A Basal Sauropod Dinosaur from the Early Jurassic of Morocco

Total Page:16

File Type:pdf, Size:1020Kb

A Basal Sauropod Dinosaur from the Early Jurassic of Morocco Published in Comptes Rendus Palevol 3(3): 199-208, 2004 which should be cited to reference this work A basal sauropod dinosaur from the Early Jurassic of Morocco Ronan Allain a,b,*, Najat Aquesbi c, Jean Dejax a, Christian Meyer d, Michel Monbaron e, Christian Montenat f, Philippe Richir a, Mohammed Rochdy c, Dale Russell g, Philippe Taquet a a Laboratoire de paléontologie, département « Histoire de la Terre », Muséum national d’histoire naturelle, UMR 8569 CNRS, 8, rue Buffon, 75005 Paris, France b Université Rennes 1, Geosciences, Campus de Beaulieu, av. du Général-Leclerc, 35042 Rennes cedex, France c Institut Agdal, ministère de l’Énergie et des Mines, BP 6 208, Rabat, Morocco d Naturhistorisches Museum Basel, Augustinergasse 2, CH-4001 Basel, Switzerland e Département de Géosciences, université de Fribourg, chemin du Musée 4 , CH-1700 Fribourg, Switzerland f Institut géologique Albert-de-Lapparent (IGAL), 13, bd de l’Hautil, 95092 Cergy-Pontoise, France g North Carolina Museum of Natural Sciences, and Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Box 8208, Raleigh, NC 27695, USA Received 12 February 2004; accepted 15 March 2004 Available online 30 April 2004 Abstract Continental strata of Early Jurassic age are seldom exposed, and little is known of the history of sauropod dinosaurs prior to the Middle Jurassic radiation of neosauropods. Well-preserved skeletons and skulls have not been recovered from strata older than the Middle Jurassic. Here we report, in the Early Jurassic of the Moroccan High Atlas, the discovery of the skeleton, including cranial material, of a new vulcanodontid sauropod. Tazoudasaurus naimi n.g., n.sp. represents with Vulcanodon the sister group of the eusauropods and the most complete basal sauropod material available to date. Résumé Parce que les dépôts continentaux du Jurassique inférieur affleurent rarement, l’histoire des dinosaures sauropodes est très mal connue avant la radiation des néosauropodes au Jurassique moyen. Les premiers crânes de sauropodes associés à des restes osseux bien préservés datent ainsi du Jurassique moyen. Nous rapportons ici la découverte, dans le Jurassique inférieur du Haut Atlas marocain, du squelette et du crâne d’un nouveau sauropode. Tazoudasaurus naimi n.g., n.sp. est le groupe frère de Vulcanodon et le sauropode basal le plus complet connu à l’heure actuelle. * Corresponding author. E-mail address: [email protected] (R. Allain). 1 Keywords: Dinosaurs; Sauropoda; Early Jurassic; Morocco; Phylogeny Mots clés : Dinosaures ; Sauropoda ; Jurassique inférieur ; Maroc ; Phylogénie Version française abrégée chevrons distaux bifurqués avec des processus anté- rieurs et postérieurs non fusionnés ; présence d’une Nous décrivons ici le squelette d’un nouveau sauro- crête sur la face latérale de l’extrémité proximale de la pode, incluant des restes crâniens, récolté dans des fibula. Tazoudasaurus présente aussi une combinaison pélites recouvrant des bancs carbonatés marins datés unique de synapomorphies de sauropode (préarticu- de la fin du Jurassique inférieur, de la nappe de Toun- laire étendu dorsoventralement ; couronne dentaire vue doute du Haut Atlas, au Maroc [9,17,24] (Fig. 1). Des en coupe, en forme de D ; émail dentaire plissé ; restes de dinosaures théropodes de grande et de centrum des vertèbres cervicales opisthocoele ; large moyenne taille, mais d’affinités pour l’instant incertai- épine neurale dorsale ; quadrupédie obligatoire ; crête nes, ainsi que des débris de végétaux, essentiellement deltopectorale de l’humérus réduite, rapport