilizable morphology. Morphological change is ation requires numbers of characters with X steps (see below). This, in turn, requires posterior probabilities rather than likelihoods. probably the product of waiting time and probabilistically Assuming flat priors for step numbers, the probability of character C having X steps is: Electronic supplementary material is available at http://dx.doi.org/ 10.1098/rsbl.2011.0523 or via http://rsbl.royalsocietypublishing.org. p[compatibility of CjX steps P S : One contribution to a Special Feature on ‘Methods in Palaeontology’. Y¼1 p[compatibility of CjY steps Received 20 May 2011 Accepted 7 July 2011 This journal is q 2011 The Royal Society Downloaded from rsbl.royalsocietypublishing.org on July 28, 2011 2 P. J. Wagner Compatibility and rate distributions (a)(b) 30 25 20 15 10 echinoderm clades 5 0 35 30 25 20 15 mollusc clades 10 5 0 45 40 35 30 25 20 trilobite clades 15 10 5 0 0.10 0.20 0.30 0.40 0 0.04 0.08 0.12 0.16 0.20 0.24 Akaike’s weight (w1) Akaike’s weight (w1) Figure 1. Akaike’s weights (w1) for single-rate models of (a) character change and (b) state derivation. These are akin to Bayesian probabilities that the model is the most correct of the models considered. The estimated number of characters with X steps now is: at least one derivation for each ‘other’ state (e.g. the two ‘other’ states for character B above must be derived once each). At four XNch steps, we have two additional derivations, so for each ‘other’ state: p½Xstepsjcompatibility of C: C¼1 p½0 additional derivations¼ p½2 additional derivations¼0:25; Character evolution models, such as the Mk model [13], describe p½1 additional derivation¼0:50: rates of character change and rates of state derivation. This distinc- tion is critical when characters have different numbers of states. As there are two ‘other’ states, we expect 2 Â 0.25 ¼ 0.50 states Consider simple transition matrices for two-state character A and to be derived either once or three times in total, and 2 Â 0.50 ¼ 1.0 a three-state character B, where the off-diagonals give p[state to be derived twice the total. The number of states from each char- derivation] and the diagonal gives p[stasis] (i.e. 1 2p[change d]): acter expected to be derived Y times now is the sum of p[Y derivations j X steps] Â p[X steps j data] for X ¼ 1, ..., S.This states 0 1 2 is summed over all characters. Analyses then use that final summation d d 01À d B B to evaluate different models (see electronic supplementary material). states 0 1 B 2 2 01À dA dA versus dB dB _ (b) Rate distribution models 1 1 À dB 1 dA 1 À dA 2 2 The single-rate model varies one parameter: mean rate, d. Gamma dis- d d tributions use a scale and a shape parameter to vary rates around the 2 B B 1 À d 2 2 B mean rate (d). Following Yang [1], I set the scale equal to shape, which leaves one freely varying parameter.
Recommended publications
  • Maizeuianjusellm
    MAizeuianJusellm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2202 DECEMBER I5, I964 Results of the Puritan-American Museum of Natural History Expedition to Western Mexico 20. The Recent Mollusks: Gastropoda: Harpidae, Vasidae, and Volutidae BY WILLIAM K. EMERSON' INTRODUCTION The present paper continues a study of the Recent marine mollusks collected in west Mexican waters during the course of the expedition. Previous reports considered the family Conidae (Emerson and Old, 1962), the superfamily Cypraeacea (Emerson and Old, 1963a), and the super- families Strombacea, Tonnacea, and Cymatiacea (Emerson and Old, 1963b). The present report treats the gastropod families Harpidae, Vasi- dae, and Volutidae. Specimens were taken by shore and intertidal collecting, by skin div- ing, and by dredging from a small skiff and from the schooner "Puritan." Dredging operations were restricted to depths no greater than 50 fathoms. The itinerary and descriptions of the collecting stations were recorded in the general account of the expedition (Emerson, 1958). The present collection contains three of the four eastern Pacific species that represent the families covered by this paper. An attempt is made to 1 Chairman, Department of Living Invertebrates, the American Museum of Natural His- tory. 2 AMERICAN MUSEUM NOVITATES NO. 2202 determine for the west Mexican region the modern and fossil distributions ofthese species. A new species of Vasum is described from the Pliocene de- posits of the Imperial formation of Imperial County, California. I am indebted to several people for assistance in the completion ofthis report. Dr. R.
