Supporting Information

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Information Supporting Information Hanawa-Suetsugu et al. 10.1073/pnas.1113512109 SI Text DOCK2 DHR-2 fragment (residues 1196–1622) was cloned into SI Results. We examined the intra- and intermolecular interfaces the expression vector pDEST10.1 (Invitrogen), as a fusion with of the Src-homology 3 (SH3) domains. To assess all structures N-terminal His and small ubiquitin-like modifier protease affinity containing an SH3 domain, we collected the Protein Data Bank tags and a TEV protease cleavage site. The DOCK2 DHR-2 frag- (PDB) codes in three different ways. The first was a key word ment was expressed in Sf9 cells, using the Bac-to-Bac Baculovirus search for “SH3” in the PDB. The second was a Protein Structure Expression System (Invitrogen). The gene encoding the human Database Search by DaliLite v. 3, using our dedicator of cytokin- ras-related C3 botulinum toxin substrate 1 (Rac1) (1–177) frag- esis 2 (DOCK2) SH3 domain structure (PDB code 3A98). The ment was cloned into the expression vector pCR2.1 (Invitrogen), last was a homology search in the PDB, using the amino acid as a fusion with an N-terminal His affinity tag and a TEV pro- sequences that are annotated as an SH3 domain in the UniProt tease cleavage site. The T17N mutation was introduced into Rac1 database. Finally, we collected 1,245 PDB codes, and calculated by using a QuikChange site-directed mutagenesis kit (Agilent). the intermolecular and intramolecular interface areas of their The Rac1 (T17N) mutant was synthesized by the E. coli cell-free SH3 domains by PDBePISA (Fig. S5 A and B). system (1, 2). The DOCK2 DHR-2 and Rac1 (T17N) proteins, The intermolecular interface between DOCK2 SH3 and En- after digestion with TEV protease, were separately purified gulfment and cell motility protein 1 (ELMO1) in our structure by ion exchange on a HiTrap Q column and by size-exclusion 2 is approximately 1;450 Å (Fig. S5 A and C), and it is the largest chromatography on a HiLoad 16/60 Superdex 75 pg column. The intermolecular interface (Fig. S5A). The second largest interface DOCK2 DHR-2•Rac1 complex, formed by incubating the pro- 2 (approximately 860 Å ) is that in the p22Phox • p47Phox complex teins together on ice for 1 h, was separated from the uncomplexed structure, which also has the authentic SH3•PXXP interaction proteins by chromatography on a HiLoad 16/60 Superdex 75 pg (Fig. S5D), but it is less than 60% of the size of the DOCK2•- column, preequilibrated with 20 mM Tris•HCl buffer (pH 8.0), ELMO interface. The third is the complex of Cbl-interacting pro- containing 150 mM NaCl, 10% glycerol, and 2 mM DTT. tein of 85 kDa SH3 and ubiquitin. This interface is formed by an 2 approximately 820 Å domain•domain interaction (Fig. S5A). NMR spectroscopy and spectral assignments. All spectra were re- On the other hand, intramolecular interactions of the SH3 corded at 296 K on Bruker Avance 600 and 800 spectrometers domain have been observed with other regions in multidomain equipped with cryoprobes. Resonance assignments were accom- proteins, which may be related to the autoinhibition of the plished using a conventional set of triple-resonance spectra, as protein functions. The SH3 interface in the calcium channel β-2 described previously (4), and were deposited in the Biological 2 subunit is over 1;500 Å (Fig. S5B). The construct lacks the poly- Magnetic Resonance Data Bank (11079). Interproton distance 15 13 proline sequences, and the SH3 domain is buried among the gua- restraints were obtained from N and C edited NOESY spec- nylate kinase domain and two flanking regions. Almost of all the tra, both recorded with a mixing time of 120 ms. All spectra were structures listed in Table S3B include such domain•domain inter- processed using NMRPipe (5), and the programs Kujira (6) and