constitués de restes de fougères, de cycadales et de humérus/fémur supérieur à 0,60 ; diaphyse fémorale conifères, ont été découverts, associés aux restes de elliptique en coupe ; absence de foramens à la base du sauropode. processus ascendant de l’astragale ; phalange unguéale du premier doigt du pied en forme de faucille) et de 1. Paléontologie systématique symplésiomorphies de sauropodomorphe (20 dents dentaires, avec des denticules sur les marges antérieure Dinosauria Owen, 1842 et postérieure de la couronne dentaire ; extrémité anté- Saurischia Seeley, 1888 rieure du dentaire peu étendue dorsoventralement ; Sauropodomorpha Huene, 1932 rangées dentaires convergentes en forme de V ; ab- Sauropoda Marsh, 1878 sence de fosse quadratique postérieure ; présence d’un Vulcanodontidae Cooper, 1984 petit trochanter sur le fémur ; surface plantaire des Tazoudasaurus naimi gen. et sp. nov. phalanges unguéales des doigts II et III aplatie). Étymologie. Le nom de genre dérive de celui de la Tazoudasaurus se différencie de Barapasaurus localité type Tazouda et de sauros, lézard en grec. Le [13,14] et de Kotasaurus [33,34] du Jurassique infé- nom spécifique vient de naïmi, élancé en arabe, et fait rieur d’Inde, et de Gongxianosaurus [11] du Jurassique référence à la petite taille de l’holotype. inférieur de Chine, sur la base de nombreux caractères anatomiques. Il présente, en revanche, beaucoup plus Holotype. To 2000–1, musée des Sciences de la d’affinités avec Vulcanodon, du Jurassique inférieur du Terre de Rabat, Maroc ; squelette partiellement articulé Zimbabwe [5,23], duquel il diffère cependant par l’ab- comprenant du matériel crânien, qui inclut une mandi- sence de sillon médian sur la face ventrale des vertè- bule gauche complète, carré, jugal, postorbitaire, pa- bres dorsales et par des épines neurales caudales plus riétal, frontal et exoccipital. allongées antéropostérieurement. Une analyse phylo- Autre spécimen. To 2000–2, restes associés d’un génétique incluant 29 taxons, dont les genres maro- spécimen juvénile. cains Tazoudasaurus et Atlasaurus, a été réalisée. Les Localité et Horizon. Douar de Tazouda, près du 235 caractères utilisés dans cette analyse sont tirés de village de Toundoute, dans la province de Ouarzazate, la récente phylogénie de Wilson [30], auxquels nous Haut Atlas, Maroc. Nappe de Toundoute, série conti- avons rajouté le caractère « surface articulaire proxi- nentale détritique du Toarcien, qui recouvre en concor- male des doigts II et III du pied significativement plus dance des carbonates marins datés du début et du large que haute », précédemment considéré comme milieu du Jurassique inférieur. une autapomorphie de Vulcanodon [31]. Ce caractère Diagnose. Sauropode primitif, défini par les autapo- soutient la position de Tazoudasaurus comme groupe morphies suivantes (Fig. 2a–n) : lame osseuse s’éten- frère de Vulcanodon à l’extérieur des Eusauropoda, dant sur la marge postérodorsale du postorbitaire ; dans les six arbres les plus parcimonieux obtenus, 2 après utilisation de la commande mhennig*, bb* du 1. Introduction logiciel Hennig86 [8] (Fig. 3). Les récentes datations effectuées sur les basaltes du plateau du Karoo mon- Sauropod remains were documented from the trent que Vulcanodon serait contemporain de Tazouda- Middle Jurassic strata of the High Atlas Mountains in saurus [7,15], même si de nombreux auteurs conti- Morocco through the descriptions of ‘Cetiosaurus’ nuent à le placer dans le Jurassique basal (Hettangien) mogrebiensis [16] and Atlasaurus imelakei [20,21]. [3–5,10,13,23,28,30,32]. Les deux taxons sont regrou- Recently, we collected a partly articulated sauropod pés ici au sein de la famille monophylétique des Vul- skeleton, including