ABSTRACT SCHREEG, MEGAN ELIZABETH. Cytauxzoon Felis in A

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT SCHREEG, MEGAN ELIZABETH. Cytauxzoon Felis in A ABSTRACT SCHREEG, MEGAN ELIZABETH. Cytauxzoon felis in a Post-Genomic Era: Taxonomy, Diagnosis, Treatment, and Prevention. (Under the direction of Dr. Adam Birkenheuer, Chair, and Dr. Michael Levy, Vice Chair.) Cytauxzoonosis is an emerging disease affecting felines throughout the Western hemisphere. Cytauxzoonosis is caused by the tick-transmitted parasite Cytauxzoon felis, an organism for which little is known. Since being discovered 40 years ago in Missouri, C. felis has spread across 1/3 of the United States, and is expected to continue spreading given the continental distribution of competent feline and tick hosts. C. felis is highly pathogenic to domestic cats. Disease progresses rapidly and even with the best treatment mortality remains high. No vaccine exists, so disease prevention relies on indoor confinement and acaricide prophylaxis. Given the rapid dispersal of this virulent parasite that lacks effective treatment or prevention options, further investigation is warranted. However, the inability to culture the parasite in vitro, ethical concerns with in vivo studies, and lack of funding for feline diseases has limited C. felis research. To counteract this, we have sequenced the parasite’s mitochondrial and chromosomal genomes. Using these resources, we have identified useful genetic targets that resolve the taxonomy of C. felis and improve the treatment, diagnosis and prevention of cytauxzoonosis. The taxonomic placement of Cytauxzoon felis within Piroplasmida remains unsolved due to discrepancies between morphological and molecular data. We have clarified phylogeny of C. felis and other Piroplasmida using mitochondrial genome sequences and structures. Mitochondrial genome analysis supported the placement of C. felis within the Theileria clade, and indicated that T. equi, B. conradae, and B. microti organisms are genetically distinct lineages. Characterization of additional mitochondrial genomes and subsequent reclassification of Piroplasmida genera are merited. Mortality of infected cats treated with atovaquone and azithromycin (A&A) is 40%. Atovaquone targets an electron transport protein encoded by mitochondrial cytb. Mutations in the cytb gene are associated with atovaquone resistance in related parasites. We hypothesized that C. felis cytb genotype would be associated with response to A&A treatment. After cytb-genotyping 69 samples, we identified a C. felis cytb genotype (cytb1) associated with increased survival of cats treated with A&A. Given this association, we hypothesized that cytb1 could aid in the prognosis of cytauxzoonosis. By developing a quantitative PCR panel that identifies cytb1-specific SNPs with high resolution melt (HRM) analysis, we distinguished C. felis cytb1 from all other C. felis cytb genotypes with 100% sensitivity and 98.2% specificity. This assay is cost-effective and can be completed in less than 3 hours, which is important given the high cost of A&A and rapid disease course. Diagnosis of C. felis is challenging during early infection when parasitemia is low and clinical signs remain vague. Mitochondrial genes are more sensitive molecular diagnostic targets for parasite detection than 18S in related parasites. We demonstrated that mitochondrial cox3 copy number is increased relative to 18S in blood and tissue samples from cats with acute cytauxzoonosis, and that cox3 is more sensitive for identifying early C. felis infection than 18S. This assay will aid in early detection of Cytauxzoon felis infection. Sequencing the C. felis genome has allowed for identification of 33 vaccine candidates. We have manufactured two DNA vaccines: an expression library vaccine including all candidates and a vaccine consisting of the recently described cf76. We describe the immunization approach, serological response to vaccination, and subsequent clinical outcome following challenge with C. felis. All vaccinated cats became infected and developed disease, rendering both vaccines inadequate methods for prevention of cytauxzoonosis. However, the expression library vaccine showed evidence of aiding in disease control, providing a baseline for development of future subunit vaccines against cytauxzoonosis. In conclusion, the mitochondrial and chromosomal genomes have clarified the taxonomy of Cytauxzoon felis and further advanced our understanding of the treatment, diagnosis, and prevention of cytauxzoonosis. © Copyright 2015 by Megan Elizabeth Schreeg All Rights Reserved Cytauxzoon felis in a Post-Genomic Era: Taxonomy, Diagnosis, Treatment, and Prevention by Megan Elizabeth Schreeg A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Comparative Biomedical Sciences Raleigh, North Carolina 2015 APPROVED BY: _______________________ _______________________ Adam Birkenheuer Michael Levy Chair of Advisory Committee Vice Chair of Advisory Committee ___________________ ___________________ ___________________ David Bird Luke Borst Jeffrey Yoder Committee Member