actions. Only neutrophil cytosol factor 1 has the authentic inter- NMRView (7) were employed for optimal visualization and spec- action of the SH3 domain with a polyproline sequence. However, tral analyses. the interacting motif is not a typical PXXP, but a PXXR motif (Fig. S5E). NMR structure calculations. The DOCK2 SH3-ELMO1 peptide fusion complex was determined by the conventional triple-reso- SI Materials and Methods. Protein expression and purification for nance technique (8–12). Automated NOE cross-peak assign- structural determination. The genes encoding the DOCK2 SH3- ments and structure calculations with torsion angle dynamics ELMO1 peptide fusion proteins were obtained by PCR. The were performed using the software package CYANA (13). The DNA fragments, listed in Fig. S1, were cloned into the expression backbone dihedral angle restraints from the TALOS program vector pCR2.1 (Invitrogen), as fusions with an N-terminal His (14) were also included in the calculations, with allowed ranges affinity tag and a tobacco etch virus (TEV) protease cleavage site. of Æ30°. The final structure calculations with CYANA were The 13C∕15N-labeled fusion proteins were synthesized by the started from 100 conformers with random torsion angle values. Escherichia coli cell-free protein expression system (1–3), and The 20 conformers with the lowest final CYANA target function were purified using a chelating column, as described previously values were selected for the final structure set. The structures (4). The purified proteins were concentrated to 0.7–1.0 mM in were validated using PROCHECK-NMR (15, 16). The structural 20 mM Tris-d11-HCl buffer (pH 7.0), containing 100 mM NaCl, statistics of the DOCK2 SH3-ELMO1 peptide fusion protein are 1 mM dithiothreitol-d10, 10% D2O, and 0.02% NaN3. summarized in Table S1. Figures were generated with the MOL- The expression plasmids for the human DOCK2 (residues 1– MOL (17) and PyMol (18) (http://www.pymol.org) programs. 177) and ELMO1 (residues 532–727) fragments were constructed in a similar manner. The selenomethionine-labeled proteins were Identification of the ELMO1-interacting region of DOCK2 and the synthesized using the large-scale dialysis mode of the E. coli cell- DOCK2-interacting region of ELMO1. In our search for DOCK2 free reaction (1, 2). After digestion with TEV protease, the pro- and ELMO1 regions that are suitable for crystallographic studies, tein complex was purified by ion exchange on a HiTrap Q column we expressed a series of N-terminal fragments of DOCK2 (resi- and by size-exclusion chromatography on a HiLoad 16/60 Super- dues 1–160, 1–177, 1–190, 9–160, 9–177, 9–190, 21–160, 21–177, dex 75 pg column, preequilibrated with 20 mM Tris•HCl buffer and 21–190) and C-terminal fragments of ELMO1 (residues 532– (pH 8.0), containing 150 mM NaCl and 2 mM DTT. All columns 717, 541–717, 550–717, 532–727, 541–727, and 550–727), using were purchased prepacked from GE Healthcare. the small-scale dialysis mode of the E. coli cell-free reaction The boundaries for the DOCK2 DOCK-homology region 2 (1, 2). We found that fragments 1–177 and 1–190 of DOCK2 (DHR-2) domain were determined by expressing various DOCK2 and fragments 532–717, 532–727, and 541–727 of ELMO1 were DHR-2 fragments, using the small-scale dialysis mode of the highly expressed and produced soluble DOCK2•ELMOl com- E. coli cell-free reaction (1, 2). The gene encoding the human plexes. Among them, only the protein complex between frag- Hanawa-Suetsugu et al. www.pnas.org/cgi/doi/10.1073/pnas.1113512109 1of9 ments 1–177 of DOCK2 and 532–727 of ELMO1 produced dif- fore, the present DOCK2 DHR-2 domain•Rac1 structure is fraction quality crystals. suitable for generating a structural model of the DOCK2•EL- MO1•Rac1 ternary complex (Fig. 5 B and C). Analytical ultracentrifugation. All experiments were performed at 4 °C with an An-50 