    [Show full text]
  • BAST1986050004005.Pdf
    BASTERIA, 50: 93-150, 1986 Alphabetical revision of the (sub)species in recent Conidae. 9. ebraeus to extraordinarius with the description of Conus elegans ramalhoi, nov. subspecies H.E. Coomans R.G. Moolenbeek& E. Wils Institute of Taxonomic Zoology (Zoological Museum) University of Amsterdam INTRODUCTION In this ninth part of the revision all names of recent Conus taxa beginning with the letter e are discussed. Amongst these are several nominal species of tent-cones with a C.of close-set lines, the shell a darker pattern consisting very giving appearance (e.g. C. C. The elisae, euetrios, eumitus). phenomenon was also mentioned for C. castaneo- fasciatus, C. cholmondeleyi and C. dactylosus in former issues. This occurs in populations where with normal also that consider them specimens a tent-pattern are found, so we as colour formae. The effect is known shells in which of white opposite too, areas are present, leaving 'islands' with the tent-pattern (e.g. C. bitleri, C. castrensis, C. concatenatus and C. episco- These colour formae. patus). are also art. Because of a change in the rules of the ICZN (3rd edition, 1985: 73-74), there has risen a disagreement about the concept of the "type series". In cases where a museum type-lot consists of more than one specimen, although the original author(s) did not indicate that more than one shell was used for the description, we will designate the single originally mentioned and/or figured specimen as the "lectotype". Never- theless a number of taxonomists will consider that "lectotype" as the holotype, and disregard the remaining shells in the lot as type material.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]
  • Mollusca:Gastropoda) in the New World Emily H
    THE GENUS HARPA (MOLLUSCA:GASTROPODA) IN THE NEW WORLD EMILY H. VOKES TULANE UNIVERSITY I. ABSTRACT the eastern Atlantic (H. doris Roding - The name Harpa americana has been H. rosea Lamarck) and one in the eastern applied to every fossil Harpa specimen Pacific (H. crenata Swainson). Two fossil found in the New World. A second exam­ species come from the Miocene of Europe, ple of true H. americana from the Gurabo and of course, the two Caribbean and east­ Formation, Dominican Republic, shows ern Pacific forms mentioned above as the that none should be so referred and the New World fossil record.* form that occurs in the Agueguexquite The only described species of Harpa in the Caribbean is that one originally refer­ Formation of Mexico is here named H. is­ red by Gabb (1873, p. 214) to the West Afri­ thmica, n. sp. The examples taken from can "H. rosea" and subsequently renamed the Esmeraldas Formation of Ecuador are H. americana by Pilsbry (1922, p. 337). better referred to the living West Coast Known only to come from the Dominican species H. crenata. Republic, with neither exact locality nor stratigraphic level being certain, and II. INTRODUCTION based upon a single incomplete shell, H. The gastropod genus Harpa is a good ex­ americana for some time remained the ample of the group Woodring termed only name consi,dered for any example of "paciphiles," that is, present in the Ter­ Harpa in the Neogene of the Caribbean. tiary of the Caribbean but now extinct Thus, when Perrilliat Montoya (1960) there while still living on the eastern monographed the "Middle Miocene" fauna Pacific coast (see Woodring, 1966, p.
    [Show full text]
  • Testing the Quality of the Fossil Record by Groups and by Major Habitats
    Histo-icalBiology, 1996, Vol 12,pp I 1I-157 © 1996 OPA (Overseas Publishers Association) Reprints available directly from the publisher Amsterdam B V Published in The Netherlands Photocopying available by license only By Harwood Academic Publishers GmbH Printed in Malaysia TESTING THE QUALITY OF THE FOSSIL RECORD BY GROUPS AND BY MAJOR HABITATS MICHAEL J BENTON and REBECCA HITCHIN Department of Geology, University of Bristol, Bristol, B 58 IRJ, United Kingdom (Received February 9 1996; in final form March 25, 1996) The evolution of life is a form of history and, as Karl Popper pointed out, that makes much of palaeontology and evolutionary biology metaphysical and not scientific, since direct testing is not possible: history cannot be re-run However, it is possible to cross-compare three sources of data on phylogeny stratigraphic, cladistic, and molecular Three metrics for comparing cladograms with stratigraphic information allow cross-testing of () the order of branching with the stratigraphic order of fossils, and of (2) the relative amount of cladistically-implied gap in proportion to known fossil record. Results of the metrics, based upon a data set of 376 cladograms, show that there are statistically significant differences in the results for echinoderms, fishes, and tetrapods Matching of rank- order data on stratigraphic age of first appearances and branching points in cladograms, using Spearman Rank Correlation (SRC), is poorer than reported before, with only 148 of the 376 cladograms tested (39 %) showing statistically significant matching Tests of the relative amount of cladistically-implied gap, using the Relative Completeness Index (RCI), indicated excellent results, with 288 of the cladograms tested (77 %) having records more than 50% complete.