cranial material, from the Early canodontidae, qui exclut les autres sauropodes connus Jurassic of the High Atlas near Toundout, in the Prov- au Jurassique inférieur [5,25,26,32]. ince of Ouarzazate (Fig. 1). In this area, the entire Atlasaurus imlakei du Jurassique moyen (Batho- Jurassic series, decoupled from its base, has been over- nien) du Haut Atlas central [20,21] est le groupe frère thrusted to the south where it overlies the Cretaceous– des Neosauropoda (Fig. 3) [30] et est donc beaucoup Eocene [17]. The two principal fossiliferous sites are plus dérivé que Tazoudasaurus. La succession, dans le near the summit of a detrital series about 300 m thick Haut Atlas, de ces deux taxons montre que des change- that conformably overlies early Lower Jurassic marine ments majeurs interviennent dans la morphologie des carbonates containing algal spheres, and benthic fora- sauropodes durant les 20 millions d’années qui sépa- miniferal and mollusc shells [9,24]. The two sites, rent le Toarcien du Bathonien. Certains de ces change- separated from each other stratigraphically by about ments semblent liés à l’alimentation (perte de la fenê- 30 m, are sedimentologically and palaeobotanically tre mandibulaire externe, robustesse mandibulaire similar. Associated with the sauropod material were accrue au niveau de la symphyse, forme en U de la isolated elements of medium-sized and large theropods symphyse, réduction du nombre de dents), alors que of uncertain affinities. Greenish, channel-filling silts d’autres peuvent être reliés à la locomotion et à la taille and sands are preserved within a red, relatively unfos- du corps (configuration en arche des métacarpiens, siliferous clastic sequence. Submacroscopic woody extension transversale de l’extrémité proximale du ti- debris include homoxylous particles devoid of paren- bia et changement d’orientation de la crête cnémiale, chyma, evenly distributed uniseriate rays, tracheids forme en faucille des phalanges unguéales du pied). bordered by uniseriate pits of abietinian form, and Tazoudasaurus est le sauropode primitif le plus cross-fields with piceoid oculipores bearing narrow, complet connu à ce jour. En tant que tel, il partage de perpendicular slits. The anatomy suggests affinities nombreux
Recommended publications
  • The Princeton Field Guide to Dinosaurs, Second Edition
    MASS ESTIMATES - DINOSAURS ETC (largely based on models) taxon k model femur length* model volume ml x specific gravity = model mass g specimen (modeled 1st):kilograms:femur(or other long bone length)usually in decameters kg = femur(or other long bone)length(usually in decameters)3 x k k = model volume in ml x specific gravity(usually for whole model) then divided/model femur(or other long bone)length3 (in most models femur in decameters is 0.5253 = 0.145) In sauropods the neck is assigned a distinct specific gravity; in dinosaurs with large feathers their mass is added separately; in dinosaurs with flight ablity the mass of the fight muscles is calculated separately as a range of possiblities SAUROPODS k femur trunk neck tail total neck x 0.6 rest x0.9 & legs & head super titanosaur femur:~55000-60000:~25:00 Argentinosaurus ~4 PVPH-1:~55000:~24.00 Futalognkosaurus ~3.5-4 MUCPv-323:~25000:19.80 (note:downsize correction since 2nd edition) Dreadnoughtus ~3.8 “ ~520 ~75 50 ~645 0.45+.513=.558 MPM-PV 1156:~26000:19.10 Giraffatitan 3.45 .525 480 75 25 580 .045+.455=.500 HMN MB.R.2181:31500(neck 2800):~20.90 “XV2”:~45000:~23.50 Brachiosaurus ~4.15 " ~590 ~75 ~25 ~700 " +.554=~.600 FMNH P25107:~35000:20.30 Europasaurus ~3.2 “ ~465 ~39 ~23 ~527 .023+.440=~.463 composite:~760:~6.20 Camarasaurus 4.0 " 542 51 55 648 .041+.537=.578 CMNH 11393:14200(neck 1000):15.25 AMNH 5761:~23000:18.00 juv 3.5 " 486 40 55 581 .024+.487=.511 CMNH 11338:640:5.67 Chuanjiesaurus ~4.1 “ ~550 ~105 ~38 ~693 .063+.530=.593 Lfch 1001:~10700:13.75 2 M.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • Titanosauriform Teeth from the Cretaceous of Japan