Ti rotor using Beckman Optima XL-I analy- Calculations of SH3 intermolecular and intramolecular interfaces. To tical ultracentrifuge. The sample buffer was 20 mM Tris•HCl assess all structures containing an SH3 domain, we collected the buffer (pH 8.0), containing 150 mM NaCl and 5 mM β-mercap- PDB codes in three different ways. The first was a key word toethanol. The solvent density and the protein partial specific vo- search for “SH3” in the PDB (http://www.pdbj.org/). The second lume (υ) were estimated using the program Sednterp (http://www. was a Protein Structure Database Search by DaliLite v. 3 (http:// jphilo.mailway.com/). Sedimentation equilibrium experiments ekhidna.biocenter.helsinki.fi/dali_server/), using our DOCK2 were performed with protein concentrations of 0.80, 0.40, and SH3 domain structure (PDB code 3A98). The last was a homol- 0.20 mg∕mL. Data were obtained at 10,000, 12,000, and ogy search in the PDB, using the amino acid sequences that are 14,000 rpm. The equilibrium data were fitted using the manufac- annotated as an SH3 domain in the UniProt database (http:// turer’s software. www.uniprot.org/uniprot/). Finally, we collected 1,245 PDB codes, and calculated the intermolecular and intramolecular in- Crystallization and data collection. The DOCK2•ELMOl complex terface areas of their SH3 domains by PDBePISA (http:// crystals for structure analysis were grown by the hanging-drop www.ebi.ac.uk/msd-srv/prot_int/pistart.html)(Fig.S5A and B). vapor-diffusion method, by mixing the protein solution with an We listed the PDB codes of the proteins with intermolecular in- 2 equal volume of reservoir solution, containing 100 mM diammo- terfaces greater than 800 Å and intramolecular interfaces larger 2 nium hydrogen citrate and 12% PEG 3350. The crystals were than 1;000 Å .
Recommended publications
  • Dock3 Protects Myelin in the Cuprizone Model for Demyelination
    Citation: Cell Death and Disease (2014) 5, e1395; doi:10.1038/cddis.2014.357 OPEN & 2014 Macmillan Publishers Limited All rights reserved 2041-4889/14 www.nature.com/cddis Dock3 protects myelin in the cuprizone model for demyelination K Namekata1, A Kimura1, C Harada1, H Yoshida2, Y Matsumoto1 and T Harada*,1,2 Dedicator of cytokinesis 3 (Dock3) belongs to an atypical family of the guanine nucleotide exchange factors. It is predominantly expressed in the neural tissues and causes cellular morphological changes by activating the small GTPase Rac1. We previously reported that Dock3 overexpression protects retinal ganglion cells from excitotoxic cell death. Oligodendrocytes are the myelinating cells of axons in the central nervous system and these cells are damaged in demyelinating disorders including multiple sclerosis (MS) and optic neuritis. In this study, we examined if Dock3 is expressed in oligodendrocytes and if increasing Dock3 signals can suppress demyelination in a cuprizone-induced demyelination model, an animal model of MS. We demonstrate that Dock3 is expressed in oligodendrocytes and Dock3 overexpression protects myelin in the corpus callosum following cuprizone treatment. Furthermore, we show that cuprizone demyelinates optic nerves and the extent of demyelination is ameliorated in mice overexpressing Dock3. Cuprizone treatment impairs visual function, which was demonstrated by multifocal electroretinograms, an established non-invasive method, and Dock3 overexpression prevented this effect. In mice overexpressing Dock3, Erk activation is increased, suggesting this may at least partly explain the observed protective effects. Our findings suggest that Dock3 may be a therapeutic target for demyelinating disorders including optic neuritis. Cell Death and Disease (2014) 5, e1395; doi:10.1038/cddis.2014.357; published online 28 August 2014 Dedicator of cytokinesis 3 (Dock3), an atypical member of the will restore the visual function.