Committee Member Committee Member BIOGRAPHY Megan was born and raised in Kokomo, Indiana, where she was constantly surrounded by cats and consequently was inspired to become a veterinarian. Megan graduated summa cum laude with a Bachelor of Arts Degree in Biology and minors in Biochemistry and Latin from Hanover College in Hanover, Indiana in 2010. Megan is currently in the Combined DVM/PhD Program at North Carolina State University College of Veterinary Medicine. Megan has interests in feline medicine, immunology, comparative anatomy and Photo credit to Wendy Savage pathology, comparative molecular genomics, and parasitology. Following completion from the DVM/PhD program, Megan currently intends to apply for a residency in either anatomic or clinical pathology, and also hopes to pursue board certification as a veterinary parasitologist. Megan also has a passion for teaching, and her ultimate goal is to become a professor at a school of veterinary medicine. ii ACKNOWLEDGEMENTS A researcher is only as good as her support system, and I’ve been blessed enough to have a great team of lab mates, friends, and family helping me through every step of completing this work. First, I would like to thank my advisor Adam, who has mentored me not only in research, but also in life. None of this work would be possible without your passion for companion animal medicine, love for learning, or aptitude for training developing clinician scientists. The countless hours you have spent helping me both inside the lab and out have meant so much to me, and taught me what it truly means to be a mentor. You have taken a naive student and molded her into a slightly less naïve researcher and human being, and for that I cannot thank you enough! Next I would like to thank Henry, our laboratory technician, for teaching me the ropes of working at the bench, for helping me with my work and always patiently answering my often stupid questions, and for being a great friend. Together you and Adam have made me feel like part of a little “lab family,” which meant the world to a girl who left everything she knew behind and moved across the country to pursue an education. There are endless other mentors and supporters I have had in the world of science. First, a huge thank you to Dr. Sam Jones for accepting me in the DVM/PhD program—you believed in my potential when I didn’t, and have offered unending support throughout the program! A special thank you to my undergraduate advisor, Dr. Walter Bruyninckx, who showed me that a career as a researcher, veterinarian, teacher, and life-long learner was possible. An additional thank you to Dr. Leah Cohn, who I consider not only a key collaborator, but also a phenomenal clinician, a friend, and one of the most kind-hearted iii people I know. Thanks to Dr. Brian Wiegmann for patiently teaching me about molecular systematics! A huge thanks as well to my committee members: Dr. Levy, Dr. Bird, Dr. Borst, and Dr. Yoder—your support and collaboration have been critical for me on this journey. Last but certainly not least, I also would like to thank the rest of my office and lab members, including Kaye, Candace, Mitsu, Jingjing, Jaime, the folks of the VBDDL, and all the others that I am forgetting. You are like family to me and make coming to work a joy! A huge thanks as well to all of my friends both near and far, who have been with me through high school, college, and beyond. I would be lost without the Great 8 and my Hanover ladies, who have been some of my biggest cheerleaders in the pursuit of this degree. A special thanks to the newly minted Dr. Susan Grayden Shapiro, my DVM/PhD partner in crime—I wouldn’t have had the opportunity to do any of this work if you hadn’t told me about the amazing veterinary school at NC State, and I can’t wait to see how our destinies continue to cross in the future. My family deserves infinite praise for endlessly supporting and loving me. To Mom and Dad—you imparted a love for problem-solving, nature, and animals in me from a very young age. You always nurtured my passions through the years, whether that meant getting me yet another cat, helping me tend to my science fair project, or pitching batting practice to me. You taught me the meaning of hard work and persistence, and instilled in me that anything was possible if I put my mind to it. I couldn’t ask for better parents or role models, and I’m forever grateful and proud to be your daughter. To my brothers Danny and Keagan—whether you know it or not, you both have inspired me in your own way, and I wouldn’t trade you for any other siblings on the planet! iv More than any other person, I need to thank my husband Jacob. You are my anchor in all things I do! You moved across the country to come with me on this journey, and for some crazy reason along the way decided that I was worthy to be your wife. You have supported me every step of the way, whether that mean helping me study, coming into the lab with me, listening to me blather about my latest silly discovery, or taking care of our house and our animal family—Murray, Pip, and Rue—while I focused on school.