    “main” — 2011/2/10 — 15:59 — page 247 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 247-265 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Titanosauriform teeth from the Cretaceous of Japan HARUO SAEGUSA1 and YUKIMITSU TOMIDA2 1Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, 669-1546, Japan 2National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan Manuscript received on October 25, 2010; accepted for publication on January 7, 2011 ABSTRACT Sauropod teeth from six localities in Japan were reexamined. Basal titanosauriforms were present in Japan during the Early Cretaceous before Aptian, and there is the possibility that the Brachiosauridae may have been included. Basal titanosauriforms with peg-like teeth were present during the “mid” Cretaceous, while the Titanosauria with peg-like teeth was present during the middle of Late Cretaceous. Recent excavations of Cretaceous sauropods in Asia showed that multiple lineages of sauropods lived throughout the Cretaceous in Asia. Japanese fossil records of sauropods are conformable with this hypothesis. Key words: Sauropod, Titanosauriforms, tooth, Cretaceous, Japan. INTRODUCTION humerus from the Upper Cretaceous Miyako Group at Moshi, Iwaizumi Town, Iwate Pref. (Hasegawa et al. Although more than twenty four dinosaur fossil local- 1991), all other localities provided fossil teeth (Tomida ities have been known in Japan (Azuma and Tomida et al. 2001, Tomida and Tsumura 2006, Saegusa et al. 1998, Kobayashi et al. 2006, Saegusa et al. 2008, Ohara 2008, Azuma and Shibata 2010).
    [Show full text]
  • A Re-Evaluation of the Enigmatic Dinosauriform Caseosaurus Crosbyensis from the Late Triassic of Texas, USA and Its Implications for Early Dinosaur Evolution
    A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution MATTHEW G. BARON and MEGAN E. WILLIAMS Baron, M.G. and Williams, M.E. 2018. A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution. Acta Palaeontologica Polonica 63 (1): 129–145. The holotype specimen of the Late Triassic dinosauriform Caseosaurus crosbyensis is redescribed and evaluated phylogenetically for the first time, providing new anatomical information and data on the earliest dinosaurs and their evolution within the dinosauromorph lineage. Historically, Caseosaurus crosbyensis has been considered to represent an early saurischian dinosaur, and often a herrerasaur. More recent work on Triassic dinosaurs has cast doubt over its supposed dinosaurian affinities and uncertainty about particular features in the holotype and only known specimen has led to the species being regarded as a dinosauriform of indeterminate position. Here, we present a new diagnosis for Caseosaurus crosbyensis and refer additional material to the taxon—a partial right ilium from Snyder Quarry. Our com- parisons and phylogenetic analyses suggest that Caseosaurus crosbyensis belongs in a clade with herrerasaurs and that this clade is the sister taxon of Dinosauria, rather than positioned within it. This result, along with other recent analyses of early dinosaurs, pulls apart what remains of the “traditional” group of dinosaurs collectively termed saurischians into a polyphyletic assemblage and implies that Dinosauria should be regarded as composed exclusively of Ornithoscelida (Ornithischia + Theropoda) and Sauropodomorpha. In addition, our analysis recovers the enigmatic European taxon Saltopus elginensis among herrerasaurs for the first time.