    [Show full text]
  • Structure of the Dock2âˆ'elmo1 Complex Provides Insights Into
    ARTICLE https://doi.org/10.1038/s41467-020-17271-9 OPEN Structure of the DOCK2−ELMO1 complex provides insights into regulation of the auto-inhibited state Leifu Chang1,7, Jing Yang1, Chang Hwa Jo 2, Andreas Boland 1,8, Ziguo Zhang 1, Stephen H. McLaughlin 1, Afnan Abu-Thuraia 3, Ryan C. Killoran2, Matthew J. Smith 2,4,9, Jean-Francois Côté 3,5,6,9 & ✉ David Barford 1 DOCK (dedicator of cytokinesis) proteins are multidomain guanine nucleotide exchange 1234567890():,; factors (GEFs) for RHO GTPases that regulate intracellular actin dynamics. DOCK proteins share catalytic (DOCKDHR2) and membrane-associated (DOCKDHR1) domains. The structurally-related DOCK1 and DOCK2 GEFs are specific for RAC, and require ELMO (engulfment and cell motility) proteins for function. The N-terminal RAS-binding domain (RBD) of ELMO (ELMORBD) interacts with RHOG to modulate DOCK1/2 activity. Here, we determine the cryo-EM structures of DOCK2−ELMO1 alone, and as a ternary complex with RAC1, together with the crystal structure of a RHOG−ELMO2RBD complex. The binary DOCK2−ELMO1 complex adopts a closed, auto-inhibited conformation. Relief of auto- inhibition to an active, open state, due to a conformational change of the ELMO1 subunit, exposes binding sites for RAC1 on DOCK2DHR2, and RHOG and BAI GPCRs on ELMO1. Our structure explains how up-stream effectors, including DOCK2 and ELMO1 phosphorylation, destabilise the auto-inhibited state to promote an active GEF. 1 MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. 2 Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada. 3 Montreal Institute of Clinical Research (IRCM), Montréal, QC H2W 1R7, Canada.
    [Show full text]
  • Pi3kp110-, Src-, FAK-Dependent and DOCK2-Independent Migration and Invasion of CXCL13-Stimulated Prostate Cancer Cells
    El Haibi et al. Molecular Cancer 2010, 9:85 http://www.molecular-cancer.com/content/9/1/85 RESEARCH Open Access PI3Kp110-,Research Src-, FAK-dependent and DOCK2-independent migration and invasion of CXCL13-stimulated prostate cancer cells Christelle P El Haibi1, Praveen K Sharma2, Rajesh Singh3, Paul R Johnson4, Jill Suttles2, Shailesh Singh3 and James W Lillard Jr*3 Abstract Background: Most prostate cancer (PCa)-related deaths are due to metastasis, which is mediated in part by chemokine receptor and corresponding ligand interaction. We have previously shown that PCa tissue and cell lines express high levels of the chemokine receptor CXCR5, than compared to their normal counterparts, and interaction of CXCR5 with its specific ligand (CXCL13) promoted PCa cell invasion, migration, and differential matrix metalloproteinase (MMP) expression. This study dissects some of the molecular mechanisms following CXCL13-CXCR5 interaction that mediate PCa cell migration and invasion. Results: Using Western blot analysis, kinase-specific cell-based ELISAs, and migration and invasion assays, we show that PCa cell lines differentially express phosphoinositide-3 kinase (PI3K) catalytic subunit isoforms and dedicator of cytokinesis 2 (DOCK2). Specifically, we show that PC3 and normal prostatic epithelial (RWPE-1), but not LNCaP cell lines expressed DOCK2, while RWPE, PC3, and LNCaP cell lines expressed PI3K-p110α and -p110β. Moreover, PC3 selectively expressed PI3K-p110γ, but LNCaP and RWPE cell lines expressed PI3Kp110δ. CXCL13 caused CXCR5-dependent activation of the PI3Kp85α in LNCaP cells, and p85α as well as -p101 in PC3 cells. CXCL13-CXCR5 interaction regulated LNCaP and PC3 cell migration and invasion through extracellular signal-regulated kinase 1/2 (ERK1/2) activation that was primarily dependent on the PI3Kp110 isoform(s), Src, and focal adhesion kinase (FAK), but not DOCK2.