Recommended publications
  • Molecular Parasitology Protozoan Parasites and Their Molecules Molecular Parasitology Julia Walochnik • Michael Duchêne Editors
    Julia Walochnik Michael Duchêne Editors Molecular Parasitology Protozoan Parasites and their Molecules Molecular Parasitology Julia Walochnik • Michael Duchêne Editors Molecular Parasitology Protozoan Parasites and their Molecules Editors Julia Walochnik Michael Duchêne Institute of Specifi c Prophylaxis Institute of Specifi c Prophylaxis and Tropical Medicine and Tropical Medicine Center for Pathophysiology, Infectiology Center for Pathophysiology, Infectiology and Immunology and Immunology Medical University of Vienna Medical University of Vienna Vienna Vienna Austria Austria ISBN 978-3-7091-1415-5 ISBN 978-3-7091-1416-2 (eBook) DOI 10.1007/978-3-7091-1416-2 Library of Congress Control Number: 2016947730 © Springer-Verlag Wien 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Feline Cytauxzoonosis
    Article #5 CE Feline Cytauxzoonosis Peter J. Bondy, Jr, DVM, MS, DACVIM Leah A. Cohn, DVM, PhD, DACVIM Marie E. Kerl, DVM, DACVIM, DACVECC University of Missouri ABSTRACT: Cytauxzoon felis is a protozoal organism transmitted to cats through a tick bite. Region- ally restricted to the south central and southeastern United States, C. felis infection of domestic cats is usually fatal.The parasite life cycle includes both a tissue and an erythro- cytic phase.The clinical disease course is rapid, with onset of fever, lethargy, and anorexia 5 to 20 days after infection and death within a week of initial signs. Leukocytosis, hemolytic anemia, icterus, and elevated liver enzymes are usually present. Definitive diag- nosis is based on microscopic identification of parasites. Effective medical therapy remains elusive, although several cats have reportedly survived. ytauxzoon felis is a protozoal organism schizont phase of the genus Theileria occurs in that causes fatal illness in domestic lymphocytic cells.3 The infected macrophage cats. It is related to other Cytauxzoon cells occlude venules in the liver, spleen, lung, C 1 spp of African ungulates and was first recog- and lymph nodes (Figure 2). The schizont nized in Missouri in 1976.1 Geographically phase is most closely associated with clinical limited primarily to the south central and disease, and the degree of schizogony is southeastern United States (Figure 1), C. felis reflected in the severity of illness.4 In domestic seems to infect only felidae and therefore cats, the schizont burden is extensive, whereas it poses no zoonotic or agricultural risk.2 Diag- is usually small and brief in mildly affected nosing cytauxzoonosis in cats is based on com- species such as the bobcat.5 patible clinical signs and identifying the Fission of the schizonts results in formation organisms in tissue or blood.