    [Show full text]
  • Adulthood and Phylogenetic Analysis in Gastropods: Character Recognition and Coding in Shells of Lavigeria (Cerithioidea, Thiaridae) from Lake Tanganyika
    Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2004? 2004 140? 223240 Original Article L. N. PAPADOPOULOS ET AL .ADULTHOOD AND PHYLOGENETIC CODING IN GASTROPOD SHELLS Zoological Journal of the Linnean Society, 2004, 140, 223–240. With 7 figures Adulthood and phylogenetic analysis in gastropods: character recognition and coding in shells of Lavigeria (Cerithioidea, Thiaridae) from Lake Tanganyika LEONARD N. PAPADOPOULOS1*, JONATHAN A. TODD2 and ELLINOR MICHEL1† 1Institute for Biodiversity & Ecosystem Dynamics/Zoological Museum, University of Amsterdam, PO Box 94766, 1090 GT Amsterdam, the Netherlands 2Department of Palaeontology, The Natural History Museum, London SW7 5BD, UK Received February 2003; accepted for publication July 2003 In the study of gastropod shell morphology, determination of comparable ontogenetic stages is crucial, because all the states that various shell features go through during ontogeny are preserved on the shell. The protoconch/teleoconch transition and marks of episodic growth are among the few ways of defining discrete, comparable, growth stages. In gastropods with determinate growth the attainment of adulthood may provide additional shell markers permitting comparison among individuals and taxa. Adulthood is reflected in shell morphology in ways as diverse as shell dep- osition covering all the previous whorls and radically changing the shape of the shell through to slight changes in the trajectory of the suture. While the very prominent adulthood-related changes of shell morphology have been used as systematic characters, the more moderate changes have not been studied in detail and their potential systematic value has been ignored. In this paper we give a detailed account of adult modifications of the shell appearing with cessation of growth.
    [Show full text]
  • Caenogastropoda
    13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa.
    [Show full text]
  • THE FESTIVUS ISSN: 0738-9388 a Publication of the San Diego Shell Club
    (?mo< . fn>% Vo I. 12 ' 2 ? ''f/ . ) QUfrl THE FESTIVUS ISSN: 0738-9388 A publication of the San Diego Shell Club Volume: XXII January 11, 1990 Number: 1 CLUB OFFICERS SCIENTIFIC REVIEW BOARD President Kim Hutsell R. Tucker Abbott Vice President David K. Mulliner American Malacologists Secretary (Corres. ) Richard Negus Eugene V. Coan Secretary (Record. Wayne Reed Research Associate Treasurer Margaret Mulliner California Academy of Sciences Anthony D’Attilio FESTIVUS STAFF 2415 29th Street Editor Carole M. Hertz San Diego California 92104 Photographer David K. Mulliner } Douglas J. Eernisse MEMBERSHIP AND SUBSCRIPTION University of Michigan Annual dues are payable to San Diego William K. Emerson Shell Club. Single member: $10.00; American Museum of Natural History Family membership: $12.00; Terrence M. Gosliner Overseas (surface mail): $12.00; California Academy of Sciences Overseas (air mail): $25.00. James H. McLean Address all correspondence to the Los Angeles County Museum San Diego Shell Club, Inc., c/o 3883 of Natural History Mt. Blackburn Ave., San Diego, CA 92111 Barry Roth Research Associate Single copies of this issue: $5.00. Santa Barbara Museum of Natural History Postage is additional. Emily H. Vokes Tulane University The Festivus is published monthly except December. The publication Meeting date: third Thursday, 7:30 PM, date appears on the masthead above. Room 104, Casa Del Prado, Balboa Park. PROGRAM TRAVELING THE EAST COAST OF AUSTRALIA Jules and Carole Hertz will present a slide program on their recent three week trip to Queensland and Sydney. They will also bring a display of shells they collected Slides of the Club Christmas party will also be shown.