    [Show full text]
  • CXCL13/CXCR5 Interaction Facilitates VCAM-1-Dependent Migration in Human Osteosarcoma
    International Journal of Molecular Sciences Article CXCL13/CXCR5 Interaction Facilitates VCAM-1-Dependent Migration in Human Osteosarcoma 1, 2,3,4, 5 6 7 Ju-Fang Liu y, Chiang-Wen Lee y, Chih-Yang Lin , Chia-Chia Chao , Tsung-Ming Chang , Chien-Kuo Han 8, Yuan-Li Huang 8, Yi-Chin Fong 9,10,* and Chih-Hsin Tang 8,11,12,* 1 School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City 11031, Taiwan; [email protected] 2 Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan; [email protected] 3 Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan 4 Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan 5 School of Medicine, China Medical University, Taichung 40402, Taiwan; [email protected] 6 Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan; [email protected] 7 School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City 11221, Taiwan; [email protected] 8 Department of Biotechnology, College of Health Science, Asia University, Taichung 40402, Taiwan; [email protected] (C.-K.H.); [email protected] (Y.-L.H.) 9 Department of Sports Medicine, College of Health Care, China Medical University, Taichung 40402, Taiwan 10 Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin 65152, Taiwan 11 Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan 12 Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan * Correspondence: [email protected] (Y.-C.F.); [email protected] (C.-H.T.); Tel.: +886-4-2205-2121-7726 (C.-H.T.); Fax: +886-4-2233-3641 (C.-H.T.) These authors contributed equally to this work.
    [Show full text]
  • A Rac/Cdc42 Exchange Factor Complex Promotes Formation of Lateral filopodia and Blood Vessel Lumen Morphogenesis
    ARTICLE Received 1 Oct 2014 | Accepted 26 Apr 2015 | Published 1 Jul 2015 DOI: 10.1038/ncomms8286 OPEN A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis Sabu Abraham1,w,*, Margherita Scarcia2,w,*, Richard D. Bagshaw3,w,*, Kathryn McMahon2,w, Gary Grant2, Tracey Harvey2,w, Maggie Yeo1, Filomena O.G. Esteves2, Helene H. Thygesen2,w, Pamela F. Jones4, Valerie Speirs2, Andrew M. Hanby2, Peter J. Selby2, Mihaela Lorger2, T. Neil Dear4,w, Tony Pawson3,z, Christopher J. Marshall1 & Georgia Mavria2 During angiogenesis, Rho-GTPases influence endothelial cell migration and cell–cell adhesion; however it is not known whether they control formation of vessel lumens, which are essential for blood flow. Here, using an organotypic system that recapitulates distinct stages of VEGF-dependent angiogenesis, we show that lumen formation requires early cytoskeletal remodelling and lateral cell–cell contacts, mediated through the RAC1 guanine nucleotide exchange factor (GEF) DOCK4 (dedicator of cytokinesis 4). DOCK4 signalling is necessary for lateral filopodial protrusions and tubule remodelling prior to lumen formation, whereas proximal, tip filopodia persist in the absence of DOCK4. VEGF-dependent Rac activation via DOCK4 is necessary for CDC42 activation to signal filopodia formation and depends on the activation of RHOG through the RHOG GEF, SGEF. VEGF promotes interaction of DOCK4 with the CDC42 GEF DOCK9. These studies identify a novel Rho-family GTPase activation cascade for the formation of endothelial cell filopodial protrusions necessary for tubule remodelling, thereby influencing subsequent stages of lumen morphogenesis. 1 Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
    [Show full text]
  • Tyr724 Phosphorylation of ELMO1 by Src Is Involved in Cell Spreading and Migration Via Rac1 Activation