    [Show full text]
  • An Intestinal Gregarine of Nothria Conchylega (Polychaeta, Onuphidae)
    Journal of Invertebrate Pathology 104 (2010) 172–179 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Description of Trichotokara nothriae n. gen. et sp. (Apicomplexa, Lecudinidae) – An intestinal gregarine of Nothria conchylega (Polychaeta, Onuphidae) Sonja Rueckert *, Brian S. Leander Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Departments of Botany and Zoology, University of British Columbia, #3529 – 6270 University Blvd., Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: The trophozoites of a novel gregarine apicomplexan, Trichotokara nothriae n. gen. et sp., were isolated and Received 12 November 2009 characterized from the intestines of the onuphid tubeworm Nothria conchylega (Polychaeta), collected at Accepted 11 March 2010 20 m depth from the North-eastern Pacific Coast. The trophozoites were 50–155 lm long with a mid-cell Available online 23 March 2010 indentation that formed two prominent bulges (anterior bulge, 14–48 lm wide; posterior bulge, 15– 55 lm wide). Scanning electron microscopy (SEM) demonstrated that approximately 400 densely packed, Keywords: longitudinal epicytic folds (5 folds/lm) inscribe the surface of the trophozoites, and a prominently elon- Alveolata gated mucron (14–60 lm long and 6–12 lm wide) was covered with hair-like projections (mean length, Apicomplexa 1.97 m; mean width, 0.2 m at the base). Although a septum occurred at the junction between the cell Lecudinidae l l Lecudina proper and the mucron in most trophozoites, light microscopy (LM) demonstrated that the cell proper Parasite extended into the core of the mucron as a thin prolongation.
    [Show full text]
  • Feline Immune Response to Infection with Cytauxzoon Felis and The
    FELINE IMMUNE RESPONSE TO INFECTION WITH CYTAUXZOON FELIS AND THE ROLE OF CD18 IN THE PATHOGENESIS OF CYTAUXZOONOSIS by KARELMA FRONTERA-ACEVEDO (Under the Direction of Kaori Sakamoto) ABSTRACT Cytauxzoonosis is a highly fatal, hemoprotozoal disease of cats in the Mid-Western, Mid- Atlantic, and Southeastern United States, caused by Cytauxzoon felis. Although the causative agent has been recognized since 1976, no study has profiled the immune response of infected cats, there is no definitive cure, and C. felis has not been successfully maintained in cell cultures in vitro, thwarting research efforts. One of the main histopathologic characteristics of this disease is the presence of giant, infected, intravascular macrophages, many of which are adhered to the vascular endothelium. The main goals of this project are: 1) to characterize the feline immune response to C. felis; 2) to develop a cell culture system in order to study C. felis in vitro; and 3) to determine whether CD18 plays a role in the pathogenesis of cytauxzoonosis. INDEX WORDS: Cat, Cytauxzoon felis, pathogenesis, protozoal disease, veterinary pathology FELINE IMMUNE RESPONSE TO INFECTION WITH CYTAUXZOON FELIS AND THE ROLE OF CD18 IN THE PATHOGENESIS OF CYTAUXZOONOSIS by KARELMA FRONTERA-ACEVEDO BS, University of Florida, 2004 DVM, Louisiana State University, 2008 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2013 © 2013 Karelma Frontera-Acevedo All
    [Show full text]
  • Transmission of Cytauxzoon Felis by Amblyomma Americanum: Engorgement Weight of Nymphs and Attachment Time of Adults for Transmission to Domestic Cats
    TRANSMISSION OF CYTAUXZOON FELIS BY AMBLYOMMA AMERICANUM: ENGORGEMENT WEIGHT OF NYMPHS AND ATTACHMENT TIME OF ADULTS FOR TRANSMISSION TO DOMESTIC CATS By YOKO NAGAMORI Bachelor of Arts in Biology Augustana University Sioux Falls, South Dakota 2008 Doctor of Veterinary Medicine Iowa State University Ames, Iowa 2013 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2016 TRANSMISSION OF CYTAUXZOON FELIS BY AMBLYOMMA AMERICANUM: ENGORGEMENT WEIGHT OF NYMPHS AND ATTACHMENT TIME OF ADULTS FOR TRANSMISSION TO DOMESTIC CATS Thesis Approved: Dr. Mason V. Reichard Thesis Adviser Dr. Susan E. Little Dr. James Meinkoth Dr. Mark Payton ii ACKNOWLEDGEMENTS I would like to thank my thesis advisor, Dr. Mason V. Reichard, MS, PhD Associate Professor in Veterinary Pathobiology as well as the rest of my master’s committee Dr. Susan E. Little, DVM, PhD, DACVM-Parasit Regents Professor and Krull-Ewing Chair in Veterinary Parasitology, Dr. Mark Payton PhD Regents Service Professor and Department Head of Statistics, and Dr. James Meinkoth, DVM, PhD Professor in Veterinary Pathobiology for their support, time, and dedication. Additional support for this project came from Dr. Jennifer E. Slovak DVM, MS, DACVIM Assistant Professor in Small Animal Internal Medicine at Washington State University College of Veterinary Medicine for sending me blood samples from Ames, Iowa, Operation Catnip Stillwater for allowing me to collect blood samples from free-roaming cats, and Lisa Coburn and the Tick Laboratory. I would also like to show my special gratitude to Dr. Eileen Johnson DVM, MS, PhD Clinical Associate Professor Emerita and Rebecca Duncan-Decocq, MS for their unconditional support.