    [Show full text]
  • The Anatomy and Phylogenetic Relationships of Antetonitrus Ingenipes (Sauropodiformes, Dinosauria): Implications for the Origins of Sauropoda
    THE ANATOMY AND PHYLOGENETIC RELATIONSHIPS OF ANTETONITRUS INGENIPES (SAUROPODIFORMES, DINOSAURIA): IMPLICATIONS FOR THE ORIGINS OF SAUROPODA Blair McPhee A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2013 i ii ABSTRACT A thorough description and cladistic analysis of the Antetonitrus ingenipes type material sheds further light on the stepwise acquisition of sauropodan traits just prior to the Triassic/Jurassic boundary. Although the forelimb of Antetonitrus and other closely related sauropododomorph taxa retains the plesiomorphic morphology typical of a mobile grasping structure, the changes in the weight-bearing dynamics of both the musculature and the architecture of the hindlimb document the progressive shift towards a sauropodan form of graviportal locomotion. Nonetheless, the presence of hypertrophied muscle attachment sites in Antetonitrus suggests the retention of an intermediary form of facultative bipedality. The term Sauropodiformes is adopted here and given a novel definition intended to capture those transitional sauropodomorph taxa occupying a contiguous position on the pectinate line towards Sauropoda. The early record of sauropod diversification and evolution is re- examined in light of the paraphyletic consensus that has emerged regarding the ‘Prosauropoda’ in recent years. iii ACKNOWLEDGEMENTS First, I would like to express sincere gratitude to Adam Yates for providing me with the opportunity to do ‘real’ palaeontology, and also for gladly sharing his considerable knowledge on sauropodomorph osteology and phylogenetics. This project would not have been possible without the continued (and continual) support (both emotionally and financially) of my parents, Alf and Glenda McPhee – Thank you.
    [Show full text]
  • Postcranial Skeletal Pneumaticity in Sauropods and Its
    Postcranial Pneumaticity in Dinosaurs and the Origin of the Avian Lung by Mathew John Wedel B.S. (University of Oklahoma) 1997 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Kevin Padian, Co-chair Professor William Clemens, Co-chair Professor Marvalee Wake Professor David Wake Professor John Gerhart Spring 2007 1 The dissertation of Mathew John Wedel is approved: Co-chair Date Co-chair Date Date Date Date University of California, Berkeley Spring 2007 2 Postcranial Pneumaticity in Dinosaurs and the Origin of the Avian Lung © 2007 by Mathew John Wedel 3 Abstract Postcranial Pneumaticity in Dinosaurs and the Origin of the Avian Lung by Mathew John Wedel Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Kevin Padian, Co-chair Professor William Clemens, Co-chair Among extant vertebrates, postcranial skeletal pneumaticity is present only in birds. In birds, diverticula of the lungs and air sacs pneumatize specific regions of the postcranial skeleton. The relationships among pulmonary components and the regions of the skeleton that they pneumatize form the basis for inferences about the pulmonary anatomy of non-avian dinosaurs. Fossae, foramina and chambers in the postcranial skeletons of pterosaurs and saurischian dinosaurs are diagnostic for pneumaticity. In basal saurischians only the cervical skeleton is pneumatized. Pneumatization by cervical air sacs is the most consilient explanation for this pattern. In more derived sauropods and theropods pneumatization of the posterior dorsal, sacral, and caudal vertebrae indicates that abdominal air sacs were also present.