    Title Tyr724 phosphorylation of ELMO1 by Src is involved in cell spreading and migration via Rac1 activation Makino, Yoshinori; Tsuda, Masumi; Ohba, Yusuke; Nishihara, Hiroshi; Sawa, Hirofumi; Nagashima, Kazuo; Tanaka, Author(s) Shinya Cell communication and signaling, 13, 35 Citation https://doi.org/10.1186/s12964-015-0113-y Issue Date 2015-07-26 Doc URL http://hdl.handle.net/2115/59828 Rights(URL) http://creativecommons.org/licenses/by/4.0 Type article File Information s12964-015-0113-y.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Makino et al. Cell Communication and Signaling (2015) 13:35 DOI 10.1186/s12964-015-0113-y RESEARCH ARTICLE Open Access Tyr724 phosphorylation of ELMO1 by Src is involved in cell spreading and migration via Rac1 activation Yoshinori Makino1,2, Masumi Tsuda1, Yusuke Ohba3, Hiroshi Nishihara4, Hirofumi Sawa1,5, Kazuo Nagashima1,6 and Shinya Tanaka1,4* Abstract Background: The complex of Dock180/ELMO1 that functions as a bipartite guanine nucleotide exchange factor for Rac is essential for diverse physiological and pathological processes of cells such as cell migration, phagocytosis, and invasion of cancer cells. Among the Src-family tyrosine kinases (SFKs), it has been reported that Hck directly phosphorylates ELMO1, regulating phagocytosis by promoting activation of Rac1; however, the involvement of other SFKs in ELMO1 phosphorylation has remained unknown. Here, we identified novel tyrosine (Y) residues of ELMO1 phosphorylated by SFKs, and examined the effects on Rac1 activity, cell adhesion, spreading, and cell motility on extracellular matrix (ECM). Results: In this study, we unveiled that Src and Fyn can induce tyrosine phosphorylation of ELMO1 in in vivo and in vitro phosphorylation assays.
    [Show full text]
  • A Rhog-Mediated Signaling Pathway That Modulates Invadopodia Dynamics in Breast Cancer Cells Silvia M
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1064-1077 doi:10.1242/jcs.195552 RESEARCH ARTICLE A RhoG-mediated signaling pathway that modulates invadopodia dynamics in breast cancer cells Silvia M. Goicoechea, Ashtyn Zinn, Sahezeel S. Awadia, Kyle Snyder and Rafael Garcia-Mata* ABSTRACT micropinocytosis, bacterial uptake, phagocytosis and leukocyte One of the hallmarks of cancer is the ability of tumor cells to invade trans-endothelial migration (deBakker et al., 2004; Ellerbroek et al., surrounding tissues and metastasize. During metastasis, cancer cells 2004; Jackson et al., 2015; Katoh et al., 2006, 2000; van Buul et al., degrade the extracellular matrix, which acts as a physical barrier, by 2007). Recent studies have revealed that RhoG plays a role in tumor developing specialized actin-rich membrane protrusion structures cell invasion and may contribute to the formation of invadopodia called invadopodia. The formation of invadopodia is regulated by Rho (Hiramoto-Yamaki et al., 2010; Kwiatkowska et al., 2012). GTPases, a family of proteins that regulates the actin cytoskeleton. Invadopodia are actin-rich adhesive structures that form in the Here, we describe a novel role for RhoG in the regulation of ventral surface of cancer cells and allow them to degrade the invadopodia disassembly in human breast cancer cells. Our results extracellular matrix (ECM) (Gimona et al., 2008). Formation of show that RhoG and Rac1 have independent and opposite roles invadopodia involves a series of steps that include the disassembly in the regulation of invadopodia dynamics. We also show that SGEF of focal adhesions and stress fibers, and the relocalization of several (also known as ARHGEF26) is the exchange factor responsible of their components into the newly formed invadopodia (Hoshino for the activation of RhoG during invadopodia disassembly.