    [Show full text]
  • Redalyc.Cytauxzoon Felis and 'Candidatus Mycoplasma
    Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Mendes Pupio Maia, Leticia; de Mello Figueiredo Cerqueira, Aloysio; de Barros Macieira, Daniel; Moreira de Souza, Aline; Santos Moreira, Namir; Vieira da Silva, Adrianna; Belle Messick, Joanne; Fernandes Ferreira, Renata; Pereira Almosny, Nádia Regina Cytauxzoon felis and ‘Candidatus Mycoplasma haemominutum’ coinfection in a Brazilian domestic cat (Felis catus) Revista Brasileira de Parasitologia Veterinária, vol. 22, núm. 2, abril-junio, 2013, pp. 289- 291 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841488019 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Research Note Rev. Bras. Parasitol. Vet., Jaboticabal, v. 22, n. 2, p. 289-291, abr.-jun. 2013 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) Cytauxzoon felis and ‘Candidatus Mycoplasma haemominutum’ coinfection in a Brazilian domestic cat (Felis catus) Co-infecção por Cytauxzoon felis e ‘Candidatus Mycoplasma haemominutum’ em um gato doméstico (Felis catus) no Brasil Leticia Mendes Pupio Maia1; Aloysio de Mello Figueiredo Cerqueira2; Daniel de Barros Macieira1; Aline Moreira de Souza1; Namir Santos Moreira1; Adrianna Vieira
    [Show full text]
  • Business Address
    ALAN J. GRANT Home Address: 56 Fitchburg Street Department of Immunology and Watertown, MA 02172 Infectious Disease (617) 924-3217 Harvard School of Public Health [email protected] 665 Huntington Ave. (617) 797-3216 (Cellular) Boston, MA 02115 Professional Experience: Visiting Scientist Department of Immunology and 2007-current Infectious Disease Harvard School of Public Health Boston, MA Senior Scientist American Biophysics Corp. 1998-2006 2240 South County Trail East Greenwich, RI Assistant Research Professor 1998 Department of Physiology University of Massachusetts Medical School 55 Lake Street Worcester, MA Senior Research Associate/ Foundation Scholar 1990-1997 Worcester Foundation for Biomedical Research 222 Maple Ave. Shrewsbury, MA Research Associate 1983-1990 Worcester Foundation for Experiment Biology 222 Maple Ave. Shrewsbury, MA Research Entomologist 1980-1982 Agricultural Research Service United States Department of Agriculture Insects Attractants, Behavior and Basic Biology Laboratory Gainesville, FL ALAN J. GRANT Education: Post-Doctoral Research Associate; USDA; Agricultural Research Service 1982-84 Gainesville, Florida Ph.D. College of Environmental Science and Forestry 1982 State University of New York, Syracuse, New York M.S. College of Environmental Science and Forestry 1980 B.S. College of Agriculture and Life Sciences 1976 Cornell University, Ithaca, New York Patent: 5,772,983 - Method of screening for compounds which modulate insect behavior. (with Robert J. O'Connell) Claims allowed: June 1997. Issued June 30, 1998. Selected Invited Symposia: The Ciba Foundation; Mosquito Olfaction and Olfactory-Mediated Mosquito-Host Interactions. Ciba Foundation Symposium No. 200. 1995; London Electrophysiological responses from olfactory receptor neurons in the maxillary palps of mosquitos. The Olfactory Basis of Mosquito-Host Interactions.