    [Show full text]
  • The Pelvic and Hind Limb Anatomy of the Stem-Sauropodomorph Saturnalia Tupiniquim (Late Triassic, Brazil)
    PaleoBios 23(2):1–30, July 15, 2003 © 2003 University of California Museum of Paleontology The pelvic and hind limb anatomy of the stem-sauropodomorph Saturnalia tupiniquim (Late Triassic, Brazil) MAX CARDOSO LANGER Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, BS8 1RJ Bristol, UK. Current address: Departamento de Biologia, Universidade de São Paulo (USP), Av. Bandeirantes, 3900 14040-901 Ribeirão Preto, SP, Brazil; [email protected] Three partial skeletons allow a nearly complete description of the sacrum, pelvic girdle, and hind limb of the stem- sauropodomorph Saturnalia tupiniquim, from the Late Triassic Santa Maria Formation, South Brazil. The new morphological data gathered from these specimens considerably improves our knowledge of the anatomy of basal dinosaurs, providing the basis for a reassessment of various morphological transformations that occurred in the early evolution of these reptiles. These include an increase in the number of sacral vertebrae, the development of a brevis fossa, the perforation of the acetabulum, the inturning of the femoral head, as well as various modifications in the insertion of the iliofemoral musculature and the tibio-tarsal articulation. In addition, the reconstruction of the pelvic musculature of Saturnalia, along with a study of its locomotion pattern, indicates that the hind limb of early dinosaurs did not perform only a fore-and-aft stiff rotation in the parasagittal plane, but that lateral and medial movements of the leg were also present and important. INTRODUCTION sisting of most of the presacral vertebral series, both sides Saturnalia tupiniquim was described in a preliminary of the pectoral girdle, right humerus, partial right ulna, right fashion by Langer et al.
    [Show full text]
  • 104Ornithodiraphyl
    Millions of Years Ago 252.3 247.2 235.0 201.5 175.6 161.2 145.5 99.6 65.5 Triassic Jurassic Cretaceous Early Middle Late Early Middle Late Early Late Euparkeria Crurotarsi ? Scleromochlus ? Archosauria Pterosauria Lagerpetidae Ornithodira Marasuchus Genasauria Dinosauromorpha Silesauridae Neornithsichia Thyreophora Ornithischia Eocursor (esp. Dinosauria) et al. (2011), Yates (2007) Yates et al. (2011), Nesbitt etal.(2009), Sues (2007), Martinezet al.(2011), Irmis etal. Ezcurra (2006), EzcurraandBrusatte (2011), Phylogeny after Brusatteetal.(2010), Butleretal.(2007), Heterodontosauridae Pisanosaurus Dinosauria Ornithodira Sauropodomorpha Herrerasauria Saurischia Eodromeus Theropoda Daemonosaurus Tawa Neotheropoda Millions of Years Ago 253.0 247.2 235.0 201.5 175.6 161.2 145.5 99.6 65.5 Triassic Jurassic Cretaceous Early Middle Late Early Middle Late Early Late (2009), Norman et al. (2004), Thompson etal. (2011) (2009), Norman etal. (2004), Phylogeny afterButler etal. (2007a,b), Carpenter (2001),Galton &Upchurch (2004), Maidment etal.(2008), Mateus etal. Cerapoda Ornithopoda Eocursor Marginocephalia Neornithischia Othnielosaurus Genasauria (esp. Thyreophora) Genasauria (esp. Hexinlusaurus Stormbergia Genasauria Lesothosaurus Scutellosaurus Thyreophora Scelidosaurus Stegosauridae Stegosaurinae Dacentrurinae Stegosauria Kentrosaurus Tuojiangosaurus Huayangosauridae Gigantspinosaurus Eurypoda Tianchiasaurus Ankylosauria Nodosauridae Ankylosauridae Millions of Years Ago 253.0 247.2 235.0 201.5 175.6 161.2 145.5 99.6 65.5 Triassic Jurassic Cretaceous
    [Show full text]
  • Giants from the Past | Presented by the Field Museum Learning Center 2 Pre-Lesson Preparation
    Giants from the Past Middle School NGSS: MS-LS4-1, MS-LS4-4 Lesson Description Learning Objectives This investigation focuses on the fossils of a particular • Students will demonstrate an understanding that group of dinosaurs, the long-necked, herbivores known as particular traits provide advantages for survival sauropodomorphs. Students will gain an understanding by using models to test and gather data about the of why certain body features provide advantages to traits’ functions. Background survival through the use of models. Students will analyze • Students will demonstrate an understanding of and interpret data from fossils to synthesize a narrative ancestral traits by investigating how traits appear for the evolution of adaptations that came to define a and change (or evolve) in the fossil record well-known group of dinosaurs. over time. • Students will demonstrate an understanding of how traits function to provide advantages Driving Phenomenon in a particular environment by inferring daily Several traits, inherited and adapted over millions of years, activities that the dinosaur would have performed provided advantages for a group of dinosaurs to evolve for survival. into the largest animals that ever walked the Earth. Giant dinosaurs called sauropods evolved over a period of 160 Time Requirements million years. • Four 40-45 minute sessions As paleontologists continue to uncover new specimens, Prerequisite Knowledge they see connections across time and geography that lead to a better understanding of how adaptations interact • Sedimentary rocks form in layers, the newer rocks with their environment to provide unique advantages are laid down on top of the older rocks. depending on when and where animals lived.