    [Show full text]
  • CXCL13/CXCR5 Signaling Axis in Cancer
    Life Sciences 227 (2019) 175–186 Contents lists available at ScienceDirect Life Sciences journal homepage: www.elsevier.com/locate/lifescie Review article CXCL13/CXCR5 signaling axis in cancer T ⁎ Muzammal Hussaina,b,1, Dickson Adahb,c,1, Muqddas Tariqa,b, Yongzhi Lua, Jiancun Zhanga, , ⁎ Jinsong Liua, a Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China b University of Chinese Academy of Sciences, Beijing 100049, PR China c State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China ARTICLE INFO ABSTRACT Keywords: The tumor microenvironment comprises stromal and tumor cells which interact with each other through com- Cancer plex cross-talks that are mediated by a variety of growth factors, cytokines, and chemokines. The chemokine CXCL13 ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) are among the key chemotactic factors which play CXCR5 crucial roles in deriving cancer cell biology. CXCL13/CXCR5 signaling axis makes pivotal contributions to the Tumor progression development and progression of several human cancers. In this review, we discuss how CXCL13/CXCR5 sig- Tumor immunity naling modulates cancer cell ability to grow, proliferate, invade, and metastasize. Furthermore, we also discuss Immune-evasion the preliminary evidence on context-dependent functioning of this axis within the tumor-immune micro- environment, thus, highlighting its potential dichotomy with respect to anticancer immunity and cancer im- mune-evasion mechanisms. At the end, we briefly shed light on the therapeutic potential or implications of targeting CXCL13/CXCR5 axis within the tumor microenvironment.
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • Structural Basis for Mutual Relief of the Rac Guanine Nucleotide Exchange Factor DOCK2 and Its Partner ELMO1 from Their Autoinhibited Forms
    Structural basis for mutual relief of the Rac guanine nucleotide exchange factor DOCK2 and its partner ELMO1 from their autoinhibited forms Kyoko Hanawa-Suetsugua, Mutsuko Kukimoto-Niinoa,b, Chiemi Mishima-Tsumagaria, Ryogo Akasakaa, Noboru Ohsawaa, Shun-ichi Sekinea,c, Takuhiro Itoa,c, Naoya Tochioa, Seizo Koshibaa, Takanori Kigawaa,d, Takaho Teradaa,b, Mikako Shirouzua, Akihiko Nishikimib,e,f, Takehito Urunoe, Tomoya Katakaig, Tatsuo Kinashig, Daisuke Kohdah, Yoshinori Fukuib,e,f,1, and Shigeyuki Yokoyamaa,b,c,1 aRIKEN Systems and Structural Biology Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan; bJapan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo 102-0075, Japan; cDepartment of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan; dTokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502, Japan; eDivision of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; fResearch Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan; gDepartment of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka 570-8506, Japan; and hDivision of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan Edited by John Kuriyan, University of California, Berkeley, CA, and approved December 31, 2011 (received for review September 6, 2011) DOCK2, a hematopoietic cell-specific, atypical guanine nucleotide for the Rho-family GTPases. There are 11 mammalian members exchange factor, controls lymphocyte migration through ras-related (DOCK180, DOCK2-11) of the CDM family. The CDM proteins C3 botulinum toxin substrate (Rac) activation.