    [Show full text]
  • Cytauxzoon Felis Infection in Domestic Cats, Yunnan Province, China, 2016
    Cytauxzoon felis Infection in Domestic Cats, Yunnan Province, China, 2016 Feng-Cai Zou,1 Zhao Li,1 Jian-Fa Yang, cats and 237 pet cats) in Yunnan Province in southwestern Jiang-Yan Chang, Guo-Hua Liu, China using EDTA tubes. We stored these EDTA whole Yan Lv, Xing-Quan Zhu blood samples at –20°C and then performed genomic DNA extraction with the TIANamp Genomic DNA Kit (TianGen, We performed a molecular survey for Cytauxzoon felis http://www.tiangen.com) following the manufacturer’s pro- infection in 311 domestic cats in Yunnan Province, China, tocol. To detect C. felis infection, we performed a PCR tar- in 2016 and found a prevalence of 21.5%. C. felis infection geting the second internal transcribed spacer (ITS-2) of ribo- in domestic and wild cats in other provinces should be investigated to determine parasite prevalence and genetic somal DNA (6). We sequenced amplicons in both directions diversity among cats throughout China. and compared these sequences with those of other relevant C. felis isolates available in GenBank. We analyzed differ- ences in C. felis prevalence in domestic cats according to ytauxzoonosis is a tickborne hemoprotozoal disease lifestyle, region, sex, and age using the χ2 test in SPSS 22.0 Cof both domestic cats and wild felids caused mainly standard version for Windows (IBM Corporation, https:// by Cytauxzoon felis protozoa (1,2). In the late 1900s, C. www.ibm.com). We considered differences statistically sig- felis protozoa were reported exclusively in North America, nificant when the p value obtained was <0.05. particularly in the mid-Atlantic states of the United States In total, 67 (21.5%) of 311 examined domestic cats (3), but in the early 2000s, this pathogen was reported in some were positive for the C.
    [Show full text]
  • Global Distribution of Babesia Species in Questing Ticks: a Systematic Review and Meta-Analysis Based on Published Literature
    pathogens Systematic Review Global Distribution of Babesia Species in Questing Ticks: A Systematic Review and Meta-Analysis Based on Published Literature ThankGod E. Onyiche 1,2 , Cristian Răileanu 2 , Susanne Fischer 2 and Cornelia Silaghi 2,3,* 1 Department of Veterinary Parasitology and Entomology, University of Maiduguri, P. M. B. 1069, Maiduguri 600230, Nigeria; [email protected] 2 Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; cristian.raileanu@fli.de (C.R.); susanne.fischer@fli.de (S.F.) 3 Department of Biology, University of Greifswald, Domstrasse 11, 17489 Greifswald, Germany * Correspondence: cornelia.silaghi@fli.de; Tel.: +49-38351-7-1172 Abstract: Babesiosis caused by the Babesia species is a parasitic tick-borne disease. It threatens many mammalian species and is transmitted through infected ixodid ticks. To date, the global occurrence and distribution are poorly understood in questing ticks. Therefore, we performed a meta-analysis to estimate the distribution of the pathogen. A deep search for four electronic databases of the published literature investigating the prevalence of Babesia spp. in questing ticks was undertaken and obtained data analyzed. Our results indicate that in 104 eligible studies dating from 1985 to 2020, altogether 137,364 ticks were screened with 3069 positives with an estimated global pooled prevalence estimates (PPE) of 2.10%. In total, 19 different Babesia species of both human and veterinary importance were Citation: Onyiche, T.E.; R˘aileanu,C.; detected in 23 tick species, with Babesia microti and Ixodes ricinus being the most widely reported Fischer, S.; Silaghi, C.