    [Show full text]
  • Osteological Revision of the Holotype of the Middle
    Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) BONAPARTE 1979 Femke Holwerda, Oliver W.M. Rauhut, Pol Diego To cite this version: Femke Holwerda, Oliver W.M. Rauhut, Pol Diego. Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) BONAPARTE 1979. 2020. hal-02977029 HAL Id: hal-02977029 https://hal.archives-ouvertes.fr/hal-02977029 Preprint submitted on 27 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Osteological revision of the holotype of the Middle Jurassic sauropod 2 dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) 3 BONAPARTE 1979 4 5 Femke M Holwerda1234, Oliver W M Rauhut156, Diego Pol78 6 7 1 Staatliche Naturwissenscha�liche Sammlungen Bayerns (SNSB), Bayerische Staatssamlung für 8 Paläontologie und Geologie, Richard-Wagner-Strasse 10, 80333 München, Germany 9 10 2 Department of Geosciences, Utrecht University, Princetonlaan, 3584 CD Utrecht, 10 Netherlands 11 12 3 Royal Tyrrell Museum of Palaeontology, Drumheller, AlbertaT0J 0Y0, Canada (current) 13 14 4 Fachgruppe Paläoumwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen- 15 Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany 16 17 5 Department für Umwelt- und Geowissenscha�en, Ludwig-Maximilians-Universität München, Richard- 18 Wagner-Str.
    [Show full text]
  • Dynamic Dinosaurs Author: Surekha Reddy Illustrators: Gina James, Lavanya Naidu Vijay Is Curious About Dinosaurs
    Dynamic Dinosaurs Author: Surekha Reddy Illustrators: Gina James, Lavanya Naidu Vijay is curious about dinosaurs. He and his friend always play only with dinosaurs. He loves to collect dinosaur toys. 2/11 Dynamic Dinosaurs Vijay reads this book, "Dynamic Dinosaurs" all the time. This is his all time favorite book. 3/11 Vijay read about the dryptosauroides, this dinosaur is a carnivore. It eats only meat. Its fossils were found in parts of Madhyapradesh a state in India, 4/11 Vijay read about the lamplughsaura, this dinosaur is a herbivore, it eats only plants. The fossils were found in parts of Telangana a state in India. 5/11 Vijay read about isisaurus, this dinosaur is harbivore it eats only plants. The fossils were found in parts of Maharashtra a state of India. 6/11 Vijay read about the kotasaurus, this dinosaur is a herbivore it eats only plants. The fossils were found in parts of Telangana a state in India. 7/11 Vijay read about the rajasaurus, it is a carnivore it is a meat eater. The fossils were found in parts of Gujarat a state in India. 8/11 Vijay read about alwalkeria, this dinosaur is an omnivore, it eats both plants and animals. The fossils were found in southern part of India. 9/11 Vijay read about barapasaurus, this dinosaur is a herbivore. The fossils were found in parts of Telangana a state in India. 10/11 Vijay drew a picture of all the dinosaurs from his favorite book "Dynamic Dinosaurs". 11/11 This book was made possible by Pratham Books' StoryWeaver platform.
    [Show full text]