    [Show full text]
  • Chemokine Ligand 13 Expression Is Abundant in the Tumor Microenvironment and Indicates Poor Prognosis of Kidney Clear Cell Carcinoma
    BIOCELL Tech Science Press 2021 45(3): 589-597 Chemokine Ligand 13 Expression is Abundant in the Tumor Microenvironment and Indicates Poor Prognosis of Kidney Clear Cell Carcinoma MENGDAN WU1;MENGYAO SUN1;QINHUAI LAI1;YIN LU1;YUYIN FU1;YUJIA PENG1;WEIRONG LAI1;LISHI ZENG1; SHENGYAN ZHAO1;YUYAN LI1;ZHIXIONG ZHANG1;XIAOFENG CHEN1;FAN QIAO1;YIWEN ZHANG1,*;SHIJIE ZHOU1,2,*; LANTU GOU1;JINLIANG YANG1,2 1 Department of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China 2 Guangdong Zhongsheng Pharmaceutical Co., Ltd., Shantou, 515041, China Key words: CXCL13, Kidney clear cell carcinoma, Gamma/delta T cells, DNA methylation, Unfavorable survival Abstract: The chemokine ligand 13-chemokine receptor 5 (CXCL13-CXCR5) axis has been characterized as a critical tumor-promoting signaling pathway in the tumor microenvironment (TME) in multiple types of solid tumors. In this study, we analyzed the expression profile of CXCL13 in kidney clear cell carcinoma (KIRC) and its correlation with tumor-infiltrating immune cells (TIICs). A monoclonal antibody against CXCL13 with high affinity and purity was generated in our lab for western blot and immunohistochemistry (IHC). Bioinformatic analysis was performed based on bulk-seq data from the Cancer Genome Atlas (TCGA)-KIRC and single-cell RNA-seq data from scRNASeqDB and PanglaoDB. Results showed that high CXCL13 expression in TME was associated with shorter progression-free survival (PFS), disease-specific survival (DSS), and overall survival (OS). KIRC cell lines, as well as several other cancer cell lines, had negative CXCL13 expression. IHC staining from the Human Protein Atlas (HPA) and our tissue array indicated that CXCL13 might be mainly expressed by TIICs, but not KIRC tumor cells.
    [Show full text]
  • Inflammation in Innate and Adaptive Immune Mechanisms October 28 – 30, 2012 Hilton Grand Wailea Resort | Maui, Hawai’I Organizers: Tom Hamilton and Xiaoxia Li
    45th Annual Meeting of The Society for Leukocyte Biology InflammatIon In Innate and adaptIve Immune mechanIsms October 28 – 30, 2012 Hilton Grand Wailea Resort | Maui, Hawai’i Organizers: Tom Hamilton and Xiaoxia Li abstracts Journal of Leukocyte Biology, Supplement 2012 www.leukocytebiology.org 45th AnnuAl Meeting of the Society for leukocyte Biology inflAMMAtion in innAte And AdAptive iMMune MechAniSMS grAnd WAileA, MAui, hAWAi’i ~ octoBer 28-30, 2012 Thank you to the supporters of the 2012 SLB Meeting! Journal of Leukocyte Biology Supplement 2012 ABSTRACTS 1 2 Alcohol and Drugs of Abuse Interaction with HIV/AIDS: Chronic Alcohol Consumption Increases Mortality in Sepsis Systems Biology Approach in the SIV-Infected Macaque Benyam P. Yoseph, Zhe Liang, Elise Breed, Kevin McConnell, Patricia E. Molina David M. Guidot, Michael Koval, Craig M. Coopersmith Comprehensive Alcohol Research Center, Louisiana State Emory University School of Medicine University Health Sciences Center, NOLA Introduction: Excessive alcohol abuse is a problem of particular The two most commonly used and abused drugs are alcohol concern in the intensive care unit (ICU), as the rate of morbidity and the cannabinoids. Alcohol and drugs of abuse have been and mortality in all patients admitted to ICU is 2-4 times greater demonstrated to alter host response to human immunodeficiency than in non-alcoholics. Sepsis is the leading cause of death in ICU. (HIV) infection; by affecting progression of infection, tissue The purpose of this study was to examine the pathophysiology of injury, and time to death. Several factors can be involved in chronic alcohol abuse in sepsis. this, those pertaining to the host response, as well as those Methods: FVB/N mice were given liquid ethanol diet (20% w/v) or related to the ability of the virus to integrate itself into the host water for 12 weeks.
    [Show full text]