    [Show full text]
  • Babesia Duncani Are the Main Causative Agents of Human Babesiosis
    22 ABSTRACT 23 Babesia microti and Babesia duncani are the main causative agents of human babesiosis 24 in the United States. While significant knowledge about B. microti has been gained over the past 25 few years, nothing is known about B. duncani biology, pathogenesis, mode of transmission or 26 sensitivity to currently recommended therapies. Studies in immunocompetent wild type mice and 27 hamsters have shown that unlike B. microti, infection with B. duncani results in severe pathology 28 and ultimately death. The parasite factors involved in B. duncani virulence remain unknown. 29 Here we report the first known completed sequence and annotation of the apicoplast and 30 mitochondrial genomes of B. duncani. We found that the apicoplast genome of this parasite 31 consists of a 34 kb monocistronic circular molecule encoding functions that are important for 32 apicoplast gene transcription as well as translation and maturation of the organelle’s proteins. 33 The mitochondrial genome of B. duncani consists of a 5.9 kb monocistronic linear molecule with 34 two inverted repeats of 48 bp at both ends. Using the conserved cytochrome b (Lemieux) and 35 cytochrome c oxidase subunit I (coxI) proteins encoded by the mitochondrial genome, 36 phylogenetic analysis revealed that B. duncani defines a new lineage among apicomplexan 37 parasites distinct from B. microti, Babesia bovis, Theileria spp. and Plasmodium spp. Annotation 38 of the apicoplast and mitochondrial genomes of B. duncani identified targets for development of 39 effective therapies. Our studies set the stage for evaluation of the efficacy of these drugs alone or 40 in combination against B.
    [Show full text]
  • Highly Rearranged Mitochondrial Genome in Nycteria Parasites (Haemosporidia) from Bats
    Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats Gregory Karadjiana,1,2, Alexandre Hassaninb,1, Benjamin Saintpierrec, Guy-Crispin Gembu Tungalunad, Frederic Arieye, Francisco J. Ayalaf,3, Irene Landaua, and Linda Duvala,3 aUnité Molécules de Communication et Adaptation des Microorganismes (UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, CP52, 75005 Paris, France; bInstitut de Systématique, Evolution, Biodiversité (UMR 7205), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, Université Pierre et Marie Curie, CP51, 75005 Paris, France; cUnité de Génétique et Génomique des Insectes Vecteurs (CNRS URA3012), Département de Parasites et Insectes Vecteurs, Institut Pasteur, 75015 Paris, France; dFaculté des Sciences, Université de Kisangani, BP 2012 Kisangani, Democratic Republic of Congo; eLaboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Inserm U1016, CNRS UMR 8104, Cochin Institute, 75014 Paris, France; and fDepartment of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 Contributed by Francisco J. Ayala, July 6, 2016 (sent for review March 18, 2016; reviewed by Sargis Aghayan and Georges Snounou) Haemosporidia parasites have mostly and abundantly been de- and this lack of knowledge limits the understanding of the scribed using mitochondrial genes, and in particular cytochrome evolutionary history of Haemosporidia, in particular their b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria basal diversification. parasites isolated from Nycteridae bats has been recently reported. Nycteria parasites have been primarily described, based on Bats are hosts to a diverse and profuse array of Haemosporidia traditional taxonomy, in African insectivorous bats of two fami- parasites that remain largely unstudied.
    [Show full text]
  • Troccap-Feline-Endo-Guidelines
    Disclaimer The guidelines presented in this booklet were independently developed by members of the Tropical Council for Companion Animal Parasites Ltd. These best-practice guidelines are based on evidence-based, peer reviewed, published scientific literature. The authors of these guidelines have made considerable efforts to ensure the information upon which they are based is accurate and up-to-date. Individual circumstances must be taken into account where appropriate when following the recommendations in these guidelines. Sponsors The Tropical Council for Companion Animal Parasites Ltd. wish to acknowledge the kind donations of our sponsors for facilitating the publication of these freely available guidelines. Contents General considerations and recommendations .......................................................... 1 Diagnosis ................................................................................................................ 1 Treatment ............................................................................................................... 1 Prevention and control ............................................................................................ 1 Public health considerations ................................................................................... 2 Gastrointestinal Parasites .......................................................................................... 3 Ascarids (Toxocara spp., Toxascaris leonina) ........................................................ 3 Hookworms (Ancylostoma
    [Show full text]