    [Show full text]
  • Benton, M.J. and Simms, M.J. 1995. Testing the Marine and Continental
    Downloaded from geology.gsapubs.org on 18 January 2009 Geology Testing the marine and continental fossil records M. J. Benton and M. J. Simms Geology 1995;23;601-604 doi:10.1130/0091-7613(1995)023<0601:TTMACF>2.3.CO;2 Email alerting services click www.gsapubs.org/cgi/alerts to recieve free email alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/index.ac.dtl to subscribe to Geology Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 1995 Geological Society of America Testing the marine and continental fossil records M. J. Benton Department of Geology, University of Bristol, Bristol BS8 1RJ, United Kingdom M.
    [Show full text]
  • Caenogastropoda During Mesozoic Times
    Caenogastropoda during Mesozoic times Klaus Bandel Bandel, K. Caenogastropoda during Mesozoic times. — Scripta Geol., Spec. Issue 2: 7-56, 15 pls. Lei• den, December 1993. Klaus Bandel, Institut für Paläontologie und Geologie, Universität Hamburg, Bundesstraße 55, D 20146 Hamburg 13, Germany. Key words: evolution, Mollusca, Gastropoda, Mesozoicum. The following groups of Mesozoic Caenogastropoda are discussed here: Cerithioidea and Littorinoi- dea-Rissooidea seemingly merging with each other during Triassic times; the fresh water and land snails of the Viviparoidea and Cyclophoroidea with unknown marine relatives but a Mesozoic histo• ry; the Vermetoidea, Turritelloidea and Campaniloidea with a late appearance in the Mesozoic; the Ctenoglossa with a continuous history from the Middle Palaeozoic to modern times; the Subulitoidea, Murchisonioidea and Loxonematoidea with Palaeozoic ancestors but unclear Middle Mesozoic rela• tions; the Purpurinoidea as potential ancestors and relatives of the Stromboidea, the latter suddenly appearing in the Jurassic; the Heteropoda and Vanikoroidea with possible relation to each other but very uncertain relations to the others; and the Neomesogastropoda and Neogastropoda which begin their history in the Mid Cretaceous with still rather uncertain precursors. Contents Introduction 7 Taxonomie discussion 8 Palaeo-Caenogastropoda 8 Meta-Mesogastropoda 24 Neomesogastropoda 30 Neogastropoda 39 Conclusions 44 Acknowledgements 46 References 51 Introduction The history of most groups of Caenogastropoda during Palaeozoic times is still uncertain. Only the Subulitoidea, Murchisonioidea, Loxonematoidea and Zygopleur- oidea, and questionable Cerithioidea of the Stegocoelia type, can be traced through much of the Palaeozoic (Knight, 1931; Wenz, 1938-1944; Knight et al., 1960; Hoare & Sturgeon, 1978, 1980a, 1980b, 1981, 1985; Yoo, 1988, 1989; Bandel, 1991a; own data).
    [Show full text]
  • The Continuing Debate on Deep Molluscan Phylogeny: Evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora)
    The Continuing Debate on Deep Molluscan Phylogeny: Evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora) Stöger, I., Sigwart, J. D., Kano, Y., Marshall, B. A., Schwabe, E., & Schrödl, M. (2013). The Continuing Debate on Deep Molluscan Phylogeny: Evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora). BioMed Research International, 2013, [407072]. https://doi.org/10.1155/2013/407072 Published in: BioMed Research International Document Version: Early version, also known as pre-print Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2013 The authors General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:11. Jan. 2021 The continuing debate on deep molluscan phylogeny: Evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora) I. Stöger1, J. D. Sigwart2, Y. Kano3, T. Knebelsberger4, B. A. Marshall5, E. Schwabe1, M. Schrödl1§ 1Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 Munich, Germany. GeoBioCenterLMU and Department II, Faculty of Biology, Ludwig Maximilians-Universität München, Germany.
    [Show full text]